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Anyons obtained from a finite gauge theory have a computational power that depends on the symmetry
group. The relationship between group structure and computational power is discussed in this paper. In par-
ticular, it is shown that anyons based on finite groups that are solvable but not nilpotent are capable of universal
guantum computation. This extends previously published results to groups that are smaller and therefore more
practical. Additionally, a new universal gate set is built out of an operation called a probabilistic projection, and
a quasiuniversal leakage correction scheme is discussed.
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[. INTRODUCTION sal quantum computation. However, the smallest finite non-
solvable group ifAg, the even permutations of five objects,
The two main obstacles to building a practical quantumwhich has 60 elements. Unfortunately, anyons with a large
computer are the decoherence produced by the environmesymmetry group are less likely to be found in nature and are
and the need for unitary operators of sufficiently high preci-also harder to engineer. A more desirable symmetry group
sion. Topological quantum computation provides a way ofwould beS;, with only 6 elements. The purpose of this paper
encoding quantum information in nonlocal observables thais to study the feasibility of quantum computation with these
are protected from the environment, thereby solving the firssmaller groups. In fact, it will be shown that the groups that
problem. In some instances, the second problem can also lage solvable but not nilpotent, which includ& as the
addressed by using operations that only depend on topologsmallest case, produce anyons capable of universal quantum
cal invariants. computation. The caveat, though, is that the constructions in
Anyons present a concrete realization of the ideas of tothis paper require both electric and magnetic charges,
pological quantum computation that may have practicaWwhereas magnetic charges alone were sufficient in the non-
implementations. An anyon is a particle that has exotic quansolvable casgl]. The use of electric charges complicates the
tum statistics and exists in a two-dimensional space. Anyonprocedure significantly and will occupy the bulk of the dis-
carry certain topological charges which cannot be locallycussion.
measured or modified and can therefore be used to store The ideas of this paper and its predece$&bare built on
protected quantum information. The charges can be detectethe foundations laid out by Kitaej2], who introduced the
though, using two elementary operations called braiding andotion of a quantum computer based on anyons. The first
fusion. In the first operation, the positions of two anyons inconcrete description for the grojgy, was done by Ogburn
the plane are exchanged, causing their world lines to braicand Preskill in Refs[3,4]. An unpublished construction for
Because clockwise and counterclockwise rotations can bthe groupS; was also worked out by Kitaev, and its use of
distinguished in two dimensions, braiding can produce reelectric charges served as a basis for much of the present
sults more complicated than the usual bosonic and fermioniwork.
cases. The second operation involves fusing two anyons into The organization of this paper is as follows: Section |l
a single anyon that carries the combined charges of the origeontains a review of the basic properties of anyons and de-
nal particles. In both cases, the results only depend on thecribes the notation used in this paper. The next two sections
charges and topological class of the paths involved. Thesprove the universality of anyons based on groups that are
operations can be used as a basis of error-free gates thegmidirect products of certain cyclic groups of prime order,
manipulate the stored information. which includes the important case 8. Section IIl con-
Many different models of anyons can be constructed bystructs an abstract set of gates out of the fundamental anyon
specifying different spectra of charges together with a set obperations, whereas Sec. IV proves that this gate set is uni-
braiding and fusion rules. A convenient and physically in-versal. In Sec. V, the discussion is expanded to general finite
spired set of models can be obtained from the electric androups, and the relationship between group structure and
magnetic charges of a two-dimensional finite-group gaugeomputational power is established. This section will also
theory. These models depend on a finite gr@pvhich acts  review the definitions of solvability and nilpotency. The
as the symmetry of the gauge theory. While every finitemain result of this paper, which is the feasibility of universal
group produces a consistent model, the computational poweuantum computation with anyons from groups that are solv-
of the resulting anyons depends on the structure of the groupble but non-nilpotent, is proved in Sec. VI. The discussion
Previous work by the same authft] has shown that in Sec. VI is motivated by Sec. Ill and includes many of the
finite nonsolvable groups produce anyons capable of universame steps, but the details are significantly more compli-
cated. Finally, Sec. VII discusses a leakage correction
scheme that can be applied to anyons, as well as many other
*Electronic address: carlosm@theory.caltech.edu quantum systems.
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II. REVIEW AND NOTATION

)= a ® - ® , 1
In this section we present a brief review of the anyon ¥) gl,.zgnee IR g"|gl> 19n) @)

properties and operations that will be used throughout the

paper. Notation for anyon pairs, qudit bases, and a speciafthereay 4 are the complex quantum amplitudes. Due

type of gate will be introduced. to the existence of superselection sectors, which will be dis-
The gauge theory model for anyons that is used in thigussed below, thg; in the above sums are restricted to a

paper was first presented in RES] and is summarized in the single conjugacy class, which may be different for each

review in Ref.[6]. Our notation will be closer to the one  Because we are dealing with pairs of trivial total flux, any

used in the author’s previous wofk] though. In the interest two states can be swapped simply by exchanging the physi-

of space, we present only a very brief review of the basiaal position of the anyons:

