Measurement of the inelastic proton–proton cross section at $\sqrt{s} = 7$ TeV

CMS Collaboration

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 25 October 2012
Received in revised form 3 March 2013
Accepted 15 March 2013
Available online 21 March 2013
Editor: M. Boer

Keywords:
CMS
Physics
Inelastic cross section
Tracking efficiency
Forward energy
Total cross section
LHC

A B S T R A C T

A measurement is presented of the inelastic proton–proton cross section at a centre-of-mass energy of $\sqrt{s} = 7$ TeV. Using the CMS detector at the LHC, the inelastic cross section is measured through two independent methods based on information from (i) forward calorimetry (for pseudorapidity $3 < |\eta| < 5$), in collisions where at least one proton loses more than 5×10^{-6} of its longitudinal momentum, and (ii) the central tracker ($|\eta| < 2.4$), in collisions containing an interaction vertex with more than one, two, or three tracks with transverse momenta $p_T > 200$ MeV/c. The measurements cover a large fraction of the inelastic cross section for particle production over about nine units of pseudorapidity and down to small transverse momenta. The results are compared with those of other experiments, and with models used to describe high-energy hadronic interactions.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Total hadronic cross sections, as well as their major subdivisions into elastic, inelastic diffractive and inelastic non-diffractive contributions, comprise fundamental quantities that have been studied in high-energy particle, nuclear, and cosmic-ray physics over the past 60 years, in experiments covering many orders of magnitude in centre-of-mass energy [1–5].

The bulk of the total cross section in proton–proton (pp) hadronic interactions cannot be calculated through perturbative quantum chromodynamics, but phenomenological approaches based on fundamental principles of quantum mechanics, such as unitarity and analyticity, can be used to accommodate the experimental results (e.g. Ref. [6], and references therein). Although phenomenological models of cross sections at low centre-of-mass energies ($\sqrt{s} \lesssim 100$ GeV) provide a rather precise description of the data, there are large uncertainties in extrapolating to the energy range of the Large Hadron Collider (LHC). The measured inelastic pp cross section (σ_{inel}) serves as an input to these phenomenological models, and provides basic information needed for tuning hadronic Monte Carlo (MC) generators. The values of σ_{inel} are also used to estimate the number of pp interactions as a function of luminosity at colliders, and are relevant to studies of high-energy cosmic rays [7] and to the characterization of global properties of heavy-ion collisions, especially in the context of the Glauber model [8].

This Letter presents a measurement of the inelastic pp cross section at $\sqrt{s} = 7$ TeV, using data collected with the Compact Muon Solenoid (CMS) detector at the LHC. The analysis is based mostly on the central silicon tracker and the forward hadron calorimeters (HF) of the CMS apparatus. The combination of these two detectors provides sensitivity to a large part of the inelastic cross section, including central diffractive production, where particles can be produced at small values of pseudorapidity.

The measurement using the HF calorimeters covers a region of phase space corresponding to values of fractional momentum loss of the scattered proton of $\xi = (M_X c^2)^2/(s) > 5 \times 10^{-6}$, equivalent to $M_X > 16$ GeV/c2, where M_X is defined as the larger mass of the two dissociated proton systems in the final state. This coverage is the same as that used in recent publications by the ATLAS [3] and the ALICE [5] Collaborations.

2. Experimental apparatus

A detailed description of the CMS apparatus can be found in Ref. [9], and the features most relevant to the present analysis are sketched below. The CMS detector comprises a 6 m diameter, 13 m long, 3.8 T solenoid magnet, with a combined silicon pixel and strip tracker covering the region $|\eta| < 2.5$, a lead-tungstate electromagnetic calorimeter and a brass/scintillator hadronic calorimeter covering the region $|\eta| < 3.0$; these detectors are contained within the volume of the magnetic field. The pseudorapidity is defined as
as \(\eta = -\ln[\tan(\theta/2)] \), where \(\theta \) is the polar angle of any particle with respect to the anticlockwise circulating beam. Several layers of muon chambers (drift-tube, resistive-plate and cathode-strip chambers) form the outer part of the detector. The charged-particle resolution of the central tracker for a transverse momentum of \(p_T = 1 \text{ GeV}/c \) is between 0.7\% at \(|\eta| = 0 \) and 2\% at \(|\eta| = 2.5 \) [9].

On each side of the detector, at \(3.0 < |\eta| < 5.2 \), reside the hadron forward calorimeters (HF), each composed of 18 iron wedges, with embedded quartz fibres running along the beam direction. Each wedge is subdivided into 13 \(\eta \)-segments, called towers.