ideas and refer the reader to the above references for further

details. The only new ideas introduced in this section beyond

Ref.[1] are the notation for electric charge pairs and a gate gl,gzzeG “91:92lgl>®|g2>_’glgee a91192|g2>®|91>'

called the probabilistic projection. 2

By repeatedly exchanging pairs of adjacent anyons, any two
pairs of anyons can be exchanged. This operation will also
To fully characterize a system with anyons, we mustallow us to move pre-made ancillas into the computational
specify a set of braiding and fusion rules. A set of consistenspace and to move anyons that have been fused out of the
rules can be obtained from the behavior of electric and mageomputational space.
netic charges in a finite-group gauge theory. Though many The basic interaction between pairs is a pass-through op-
other anyon models exist, including models with continuouseration by which one pair passes in between a second pair.
groups and models with a finite spectrum that cannot bdhe result of the operation leaves the first pair invariant, but
obtained from a gauge theory, only the finite-group gaugeconjugates the second pair by either the flux of the first pair,
theory model will be discussed in this paper.
For each finite groupG, there is a gauge theory with -1
symmetry groupG that contains anyons. The anyonic spec-glgeg a91'92|gl>®|92>_>glg§2366 tg,.0,91) 1620281 ).
trum of the finite-group gauge theory consists of electric (3)
charges, magnetic charges, and particles called dyons which
carry both electric and magnetic charge. The magneti®r its inverse,
charges, also known as fluxes, are labeled by elements of the
group G. The electric charges are labeled by an irreducible -1
unitary representatioR of G and have an internal state that ¢, §<c a91'92|gl>®|gz>_>glgzz“ee @g,,5192)®191"9201),
transforms as a vector undBr The dyons are labeled by an (4)
element ofge G and a representation of the stabilizergof
The dyons, however, will not play an significant role in this depending on the direction of the pass-though. By using the
paper. swap operation, the pass-though can be performed on any
two pairs of anyons.
B. Magnetic charge pairs Furthermore, the above operation can be generalized to a
) ) ) o conjugation by a function of the fluxes of a set of anyons.
We begin by discussing the braiding rules for the mag-rhat s, consider a functiof: G"— G that can be written as

netic charges, which will be the most important particles ing product of its inputs, their inverses, and fixed elements of
this paper. The basic rule for magnetic charges is the followg  Fqor example

ing: when two fluxes are exchanged, the flux of one is con-

jugated by the flux of the other. Though this is the basic f(91.92) =105 '€201C391€40:Cs, ®)
interaction that will be used between magnetic charges, it has

the undesirable consequence that moving single fluxe§nere the{c;! are fixed elements of and this case has
through the system can introduce unwanted correlations-p Then, if we assume the existence of ancillas of the form

Therefore, it will be necessary to work with pairs of fluxes of |g) for eachge G, we can perform the unitary transforma-
trivial total flux. tion ’

For anyge G, we define the statfy) to denote a mag-
netic charge pair, where the first anyon has fipand the 191)®]92)®|93)—191)®|92)®|f(91,92)95f(91.92) ),
second anyon has flux ®. Because the effects of actions on 6
the compensating flug~* will mimic the effects on the flux
g we will generally not mention them explicitly. In fact, we where we have denoted its action on basis elements and the
shall refer to the statiy) as “a state of fluxg,” by which we  general transformation follows by linearity. The operation is
describe the flux of the first anyon, rather than the total fluxmplemented by conjugating in sequence by the entriefs of
of the anyon pair which shall always be trivial. starting from right to left, where an ancilla of known flux is

A general state oh magnetic charge pairs has the form used for every fixed element &f In general, a conjugation

A. Anyon model and spectrum
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by a function can be performed with any state as target and IMYg—U(f)®1|M)g=|R(f)M)g, (11
any number of inputs, as long as the function can be written
in product form. by applying sequentially from right to left the elements of

the product.

C. Electric charge pairs

In addition to pairs of magnetic charges, this paper will D. Superselection sectors, fusion, and vacuum pairs

often deal with pairs of electric charges, where the first Before describing the fusion rules for the magnetic and

charge transforms under the irreducible represent@®iand  electric charges, we need to address the issue of superselec-

the second charge transforms under the complex conjugat®n sectors, which is familiar to particle physicists. A super-

representatiorR*. Of course, for some representatioR$  selection sector is a subspace of a Hilbert space that is in-

=R, which will not be a problem for what follows. variant under all the implementable transformations. A useful
We introduce the basedsig)} and{|jgr«)} on which the analogy is to consider the Hilbert space of a particle called

representations act. The indidep take values from 1 tdg,  the nucleon, spanned by the four states

the dimension of the representation. We assume that the basis

vectors are compatible in the sense that 107),100),[11),[11), (12)

i |R*(9)]jre ) = (i r|R(Q) [ )™ - (7)  corresponding to a spif-particle with two possible charge
(ire IR (@)lie) = (1RO values. This is nothing more than the direct sum of the Hil-
The combined state of the two charges is spanned by theert spaces of the proton and neutron:

vectors|igr)®|jr+) and can be described by specifying a
dXxd matrix M: Huucteor™ Hprotor® Hneutron- (13

1 At the energies of atomic physics, it is not possible to mea-
IM)g= — E Mij|iR>®|jR*>v (8) sure in the proton pl_us n_eutron basis or to perform a unitary
\/d—R i rotation along this direction. Therefore, we could say that a
nucleon automatically decoheres into either a proton or a
where we have introduced a convenient normalization factomeutron.

We will be interested in the braiding and fusion properties A similar situation occurs with the anyons. Each conju-
of these states. However, when two electric charges movgacy class ofG is a magnetic charge superselection sector.
past each other, even when they are not in pairs, their charg@e irreducible representations are the electric charge super-
remain unchanged. It is only the magnetic fluxes that have agelection sectors. When given an unknown anyon—for ex-
effect on the electric charges. In particular, when a magnetiample, an anyon created from the vacuum—we can assume
flux g goes around an electric charge, the flux remains inthat it has decohered into a specific, though possibly un-
variant, but the charge transforms as if multiplieddiy the  known, conjugacy class and/or irreducible representation.
representatiorR. Starting with a stat§M)g, if the flux  Furthermore, when storing quantum information, it will be
circles the first electric charge, then it becomes important to keep the computational space in a single super-

selection sector to avoid decoherence.

1 ) ) Let|¥) be a pair of anyons created from the vacuum. We
U(g)®||M>R=\/T iJEk Ri(@Miliry®jre) may assume that each anyon has decohered into a specific
ROV superselection sector. Furthermore, because a vacuum pair

=|R(g)M)R, (9)  must consist of a particle with its antiparticle, the two super-

selection sectors are related. That is, the pair must have
whereR(g)M is the matrix obtained by left multiplying/! vacuum quantum numbers and be able to fuse back into the
by the elemeng in the representatioR. Similarly, if we act vacuum. Therefore, if the first anyon is a magnetic charge
on the second charge, we obtain with flux in a given conjugacy class, the second anyon will

be a magnetic charge with flux in the inverse conjugacy

1 . ) . class. If the first anyon is an electric charge of representation
|®U(g)|M>R:\/T iZk MR (9)]iR) ® [jrx) R, then the second anyon will be a electric charge of the
R complex conjugate representation. Finally, if one anyon is a
1 dyon, then so is the other.
=— > Milej(g)“ R ®|jre) In the case of magnetic charges, there is exactly one state
Vdg 1Tk with vacuum guantum numbers in each conjugacy class. The
~IMR(g"H)r, (10) state is
; 1
where we have used the fact tHais unitary. Vag0)) = 14
Note that, just as in the case of the magnetic charges, if [Vad©)) Jicl gzc l9), 4

we have a functiori({g;}) of some anyon fluxes, written out
in product form, then we can apply this function to ourwhereC is a conjugacy class o6. Note that, given our
charges, notation, the above state is an entangled state of two anyons.
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In the case of electric charges, the vacuum state for repreassume are available on any realistic system and which we
sentationR is simply |R(1))r, whereR(l) is thedgxdg  will use to build our quantum gate set:
identity matrix. (1) We can braid or exchange any two particles.

The operation of fusion is in a sense the inverse of (2) We can fuse a pair of anyons and detect whether there
vacuum pair creation. Fusing two anyons produces a singlis a particle left behind or whether they had vacuum quantum
anyon that must carry the total magnetic and electric chargesumbers.
of the pair. In the special case when both total charges are (3) We can produce a pair of anyons in a state that is
trivial (i.e., one of the above vacuum stgtélse state can chosen at random from the two-particle subspace that has
fuse into the vacuum, leaving no particle behind and transvacuum quantum numbers.
ferring its energy to some other medium such as photons. In (4) We have a supply of ancillas of the forfg) for any
theory, this case can easily be detected in the laboratory argle G.
is the primary way of obtaining measurement results. (5) We have a supply of ancillas of the forfR(l)) for

In the case of magnetic charges, the net resulting flux igny irreducible unitary representatié
just the product of the two fluxes, where the ordering of the The last two requirements are the only questionable ones,
product depends on some conventions which will not be imas it is not obvious how to produce this reservoir of cali-
portant here. While one of our standard anyon pairs alwaybrated electric and magnetic charges. In fact, since many of
has trivial total flux, we sometimes may fuse anyons fromthese ancillas will be destroyed during fusion, the reservoir
different pairs to determine if their flux is equal. Even if the will have to have a large number of ancillas of each type.
total flux is trivial, though, the pair may not fuse into the  One of the main difference between the constructions in
vacuum but may produce an electric charge. This will be thehis paper and the one used in producing computations with
case if the state transforms nontrivially under simultaneousionsolvable group$l] is that the latter case required no
conjugation of both anyons. electric charge ancillas, which may be harder to produce.