The beam-sensitive “pick-up” detectors, consisting of two pairs of button electrodes located at \(\pm 175 \text{ m} \) from the centre of the detector, provide almost 100\% detection efficiency and accurate timing of proton bunches at CMS. The luminosity is calculated from dedicated Van der Meer scans, using information from the beam profile and beam current measurements, with a precision of 4\% that is dominated by the uncertainty of the beam current determination [10,11].

3. Estimating the inelastic cross section using the HF calorimeters

In this method, the inelastic pp cross section is measured by counting the number of events that deposit at least 5 GeV of energy in either of the two HF calorimeters. The threshold \(E_{HF} > 5 \text{ GeV} \) is set to minimize the effect of detector noise on the efficiency of selecting pp collisions.

3.1. Event selection and analysis

The analysis is performed using data collected in low-luminosity runs with an average of 0.007 to 0.11 collisions per bunch crossing. The events are collected using three triggers: (i) a coincidence trigger that requires the presence of two colliding bunches, used to select an unbiased sample of pp events, (ii) a single-bunch trigger, requiring the presence of just one unpaired bunch, used to estimate beam-induced backgrounds, and (iii) a random “empty” trigger, requiring absence of both beams, which is used to estimate detector noise. All these triggers are formed from information provided by the beam pick-up detectors.

The analysis is based on counting the number of pp collisions with \(E_{HF} > 5 \text{ GeV} \) in either of the two HF calorimeters. The cross section is evaluated in terms of the variable \(\xi \), which is defined through MC studies as follows. For each MC event, generator-level information is used to order final-state particles in rapidity and to find the largest gap between two consecutive particles. This “central” gap is used to separate all particles into two groups, by assigning each particle, according to its rapidity position relative to that gap, to system \(A \) or system \(B \). Finally, the masses of system \(A \) and \(B \) are calculated, and the larger of the two is called \(M_X \), while the smaller one \(M_Y \), thereby defining \(\xi = (M_Xc^2)/s \). In single-diffractive events, \(\xi \) corresponds to the fraction of momentum lost by the proton in the collision. The \(\xi \) distribution is bound by the elastic limit of \(\log_{10}(M_{\text{proton}}c^2/s) \approx -7.75 \).

The distributions in \(\xi \) values for \(E_{HF} > 4 \) and \(> 5 \text{ GeV} \) are shown in Fig. 1 for three Monte Carlo models: PYTHIA 6 (version 6.422) [12], PYTHIA 8 (version 8.135, 8.145) [13], and PHOJET (version 1.12-35) [14,15]. These selected models differ in the treatment of non-perturbative processes and use a different set of assumptions for soft pp interactions. They capture qualitative features of diffraction well, and they also cover reasonable variations of simulated distributions of \(\xi \). As the plots illustrate, to maintain large detection efficiency, and to mitigate model-dependence, it appears adequate to restrict the range of \(\xi \) to values greater than \(5 \times 10^{-6} \).

Table 1

<table>
<thead>
<tr>
<th>Generator</th>
<th>(\epsilon_\xi (%))</th>
<th>(\beta_\xi (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA 6</td>
<td>97.5 ± 0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>PYTHIA 8</td>
<td>99.3 ± 0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>PHOJET</td>
<td>99.1 ± 0.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The measured values of \(\sigma_{\text{inel}} \) are corrected using two quantities obtained through MC simulation: the selection efficiency \(\epsilon_\xi \), which represents the fraction of pp interactions with \(\xi > 5 \times 10^{-6} \) that are selected by requiring \(E_{HF} > 5 \text{ GeV} \), and the contamination \(\beta_\xi \), which is the fraction of events that have \(E_{HF} > 5 \text{ GeV} \), but originate from \(\xi < 5 \times 10^{-6} \). Table 1 gives the values of \(\epsilon_\xi \) and \(\beta_\xi \) estimated in the three Monte Carlo models. These efficiencies carry a small (<1\%) uncertainty due to the HF energy scale uncertainty, estimated as the difference between the efficiencies obtained with different HF energy thresholds (corresponding to 20\% energy scale variations). As the table shows, the criterion \(E_{HF} > 5 \text{ GeV} \) selects a large fraction of events with \(\xi > 5 \times 10^{-6} \), with only a small contamination from events with \(\xi < 5 \times 10^{-6} \) that characterize contributions originating from low-mass single-proton or double-proton fragmentation.

3.2. Measurement of the inelastic cross section

The analysis is performed using \(\approx 9.2 \text{ million events} \), corresponding to an integrated luminosity of 2.78 \(\text{ pb}^{-1} \), collected under the two-bunch coincidence condition, of which 2.1\% have \(E_{HF} > 5 \text{ GeV} \). The fractions of \(E_{HF} > 5 \text{ GeV} \) events selected by the single-bunch and empty triggers are, respectively, 0.30\% and 0.32\%, suggesting that most of the single-bunch events are from detector noise rather than beam-gas collisions. This is confirmed by the observation that, in the single-bunch triggered sample, the number of events with at least one track is very small. For this reason, beam-gas contributions are considered negligible.

The number of detected inelastic collisions \((N_{\text{inel}}) \) contained in the total number of coincidence trigger events \((N_{\text{coinc}}) \) is obtained as follows:

\[
N_{\text{inel}} = N_{\text{coinc}}[(F_{\text{coinc}} - F_{\text{empty}}) + F_{\text{empty}}(F_{\text{coinc}} - F_{\text{empty}})],
\]

where \(F_{\text{empty}} \) and \(F_{\text{coinc}} \) correspond to the fractions of empty and coincidence triggers with \(E_{HF} > 5 \text{ GeV} \). The term \(N_{\text{coinc}}F_{\text{empty}}(F_{\text{coinc}} - F_{\text{empty}}) \) represents the number of true collisions in \(N_{\text{coinc}}F_{\text{empty}} \) events.

The value of \(N_{\text{inel}} \) has to be corrected for event pileup, i.e., the possibility that more than one collision with \(E_{HF} > 5 \text{ GeV} \) occurs in the same trigger, but all such collisions are counted as just a single event. The number of collisions per trigger is assumed to follow Poisson statistics, for which the probability of \(i \) simultaneous collisions \((i=1,2,3,...) \) is given by

\[
P(n, \lambda) = \frac{\lambda^ne^{-\lambda}}{n!},
\]

where \(\lambda \) is the mean number of interactions with \(E_{HF} > 5 \text{ GeV} \), which depends on the instantaneous luminosity \((L) \). The fraction \(f_{\text{pu}} \) of overlapping collisions, each with \(E_{HF} > 5 \text{ GeV} \), is computed as

\[
f_{\text{pu}} = \sum_{n=2}^{\infty} P(n, \lambda) = 1 - (1 + \lambda)e^{-\lambda} \sim \frac{\lambda^2}{2} - \frac{\lambda^3}{12} + O(\lambda^3),
\]

where \(\lambda \) is evaluated from the fraction of detected interactions \(r_{\text{int}} = N_{\text{inel}}/N_{\text{coinc}} \).
Fig. 1. The normalized ξ distributions for $E_{HF} > 4$ and $E_{HF} > 5$ GeV from MC simulation of inelastic pp collisions using (a) PYTHIA 6, (c) PYTHIA 8, and (e) PHOJET, are shown for the full range of ξ. The corresponding efficiencies are shown in (b), (d), and (f), respectively. The cut value of ξ used in this analysis of 5×10^{-6} is shown on the plots as a dashed vertical line.

\[r_{int} = \sum_{n=1}^{\infty} P(n, \lambda) = 1 - P(0, \lambda) = 1 - e^{-\lambda}, \]

\[\lambda = -\ln(1 - r_{int}). \] (4)

The denominator in Eq. (3) assumes independent probabilities for detecting each of the simultaneous collisions, which is a good approximation for $E_{HF} > 5$ GeV.

Table 2 lists the values of λ and f_{pu}, as calculated using the exact formula in Eq. (3), and their statistical uncertainties for different data runs. The accuracy on the correction factor f_{pu} is limited mostly by the number of events in each run.

The relationship used to evaluate the cross section for $\xi > 5 \times 10^{-6}$, taking account of corrections for pileup, efficiency, and contamination corresponds to:

\[\sigma_{inel}(\xi > 5 \times 10^{-6}) = \frac{N_{inel}(1 - b_{\xi})(1 + f_{pu})}{\epsilon_{\xi} \int L \, dt}. \] (5)

Table 2

<table>
<thead>
<tr>
<th>Run No.</th>
<th>λ</th>
<th>f_{pu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>132601</td>
<td>(0.64 ± 0.01) %</td>
<td>(0.0032 ± 0.0001)</td>
</tr>
<tr>
<td>132599</td>
<td>(0.78 ± 0.01) %</td>
<td>(0.0039 ± 0.0001)</td>
</tr>
<tr>
<td>133877</td>
<td>(1.74 ± 0.02) %</td>
<td>(0.0087 ± 0.0001)</td>
</tr>
<tr>
<td>133874</td>
<td>(3.34 ± 0.05) %</td>
<td>(0.0166 ± 0.0002)</td>
</tr>
<tr>
<td>137027</td>
<td>(4.59 ± 0.17) %</td>
<td>(0.0228 ± 0.0009)</td>
</tr>
<tr>
<td>135757</td>
<td>(8.41 ± 0.04) %</td>
<td>(0.0415 ± 0.0002)</td>
</tr>
<tr>
<td>135175</td>
<td>(9.98 ± 0.05) %</td>
<td>(0.0491 ± 0.0003)</td>
</tr>
</tbody>
</table>

where $\int L \, dt$ is the integrated luminosity of the data sample.