The fusion of two electric charges can only produce an-Additionally, Ref.[1] presented a protocol for producing the
other electric chargéor the vacuum, which is the charge magnetic ancillas for a simple non-Abelian group. The pro-
carrying the trivial representatiprito calculate the possible duction of calibrated flux and charge ancillas for the groups
products of fusion, note that fusion implies that a flux can nodiscussed in the present paper, though similar, will not be
longer be braided around only one of the two electricaddressed here.
charges. Mathematically, it is a restriction to the diagonal A final note is that the requirement of calibrated magnetic
transformations charge ancillas will have to be slightly modified in Sec. VI C,

. in order to work with certain large groups.
IM)r—U(g)@U(g)|M)r=|R(9IMR(g""))g. (15

However, the above action of the group is not irreducible on
this space. The vector space spanned by all possible states Throughout this paper it will be useful to perform com-
[M)r decomposes into invariant subspaces. The invarianputations with qudits rather than the usual qubits. We define
subspaces correspond to electric charges transforming undear computational basis as the stdfigsfor 0<i<d, where
irreducible representations. The probability of obtaining eactwe will assume thadl is prime. The unitarZ andX gates can
irreducible representation corresponds to the magnitude dfe defined as follows:

the state vector projected down to the appropriate invariant

F. Notation for qudits

subspace. Furthermore, after fusion, it is no longer possible Z[iy=o'li), 17)
to measure the relative phase between the different represen- L

tations and therefore decoherence occurs in the representa- X[iy=]i+1), (18
tion basis.

The net result of fusion is a mixed state of different rep—Whgéfs“t’o'os datgxgg rrl]oc:gmgakj\tsh Jgﬁ;ﬁftﬁg'tgi agr?sf:t?: gfr €
resentations. Which representations occur is determined b rrespond to the com utétional bas’is We c%n also introduce
the decomposition oR(g)®@R*(g) into irreducible repre- SP P '

the eigenstates o,

sentations. The probability of obtaining each of these repre-

sentations is determined by the projectionvbto the differ- 1 91
ent invariant subspaces. M=—= > o j), (19
In particular, the trace o¥ is the unique invariant under NCREL
conjugation byG (which is the content of Schur’s lemma
Therefore the probability of fusion into the vacuum is which have the following transformations under the action of
our unitary gates:
, | Tr(m|? o
Puac=(RIDIM)RI*=|—5- (16) Z[Ty=|=1), (20)
X[ =w[T). (21)

E. Requirements for the physical system

To complete our review of the properties of anyons, weNote that when appropriate, we shall assume all operations
will list the operations, ancillas, and measurements that ware modulod without further comment.
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G. Probabilistic projection onto K

To conclude with the introduction of notation, we define a

PHYSICAL REVIEW &9, 032306 (2004

group based on the semidirect product. The construction for
these groups is very similar to the general case, but can be

new type of gate called a probabilistic projection onto a subdescribed in more concrete terms. In particular, these groups

space. The operation is essentially a projective measuremef

that distinguishes between a subsp&tand its orthogonal
complement. However, the operation has a one-sided pro
ability of error, corresponding to a failure to notice the pro-
jection into K.

For example, consider an operation that emits a photon
and only if the state is projected into the subsp#ceThe
photon is then received at a photodetector that has a pro
ability 0<p=1 of absorbing the photon. A photon will never
be detected if the state was projected into the complement
K, but even if the measurement projected ifitothe photo-
detector may remain silent.

To formalize the idea of a probabilistic projection, et
be a subspace of a Hilbert spateand letP, be the pro-
jection onto/C. We define a probabilistic projection onto
as a two-outcome POVM with operators
(22)

Fo=pPppPr, F1=1-pppPg,

where O<ppp<1. We say that we can do a probabilistic
projection ontok if we can do the above operation for any
fixed ppp -

fe very useful in eliminating operations whose usefulness is
unclear in the general case, but that have no computational
gpower when reduced to this special case.

A. Algebraic structure

if We will be interested in the grougs=7,X, 7, the se-
midirect product of the cyclic groups of ordprand g. We
1ssume thap+q are both prime and that the functighis
r}ontrivial, which guarantees th& is not nilpotent.

" The group can be described using two generadcaadb

which satisfy the relations

aP=1, b9=1, bab !=a, (27

where specifying an integérbetween 0 ang is equivalent
to specifying the functior®:7Z,— Aut(Z,) used for the semi-
direct product. We will require that* 1 which is equivalent

to 6 being nontrivial. Furthermore, consistency requires that

a=bl%b 9=a" = t9=1modp, (29)

Furthermore, we demand that if outcome 0 is obtainedynich can always be solved for sorhas long agy divides

when applying the operation to a stat), we obtain the
state

Py V)

V(WP W)

| (23)

o)

p—1. We henceforth assume thatqg, andt have been cho-
sen in a self-consistent fashion.

The best example of one of these groups and, in fact, the
smallest non-Abelian group iS;. This group can be ex-
pressed a¥zX, Z,, with t=2. We can choosa to be any
order three element such @<23), and we can choodgto be

On the other hand, if we get the result 1, we will consider theany order two element such &ék2).
state damaged, and trace it out of our computational system. The first example of such a group with odd ordeZis

As an example consider
1
V2

and letKC={|0)}. Applying a probabilistic projection to the
first qubit, we obtain with probabilitppp/2 the state

[¥)=—=(0)2[1)+[1)®|0)) (24)

[Wo)=[0)2[1), (29

and with probability + ppp/2 we obtain the mixed state

P1 [(1=pep)[1)(1]+]0)0[], (26)

2—ppp

X4 75 With t=2 ort=4, both of which are equivalent. One
of the most important features of this example is that not all
the nontrivial powers o& are conjugate to one another. The
elementsa, a?, anda* form one conjugacy class, whereas
the elements®, a°, anda® form another.