3.3. Results and systematic uncertainties

The value of σ_{inel} for $\xi > 5 \times 10^{-6}$ is calculated by averaging the results obtained from Eq. (5) for the different pileup conditions of
The exclusion of noisy HF towers in the calculation of HF energy changes the results by $\pm 0.4\%$, a value that is taken as a systematic uncertainty. Finally, lowering the value of the calorimeter threshold E_{HF} from 5 to 4 GeV introduces a change of 0.2% in the final result.

Table 3 lists the individual systematic uncertainties, and their total impact, calculated by adding the separate contributions in quadrature. The inelastic pp cross section for events with $\xi > 5 \times 10^{-6}$ is found to be:

$$\sigma_{\text{inel}}(\xi > 5 \times 10^{-6}) = [60.2 \pm 0.2 \text{(stat.)} \pm 1.1 \text{(syst.)}] \pm 2.4 \text{(lum.)} \text{mb}.$$

(6)

This result is in agreement with equivalent measurements from the ATLAS Collaboration $\sigma_{\text{inel}}^{\text{ATLAS}}(\xi > 5 \times 10^{-6}) = [60.3 \pm 0.05 \text{(stat.)} \pm 0.5 \text{(syst.)} \pm 2.1 \text{(lum.)}] \text{mb}$ [3], and from the ALICE Collaboration $\sigma_{\text{inel}}^{\text{ALICE}}(\xi > 5 \times 10^{-6}) = [62.1^{+0.9}_{-0.8} \text{(stat.)} \pm 2.2 \text{(lum.)}] \text{mb}$ [5]. The uncertainties on luminosity of the three measurements are highly correlated.

4. Estimating the inelastic cross section by counting event vertices

A vertex-counting method is also used to measure the inelastic pp cross section. This method relies on the accuracy of the CMS tracking system and not upon any specific Monte Carlo simulation. This method assumes that the number (n) of inelastic pp interactions in a given bunch crossing follows the Poisson probability distribution of Eq. (2), where λ is calculated from the product of the instantaneous luminosity for a bunch crossing and the total inelastic pp cross section: $\lambda = L \cdot \sigma_{\text{inel}}$. The probability of having n inelastic pp interactions, each producing a vertex with > 1, > 2, or > 3 charged particles with $p_T > 200 \text{ MeV/c}$ within $|\eta| < 2.4$, for n between 0 and 8, is measured at different luminosities to evaluate σ_{inel} from a fit of Eq. (2) to the data.

4.1. Event selection and method of analysis

Inclusive samples of $\approx 3 \times 10^6$ two-electron candidate events, and $\approx 1.5 \times 10^6$ single-muon candidate events, are selected for this analysis. The specific trigger requirements are not important, as long as their efficiencies do not depend on the number of pileup interactions. The “triggering interaction”, i.e. the process associated with the production of either the two electrons or the single muon, is not included in the vertex count, but is used just to sample unbiased pileup interactions, given by the additional vertices in the same bunch crossing.

The analysis is performed using data collected with the single-muon sample, while the data collected with the two-electron trigger are used to perform a systematic check on the effect of the choice of the trigger on the result. For each of the two data samples, the distributions in the fraction of events with 0 to 8 pileup interactions are measured as a function of luminosity. A bin-by-bin correction is applied to these measurements to obtain true distributions which are then fitted to Eq. (2), to extract a common value of σ_{inel}. This correction is mainly due to vertex reconstruction efficiency and p_T migration. The distribution of the bin-by-bin correction factors is centered around 1 with all values contained in the interval 0.7–1.3.

The bin-by-bin corrections, evaluated from full Monte Carlo simulation (PYTHIA 6) and reconstruction of events in the CMS detector, do not depend on any specific production model, but only on an accurate simulation of the CMS tracking system. The distributions of charged particles in transverse momentum and in track multiplicity in MC events are reweighted to provide agreement with the data, as these two quantities influence the vertex reconstruction efficiency. The track multiplicity distribution has a broad maximum between 4 and 8 and extends up to 70 tracks. Cross sections are measured for inclusive pp interactions with > 1, > 2, and > 3 charged particles, with $p_T > 200 \text{ MeV/c}$ and $|\eta| < 2.4$, where “charged particles” refer to those with decay lengths $c\tau > 1 \text{ cm}$.

4.2. Vertex definition and reconstruction

To be counted, a pileup interaction has to have a sufficient number of tracks to provide a vertex of good quality [16]. The vertex quality depends upon the number and characteristics of the individual tracks attributed to each vertex. A vertex is also required to have the longitudinal z position within 20 cm of the nominal interaction point.

There are two main reasons that lead to incorrect vertex reconstruction: (i) overlap with another vertex, i.e. the reconstruction program merges two vertices, and (ii) an insufficient number of tracks, or tracks too poorly measured to pass vertex-quality requirements. The vertexing algorithm is very efficient in distinguishing vertices that are further apart than 0.06 cm along the beam direction, and this analysis requires a minimum distance of 0.1 cm. Minimum distances of 0.06 cm and of 0.2 cm are used to check for any systematic effects from this requirement. The fraction of vertices lost from merging depends on luminosity and is almost negligible in the lowest luminosity bin while it becomes around 2% in the highest bin, an effect that is well reproduced by MC simulation, and is therefore corrected. The second source of inefficiency in vertex reconstruction depends on the number of tracks per vertex. Vertices with a large number of tracks are always well reconstructed, while vertices with less than 10 tracks suffer some degradation in reconstruction efficiency: this efficiency is 80% for four-track vertices, 65% for three-track vertices and 40% for two-track vertices.

There are also two main sources of secondary vertices that are not related specifically to σ_{inel}: additional vertices generated through decays of long-lived particles, and false secondary vertices generated by splitting a single vertex into two distinct vertices. Misidentified secondary vertices can often be rejected, as they have a much lower track multiplicity, and they are not necessarily positioned along the beam line: for this last reason, the transverse position of the vertex is required to be within $\pm 0.06 \text{ cm}$ from the nominal beam line.

The correction of number of candidate vertices to the true number of pileup interactions is considered as a function of luminosity.
In particular, a 2-vertex event recorded at low luminosity is most likely to correspond to a true 2-vertex event, while a 2-vertex event recorded at high luminosity is most likely a 3 or 4-vertex event, in which 1 or 2 vertices are merged. We divide the data into 13 equal intervals of instantaneous bunch-crossing luminosity, from \(0.05 \times 10^{30}\) to \(0.7 \times 10^{30}\) cm\(^{-2}\) s\(^{-1}\). To obtain the true pileup distribution in each luminosity interval, we proceed as follows:

(i) Using Eq. (2), the expected distribution of pileup interactions is calculated for the specific luminosity interval, assuming some trial value \(\sigma_{\text{trial}}\)\(\text{inel}\) for the inelastic cross section.

(ii) The Monte Carlo simulation is reweighted to generate a pileup distribution matching the one calculated in step (i). Steps (i) and (ii) are repeated several times for different \(\sigma_{\text{trial}}\)\(\text{inel}\), until good agreement is reached between data and the reconstructed pileup distributions for MC events.

(iii) The generated pileup distributions for inclusive interactions with \(>1\), \(>2\), and \(>3\) tracks, each with \(p_T > 200\) MeV/c and \(|\eta| < 2.4\), is obtained from the reweighted Monte Carlo.

(iv) The bin-by-bin corrections are computed using the ratio of reconstructed to generated Monte Carlo pileup distributions for MC events.

The corrected fractional distributions of events, for interactions with more than 1 track in data or in the MC, are compared in Fig. 2 as a function of the number of vertices \(n\) for the thirteen bins in instantaneous luminosity.

4.3. Results and systematic uncertainties

Fig. 3 displays the data points from Fig. 2 as a function of the instantaneous luminosity, for events with \(n = 0\) to 8 pileup vertices. For each \(n\), the values of the Poisson distribution given by Eq. (2) are fitted as a function of \(\lambda = L \cdot \sigma_{\text{inel}}\) to the data, providing nine estimates of the inelastic cross section. Their weighted average provides the final result shown in Fig. 4(a). The error bars and the values of goodness of fit per degree of freedom (\(\chi^2/\text{NDOF}\)) for each result are obtained from the individual Poisson fits of Fig. 3. Fig. 4(b) shows the normalized \(\chi^2\) values for each of the fits to Eq. (2). The equivalent plots for vertices with more than two and more than three tracks are very similar, as the overlap among the datasets is above 95%.