Both of the above examples will be revisited when we
discuss group representations and fusion of electric charges.

B. Computational basis

We choose a qudit computational basis
liy=]a'ba™") (29

for O<i<p. Note that all these states are unique because

where we have already traced out the first qubit. Notice thag'ba '=a'*"Yb anda®~" is a nontrivial generator of the

if the probabilistic projection ontd0) is applied to both

groupZ, . We are therefore using a complete conjugacy class

qubits simultaneously, it is possible to obtain the result 1for the computational subspace.

twice, but it is not possible to obtain the result O twice.

lll. BASE CASE: G=7pXy Zq

While the above choice of computational subspace may
seem arbitrary, most other choices are either equivalent or
less powerful. The conjugacy class&b®'a™', for different
nontrivial values ofj, are all equivalent. Dyons with these

Before tackling the general case of groups that are solvfluxes are also equivalent since they are just the combination
able but not nilpotent, we will describe the procedure forof the above states with electric charges that cannot be de-
producing quantum computation using a special type otected by braiding. Finally, the powers afand pure electric
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charges are suboptimal as they are difficult to entaifgle So far we have shown that thé€and controlledX gates
more on this see the discussion on using nilpotent groups igenerate the set of operations achieved by conjugations.
Sec. V. However, we have yet to show that these operations are in

Initializing a quantum computer in this basis is easy, adact included in the set of achievable operations. Xhgate
we have assumed the existence of flux ancillas in the stafis rather trivial as it is a conjugation by an ancilla of flax
|0), which can be used as computational anyons. We theréFhe controlledX gate is a conjugation by the function

fore turn to the task of implementing gates on this space. (g)= (g 1) 13- modp_ (zX(1- Dy 1)UL modp_ g

C. Operations involving braiding fluxes (33)
We begin by characterizing the operations that can bahere 1/(1-t) can be computed modulo because we as-

achieved by braiding fluxes. Fix a target qudit which we will Sumed Xt<p. . _

be conjugating, and assume that it is in the computational The case involving many source qudits, all of which can

subspace. We can conjugate this qudit by the fluxes of arbi€ used to conjugate the target, is very similar to the above.

trary ancillas in the group. It can also be conjugated by thel he expression can be simplified by moving all tigto the

fluxes of other qudits, which we will also assume to have deft and combining similar factors. In the end, the net effect

definite flux in the computational subspaes the effect of a  Will again be a series ok and controlledX gates.

superposition of fluxes can be inferred by lineakity Finally, one may wonder about using an ancilla as an
Let us begin with the case when only one quditaddi-  intermediate step. That is, first we take an andiay,g’),

tion to the targetis involved. If the source qudit is in a state conjugate it by some functiofsay, f) of some qudits, and

|g), then the target will get conjugated by an expression then conjugate the target by the ancilla. However, the same
effect can be achieved by conjugating the target first b

f(g)=cigc0c3 - - ¢y (30)  then byg’, and finally byf. This procedure therefore pro-
. vides no extra computational power.
for somen, where the{c;} are fixed elements o& corre- The conclusion is that the operations achievable from

sponding to the ancillas used. Of course, these elements repraiding magnetic charges are exactly those generated by the
resent the product of any ancillas that were used in series andand controlledX gates. In fact, th& gate is redundant as

can equal the identity if no ancillas were used. we have assumed the existence Bf ancillas, which can be
Because of the structure of the group, all the fixed eleused as control qudits in a controllédgate.
ments can be expanded egs=alib% for some integerg;,

k; . I.:ur'thermore, sjnce the source flgx is inlt[]:a computational D. Operations involving fusion of fluxes
basis, it can be written out @s=a*ba *=a*(*"Yp for some . . .
x. Inserting these expressions, we get Now we turn to the operations achieved by the fusion of
magnetic fluxes. For these operations it will be sufficient to
f(g)=altb*aX(t~Vpalzpke. . . alnpkn, (31)  determine whether the two particles fused into the vacuum or

not, thereby obtaining at most one bit of information from
Using the group relatioba = a''b, we can move all the’s ~ €ach fusion.

to the right and combine factors to get At this point we remind the reader that standard states
consist of pairs of anyons, whose total flux is trivial. That is,
f(g)=a“afb°® (32)  the state|g) describes an anyon of flug paired with an

anyon of fluxg~ 1. There are therefore two basic choices for

for some integersy, B, and 8. The effect of each of these fusion: we can fuse the two anyons that compose a single
factors can be considered separately. Conjugatingbys ~ Pair with each other or we can fuse one of them with an
just the application of the gadé®. Conjugating bya#* is just ~ a&nyon from another pair, typically an ancilla. To avoid con-
a controlledX gate from the source to the target, repeased fusion, in the latter case we will always use the anyon of flux
times. Finally, conjugating b maps|i) to |it). This opera- 9 (rather tharg™*) for the fusion.