The main source of systematic uncertainty is the 4% uncertainty on CMS luminosity, which leads to an uncertainty \(\Delta \sigma_{\text{lum}} = \pm 2.4\) mb. The largest contribution arising from the method of analysis, \(\Delta \sigma_{\text{inclus}} = \pm 1.4\) mb, is the uncertainty on the vertex-reconstruction efficiency, which is evaluated using a Monte Carlo simulation and a method based on data. This second technique utilizes measured quantities such as the distribution of the longitudinal \(z\) position of the vertex and the distribution of the minimum distance between two vertices to evaluate the vertex-reconstruction efficiency. Other uncertainties linked to vertex selection are estimated by: (i) reducing the range used for accepting longitudinal positions of vertices from \(|z| < 20\) to \(|z| < 10\) cm relative to the centre of the CMS detector, (ii) modifying the vertex-quality requirements, (iii) changing the minimum distance between two vertices from \(\Delta z < 0.1\) cm to 0.06 cm and 0.2 cm, and (iv) changing the maximum allowed transverse coordinate of the vertex from \(\pm 0.06\) cm to \(\pm 0.05\) cm and \(\pm 0.08\) cm.

Several other possible sources of uncertainty have also been checked by: (i) performing the analysis on sets of data collected with different trigger requirements (two-electron or single-muon trigger) to measure the effect of the trigger on the selection of pileup events, (ii) changing the luminosity interval used in the fit by \(\pm 0.05 \times 10^{30}\) cm\(^{-2}\) s\(^{-1}\), and (iii) repeating the analysis without...
Fig. 3. Fraction of pp events with \(n \) pileup vertices, for \(n = 0 \) to 8, containing more than one charged particle, as a function of instantaneous bunch-crossing luminosity. The dashed lines are the fits described in the text. The data points are plotted at the mean of the differential distribution in each bin.

Fig. 4. (a) Values of the inelastic pp cross section \(\sigma_{\text{inel}} \) and (b) their associated goodness of fit \(\chi^2/N\text{DOF} \), obtained for each of the fits in Fig. 3, as a function of the number of pileup vertices, in interactions with \(>1 \) track with \(p_T > 200 \text{ MeV/c} \) and \(|\eta| < 2.4 \). The line in (a) is the result of a fit to the 9 individual values of \(\sigma_{\text{inel}} \), while the dashed line in (b) indicates \(\chi^2/N\text{DOF} = 1 \).

Reweighting the track-multiplicity distributions in the MC, to evaluate the effect of an incorrect track-multiplicity shape, which should not influence the bin-by-bin correction to first order. The uncertainty attributed to each systematic source is defined by the largest change in \(\sigma_{\text{inel}} \). The full list of the systematic sources is shown in Table 4. Adding all the uncertainties in quadrature yields a total systematic uncertainty on the method of \(\Delta \sigma_{\text{syst}} = \pm 2.0 \text{ mb} \).

The measured values of \(\sigma_{\text{inel}} \) for inclusive interactions with \(>1 \), \(>2 \), and \(>3 \) charged particles with \(|\eta| < 2.4 \) and \(p_T > 200 \text{ MeV/c} \), as well as their individual uncertainties, are listed in Table 5. The statistical error is below 0.1 mb and is ignored.

5. Results and comparison with Monte Carlo models

The two techniques presented to measure the inelastic pp cross section complement each other. The calorimeter-based method is very sensitive to events that produce forward energy deposition, and, in particular, small \(M_X \) values that comprise particle systems highly boosted along the beam line. However, the method is less sensitive to central diffractive dissociation events, with particle production concentrated at small pseudorapidities. Conversely, the vertex-counting method is geared toward measurement of centrally-produced events, and is not optimal for events with particles produced mostly at large \(\eta \). The concurrent use of these two methods provides therefore almost complete coverage of all types of pp inelastic events, with particle production in the range of \(|\eta| \lesssim 5 \).

Fig. 5 compares the CMS results with the measurements presented by the TOTEM [2], the ATLAS [3] and the ALICE [5] Collaborations, as well as with predictions of two groups of Monte Carlo models. The first group comprises several versions of PYTHIA: PYTHIA 6 (tunes D6T, Z1_LEP [17], AMBT1, DW-Pro, and Pro-PT0...
provide very similar results), PYTHIA 8 (versions 8.135 Tune 1, 8.145
Tunes 2C, Tune 2M, and Tune 4C are equivalent) and the recent
PYTHIA 8 MBR tune [18] (version 8.165). The second group includes
MC generators based on the same Regge–Gribov phenomenology,
but with different implementations of model ingredients [19]:
PHOJET, as well as three MC programs commonly used in cosmic-
ray physics, such as QGSJET 01 [20], QGSJET II (versions 03 and
04) [21], SIBYLL (version 2.1) [22] and EPOS (version 1.99) [23].

Table 4
List of systematic sources and their effects on the value of the inelastic cross section measured using the vertex-counting method.
The % changes are shown for the results of the $\sigma_{\text{inel}}(>1 \text{ track})$ measurement. The integrated luminosity contributes an additional uncertainty of 4% to this measurement.