cilla |0): ment in theZ basis. The fusion of anyons from the same pair

will lead to a measurement in thebasis. However, we will
delay the construction of the actual measurement gates until
|0} the next section. For this section, we will simply describe the
fusions as abstract operations on the computational space by
employing the construction of probabilistic projections.
|0) Xt |it) The fusion of an anyon from a stat#) with an anyon
ancilla of fluxb™! is a probabilistic projection onto the sub-
spacek={|0)}. That is, an anyon of flua'ba™' can only
where — 1/t is computed modulg. Following the above fuse into the vacuum with a flue~* if i=0 (modulop as
circuit, we can either replace the original qudit with the an-usua). Wheni>0 there must be an anyon left over to carry
cilla or use a swap, which can also be built out of controlledthe nontrivial total flux. When =0 the fusion can either
X gates. produce the vacuum state or an anyon with nontrivial charge.

i

[4)
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The probability for fusion into the vacuum in this case isand applies to it a swap, made out of the conjugation-based
1/p. Furthermore, if we fuse into the vacuum we can replaceontrolledX:

the state with 40) ancilla. Therefore the whole operation is

a probabilistic projection ontf0) with ppp= 1/p.

The fusion of two anyons from the same pair is a proba- - . 0
bilistic projection onto the subspadé={|0)}. Because the 0) X 10)
total magnetic flux of the pair is always trivial, the fusion
product must be an electric charge. The charge corresponds 10) x §
to a representation db given by the action of conjugation 10)

on the anyon fluxes. The stafé} transforms trivially and

corresponds to the vacuum, whereas the stfitgs for i
>0, are orthogonal to the vacuum and correspond to nonwhere the circuit depicts the result for the case when the
trivial representations. In fact, this procedure is a probabilisvacuum pair was created in the computational superselection
tic projection withppp=1. However, since the state is de- sector, in which casgvac)=|0).
stroyed during fusion, to complete the projection we must be |n the case when the vacuum state was not created in the
able to producé0) states. This will be discussed below. computational superselection sector, then the effect of the
The other choices for fusion are equivalent to a combinaeonjugations will be different. However, since the conjuga-
tion of one of the above measurements and Xanor  tions are performed using braiding, which never changes the
controlledX gate. Fusing with a flux of the form'b~*a™'is  superselection sector, the vacuum state can only be trans-
equivalent to first applying X' gate and then performing a formed into a state that is orthogonal |@)=b).
fusion with b~1. A fusion with any other flux can never After applying the above controlled-gates, we attempt
produce Fhe vacuum if the qu_dit is in_the computational subyg fuse an anyon from what was the vacuum state with an
space. Finally, one can consider fusion of anyons from tWoyneijia of fluxb 2. If they fuse into the vacuum, this implies
different qudits. If the state of the two qudits[i$®|j), the  yhat the vacuum state was created in the computational su-
fusion will only produce the vacuum statei it-j. Therefore, perselection sector and the above circuit worked correctly.

the operation can be simulated by a controledt gate, . ; ;
followed by the fusion of the target with fa® flux. The ancillas|0) will have been transformed properly into a

The conclusion so far is that fusion of magnetic charges?) @ncilla, which can be used for computation. In the case
provides us with two new operations: the probabilistic pro-When the f_usmn does not pdeUCG_ a vacuum state, t_he swap
jections onto the subspack®) and|G), which will eventu- probably did not produced the desired state, so we discard it

ally become measurements in tdeand X bases. The only and start over. -

operation that has not been considered is using the products To summarize, we now have a source |6} ancillas,

of fusion for further operations or fusions. This subject will which can be used as the last step needed to complete the
be briefly touched upon after discussing fusion of electricprobabilistic projection ont¢0).

charges.

Production of |5) states E. Representations and fusion of electric charges

To conclude the discussion on fusion of fluxes, we present Thus far, we have only considered operations involving
the construction of0) states, which were needed to com- magnetic fluxes. These operations led to a controeghte
plete the probabilistic projection on{). and measurements in th¢ and Z bases. However, these

~ ] ... gates do not form a universal gate set. We must therefore
Just as the stat®) naturally fuses into the vacuum, it is

| wrall duced f i Unfortunatel consider operations involving electric charges as well.
also naturally produced from the vacuum. Uniortunately,  rpe glectric charges transform as irreducible representa-
producing a pair of anyons from the vacuum is just as Ilkely,[io

n of the groupG. To obtain the spectrum of electric
to produce the vacuum state for one of the other superselegharges, as well as their braiding and fusion rules, we must

tion sectors as it is to produce the st&hﬁ». Therefore, after therefore discuss the representation theorsof

producing a vacuum state we must measure its superselec- |t g easy to see that the commutator subgrdip of

tion sector. Vacuum pairs that are produced in the computagroups of the formG="7,Xy Zq is justG' =Z,. The repre-

tion subspac¢magnetic charge in the conjugacy clashdf  sentation theory o6 can be obtained by inducing represen-

will be kept as|0) states and the rest will be tossed out.  tations fromG’. Starting from the trivial representation on