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>Uncertainty on σ_{inel}</th>
<th>Change in $\sigma_{\text{inel}}(>1 \text{ track})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex reconstruction efficiency</td>
<td>±1.4 mb</td>
<td>±2.4%</td>
</tr>
<tr>
<td>Longitudinal position of vertex</td>
<td>±0.1 mb</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Vertex quality</td>
<td>±0.7 mb</td>
<td>±1.3%</td>
</tr>
<tr>
<td>Minimum distance between vertices</td>
<td>±0.1 mb</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Transverse position of vertex</td>
<td>±0.3 mb</td>
<td>±0.6%</td>
</tr>
<tr>
<td>Different sets of data</td>
<td>±0.9 mb</td>
<td>±1.6%</td>
</tr>
<tr>
<td>Range of luminosity used in fit</td>
<td>±0.2 mb</td>
<td>±0.4%</td>
</tr>
<tr>
<td>Reweighting MC track distribution</td>
<td>±0.2 mb</td>
<td>±0.4%</td>
</tr>
<tr>
<td>Total (in quadrature)</td>
<td>±2.0 mb</td>
<td>±3.3%</td>
</tr>
</tbody>
</table>

Table 5
σ_{inel} values for interactions with >1, >2 and >3 charged particles, with their uncertainties from systematic sources of the method and from luminosity. The statistical error is below 0.1 mb and is ignored.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\text{inel}}(>1 \text{ track})$</td>
<td>[58.7 ± 2.0 (syst.) ± 2.4 (lum.)] mb</td>
</tr>
<tr>
<td>$\sigma_{\text{inel}}(>2 \text{ tracks})$</td>
<td>[57.2 ± 2.0 (syst.) ± 2.4 (lum.)] mb</td>
</tr>
<tr>
<td>$\sigma_{\text{inel}}(>3 \text{ tracks})$</td>
<td>[55.4 ± 2.0 (syst.) ± 2.4 (lum.)] mb</td>
</tr>
</tbody>
</table>

The PHOJET and SIBYLL models overestimate the observed cross sections by more than 20%, while the EPOS, QGSJET II-03, PYTHIA 6, and PYTHIA 8 tunes provide predictions that are about 10% larger than the measured inelastic cross sections. QGSJET 01 and QGSJET II-04 agree within one standard deviation with the data points. The PYTHIA 8-MBR tune reproduces rather well the vertex-based measurements, while it overestimates the calorimeter-based result.

A comparison of the trends in the data with the MC models is shown in Fig. 6, where the cross sections are now normalized to the $\sigma_{\text{inel}}(>3 \text{ tracks})$ value measured for >3 tracks.

Table 6
Measured inelastic pp cross sections normalized to $\sigma_{\text{inel}}(>3 \text{ tracks})$, and their uncertainties.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\text{inel}}(>2 \text{ tracks})/\sigma_{\text{inel}}(>3 \text{ tracks})$</td>
<td>1.032 ± 0.009</td>
</tr>
<tr>
<td>$\sigma_{\text{inel}}(1\text{ track})/\sigma_{\text{inel}}(>3 \text{ tracks})$</td>
<td>1.060 ± 0.017</td>
</tr>
<tr>
<td>$\sigma_{\text{inel}}(\xi > 5 \times 10^{-5})/\sigma_{\text{inel}}(>3 \text{ tracks})$</td>
<td>1.087 ± 0.042</td>
</tr>
</tbody>
</table>
relative to the results for >3 tracks, is well reproduced by most MC simulations.

The TOTEM Collaboration [2] has recently measured a total pp inelastic cross section of $\sigma_{\text{inel}} = 73.5^{+1.2}_{-1.5}$ mb. Although several Monte Carlo models such as EPOS, QGSJET II-01, QGSJET II-4, PYTHIA 6, and PYTHIA 8 reproduce this value (Fig. 5), only QGSJET 01 and QGSJET II-04, and PYTHIA 8-MBR (but less so) are able to simultaneously reproduce the less inclusive CMS measurements. This observation suggests that most of the Monte Carlo models overestimate the contribution from high-mass diffraction to the total inelastic cross section, and underestimate the component at low mass.

6. Summary

The inelastic cross section in pp collisions at $\sqrt{s} = 7$ TeV has been measured using two methods that incorporate information either from central or from forward detectors of CMS. The results for the different choices of final states considered are:

$$\sigma_{\text{inel}} (\xi > 5 \times 10^{-6}) = [60.2 \pm 0.2 (\text{stat.}) \pm 1.1 (\text{syst.}) \pm 2.4 (\text{lum.})] \text{ mb},$$

$$\sigma_{\text{inel}} (>1 \text{ track}) = [58.7 \pm 2.0 (\text{syst.}) \pm 2.4 (\text{lum.})] \text{ mb},$$

$$\sigma_{\text{inel}} (>2 \text{ tracks}) = [57.2 \pm 2.0 (\text{syst.}) \pm 2.4 (\text{lum.})] \pm 2.4 (\text{lum.})] \text{ mb},$$

where each track must have $p_T > 200 \text{ MeV}/c$ and $|\eta| < 2.4$. The comparison of these results with the cross section expected from Monte Carlo models used in collider and cosmic-rays studies shows that PHOJET and SHIYLL largely overestimate σ_{inel}. The EPOS, QGSJET II-03, PYTHIA 6, and PYTHIA 8 (except the MBR tune) programs predict values about 10% above the data, while QGSJET 01, QGSJET II-04 agree well with the measurements. PYTHIA 8 + MBR agrees well with the track-based measurements, but overestimates the prediction for σ_{inel} for $\xi > 5 \times 10^{-6}$. All models agree broadly with the relative dependence of the cross section on the criteria used to define the final states.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staffs at CERN and other CMS institutes, and acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COCIENTCIAS (Colombia); MESSE (Croatia); RPF (Cyprus); MoER, SF609003009 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPC, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, R. Plestina 6, D. Polic, I. Puljak 5
Technical University of Split, Split, Croatia

Z. Antunovic, M. Kovac
University of Split, Split, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic
Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis
University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr.
Charles University, Prague, Czech Republic

Y. Assran 7, S. Elgammal 8, A. Ellithi Kamel 9, M.A. Mahmoud 10, A. Radi 11,12
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, G. Fedi, M. Voutilainen
Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva
Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

F. Fassi, D. Mercier

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

V. Roinishvili

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saouldou

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

University of Ioannina, Ioannina, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saouldou

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

University of Ioannina, Ioannina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

IKFI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillas

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Punjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad

Tata Institute of Fundamental Research – HECR, Mumbai, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

Universidad Autónoma de San Luis Potosi, San Luis Potosí, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

K. Cankocak

Istanbul Technical University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith,

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

* Corresponding author.
E-mail address: George.Alverson@cern.ch (G. Alverson).
† Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
3 Also at Universidade Federal do ABC, Santo André, Brazil.
4 Also at California Institute of Technology, Pasadena, USA.
5 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
6 Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France.
7 Also at Suez Canal University, Suez, Egypt.
8 Also at Zewail City of Science and Technology, Zewail, Egypt.
9 Also at Cairo University, Cairo, Egypt.
10 Also at Fayoum University, El-Fayoum, Egypt.
11 Also at British University in Egypt, Cairo, Egypt.
12 Now at Am Shams University, Cairo, Egypt.
13 Also at National Centre for Nuclear Research, Swierk, Poland.
14 Also at Université de Haute-Alsace, Mulhouse, France.
15 Also at Moscow State University, Moscow, Russia.
16 Also at Brandenburg University of Technology, Cottbus, Germany.
17 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
18 Also at Eötvös Loránd University, Budapest, Hungary.
19 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
20 Also at University of Visva-Bharati, Santiniketan, India.
21 Also at Sharif University of Technology, Tehran, Iran.
22 Also at Isfahan University of Technology, Isfahan, Iran.
23 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
24 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
25 Also at Università della Basilicata, Potenza, Italy.
26 Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
27 Also at Università degli Studi di Siena, Siena, Italy.
28 Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
29 Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
30 Also at University of California, Los Angeles, Los Angeles, USA.
31 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
32 Also at INFN Sezione di Roma; Università di Roma, Roma, Italy.
33 Also at University of Athens, Athens, Greece.
34 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
35 Also at The University of Kansas, Lawrence, USA.
36 Also at Paul Scherrer Institut, Villigen, Switzerland.
37 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
38 Also at Gaziosmanpasa University, Tokat, Turkey.
39 Also at Adiyaman University, Adıyaman, Turkey.
40 Also at Izmir Institute of Technology, Izmir, Turkey.
41 Also at The University of Iowa, Iowa City, USA.
42 Also at Mersin University, Mersin, Turkey.
43 Also at Ozyegin University, Istanbul, Turkey.
44 Also at Kafkas University, Kars, Turkey.
45 Also at Suleyman Demirel University, Isparta, Turkey.
Also at Ege University, Izmir, Turkey.
47 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
48 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
49 Also at University of Sydney, Sydney, Australia.
50 Also at Utah Valley University, Orem, USA.
51 Also at Institute for Nuclear Research, Moscow, Russia.
52 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
53 Also at Argonne National Laboratory, Argonne, USA.
54 Also at Erzincan University, Erzincan, Turkey.
55 Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
56 Also at Kyungpook National University, Daegu, Republic of Korea.