Since measurements are done by fusion, which is a de&s’, the induced representations are the one dimensional rep-

structive procedure, we must copy the vacuum state beforeesentations whera— 1 andb is aqth root of unity.

measuring the conjugacy class. The procedure starts with a The rest of the irreducible representations have dimension

pair created from the vacuum and@ ancilla, g and are obtained by inducing from the nontrivial represen-
tations ofZ,. The induced representations are all irreducible
though not necessarily distinct. In fact, they can be easily

|Vac)®|0), (34  described in their natural basis as
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® 0 1 a single higher-dimensional irreducible representation and
t are therefore not useful for the purposes of this paper.
0 While the representatioR does not appear explicitly in
) the fusion coefficients, it enters implicitly in the above ex-
-1 1 0 pression as the choice f@th root of unity . Though we
could use the notatiomg, this will not be necessary as we

wherew is the pth root of unity of the representation from will _generally work _With only one higher-dimensional irre-
which we are inducing. The matrix faris diagonal, whereas ducible representation. o _
b is the permutation matrix with entries 1 above the diagonal Trge most important feature of tiig_,; coefficients is that

Even though the representation theory for these particula]rR(a ))r is the vacuum state and therefore
groups is easy, we will use abstract language to describe the
fusion rules, which will make the connection to the general Fo-j= %0, (40)
case clearer.

Take any non-Abelian irreducible representation, and con
sider a pair of electric charges in the sté{a'))g. What
representations do we get if we fuse the two charges? The
product of fusion is invariant under the action af

U(a)®U(a)|R(a))r=|R(a)R(a)R(a~1)}s=|R(a!)}x, for all i>0. The proof involves showing that a linear relation
@ (@[R(@))r=IR@R@IR@)r=|R( )>(R35) of roots of unity only vanishes if it is a combination of the
obvious regular polygon relatior{gvhich is proved in7]).

which can be verified by direct calculation. Another impor-
tant property is that

IFi_;|>0 (41

and therefore represents the commutator subg@®upy the A final interesting property is that

identity. This implies that the representation is Abelian. In _

particular, it is easy to see that the one-dimensional sub- Fikoj=v *Fij, (42)
spaces

which is a consequence of
(Y r=|diag ¥',y?, ... ,y9))g, (36) |

with y9=1, are the spaces corresponding to the representa-
tionsa—1, b—y'.

We will be interested in the quantum amplitude that a
state |R(a'))g fuses into theb— ' representation. This
quantity will be denoted by the fusion amplitude 1.S;

IR(a""))g=|R(b*ab %))z =U(b" @ U(b¥)|R(a'))g.
(43
F. Examples

1 The groupS; has three irreducible representations, the
Fii=(Y1IR@ )=~ >, yKigit"™ (37 trivial (identity) representation(where a—1, b—1), the
q k=1 sign of the permutatiofwherea— 1, b— —1), and a two-

. . . dimensional one:
with O0<i<p and O<j<q.

Let |¥) be an arbitrary state entangled with an electric w 0 0 1
charge pair: — —
gep a—><0 w)’ b (1 O)’ (44)
p—1
[W)=2 [¥)elR@))g, (38)  wherew is a nontrivial cube root of unity. The fusion ampli-
=0 tudes are
where the|W;) denotes(unnormalized states of the rest of 1
';hse system. The fusion amplitudes allpw) to be rewritten Fooo=1 Fi; . o=— > Fo 0=— >
p-1g-1 _ \/§ \/§
|‘I’>:,20 EO FioilPnol[¥Dr- (39 Fo.1=0, Fia=—i5, Fpa=is. (45)
i=0 j=

The basig[ y'])g labels the total charge of the two anyons The best way to visualize these coefficients is to start with a
that comprise the electric charge pair. A fusion of the twostate|0) and a pair of electric charges in the vacuum state of
electric charges, followed by a measurement of the resultinghe two-dimensional representatigi(1))g. Then entangle

fusion product, will be a measurement in this basis. with a controlled sum to get
Note that the basif y'])g only spans the diagonal sub-
space ofM)g. However, this is the subspace containing all 1 _ 1 o 0
the stategR(a'))r. The subspaces spanned [R(b'a'))g, — X DIR@)r=—= > |j>< —J)> . (46)
for some fixed >0, are mapped unchanged into the space of V37 V37 0 o R
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Fusion of the electric charge pair produces either the vacuurnave complicated relative amplitudes or phases that are hard
(trivial representationor a charge transforming under the to use in a constructive proof of universal computation. We

sign representation. The probability of getting each is will therefore focus our attention on producing an operation
5 t_hat arises naturally from the fusion amplitudes: the projec-
_s i,:‘ B E tion onto the subspa_ce orthogonal|@).
Pyac= ™13 =0 T o Consider a qudit in the state
2 i
1 1 = Al
=S | -3, - W)= 2, wili), (52)

where the coefficientsy;} could either be complex numbers
or could represent the state of the rest of the system if the
qudit is entangled with other qudits.
W, a0)= i(2|o>_|1>_ 12)), We append to the qudit an electric charge pRifl))g in
J6 the vacuum state of a non-Abelian representaforsing
braiding, we can right multiply the state of the electric
charge by some functiohof the qudits flux:

and the state of the magnetic charges afterwards is one of

1
|\Psgn>:$(|l>_|2>)- (48)

p—1

U |R(1))g— JD®|RM( . 52
These are obtained by multiplying the initial state by the W)eIR1)g iZO wiliy@IR(())r 62

appropriateF coefficients and renormalizing to unit magni-
tude. In the case of the second state we also introduced aife have shown in Sec. Ill C that the most general function is
extra global phase of, which is related to the arbitrary of the formf(i)=a%a’b’. Choosings+0 turns out not to

choice of phase of thi y/])x states. be useful, and choosing# 0 can be used to get projections
to the spaces orthogonal {0) for i>0, but this can be
2. 77X g 13 achieved as well with aiX gate. We will therefore focus on

The groupZ; X, Zs has five irreducible representations. f(i)=2a" so that we obtain the state
Three of them are one dimensional and&et1 andb to a

. . . -1 p-1g-1
cube root of unity. The other two are three dimensional and . N : i
are complex conjugates of each other. 25 sl ®[R(@"))r= 20 ,-Zo FaimitilD@[L¥Dr-
The main new feature of this group is that the nontrivial (53
powers ofa are not all conjugate to one another. This leads
to more complicated fusion coefficients. For example, A fusion of the electric charge pair, followed by a mea-
surement of the resulting electric chargbe feasibility of
Fo-.1=0, which will be the subject of Sec. Ill H belowleads to a
2 state that is proportional to
1 Y Y
F1H1=§A, F2H1=?A, F3H1:§B, p—1
) y . 240 Faijtili), (54)
F4~>l:§Aa F5ﬁ1:?B, F6ﬁ1:§B, (49) . . .
wherej now labels the result of the measurement in the basis
with LY Dr- _
Because of the property,_.;= & o, if the measurement
A= 120+ yw?+ w*=e?m(17121) g2mi(13/21)  g2mi(12/21) result isj # 0, we will have projected into the space orthogo-
nal to|0). Unfortunately, we will have also introduced un-
B=1y20 1+ yo 2+ o 4=e? (1121 g27i(1/21) 4 g2mi(9/21) desired relative phases and amplitudes. The trick will be to

(50) balance these out.

_ _ Consider repeating the above procedprel times, with
where we have chosep=€&*"" andw=€*""". Notice how g taking values from 1 tp— 1. Furthermore, assume that in
A'is close in magnitude to 3 whereBss close in magnitude each case the fusion resultsjisr 1. The resulting state will
to 1. be, up to normalization,

G. Operations involving electric charges Pt /pt -1
P oo ree e | =3 (H Fﬁml)winxE wly, 69
Now it is time to apply the discussion in the previous i=1 \ p=1 i=1
subsections to build a useful operation out of electric
charges. While there seems to be a wealth of strange ancillaghere we have used the fact that multiplicationi bsnodulo
that could be produced using electric charges, most of them, is just a rearrangement of the valuesf
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The above procedure is a probabilistic projection ofito However, these charges have a special property that makes
=|0)*. As usual, if we do not obtaif=1 as the result of them hard to identify: when only using braiding, a one-
each measurement, we just discard the state being projectatimensional representation is indistinguishable from the

What is the probability of success of the above procevacuum.
dure? The probability for obtaining=1 on the first try is The reason behind the above difficulty is that one-
dimensional representations of a groGpare constant on
conjugacy classes @. Therefore, a magnetic charge that is
braided around one of these electric charges will have its
state change by an overall phase. These global phases are not
On subsequent measurements, the state has previously beerasurable in quantum mechanics.
projected td0)* and renormalized. Therefore the probability ~ Of course, an interference experiment would produce a

p—1 p—1
Pioi=2, [Fiownl>=min(|Fi.? X [wil% (56)
i=1 i>0 i=1

of success for each trial is simply bounded by measurement of the charge. The standard double-slit experi-
] 5 ment, with the electric charge located in between the slits,
szlzﬂ'g‘(“:Hﬂ )- (57) Wil produce a pattern on the screen that depends on the

I

representation of the electric charge. However, during the

The total probability of success is just the product of thesé@XPeriment, the anyon will be in a superposition of spatial
quantities. In particular, the probabilifyep associated with Positions which is no longer protected from decoherence by

the probabilistic projection can be bounded by topology. Since the interference experiment can be repeated
many times without affecting the electric charge, this may
Ppp=min(|F;_4|?)P >0, (58 not necessarily be a problem. However, it does involve work-

i>0 ing in a regime where the anyons can be treated as waves

. rather than particles.
where we used the fact fEhHFH,|>0 fqr '>.O' . On the bright side, these electric charges can also be de-
Of course, the above is a underestimation of the probabil: ; . - .
, - I . tected by fusion, assuming the availability of electric charge
ity of obtaining a good projection. For example, if all the

resultsj were equal to some fixeg>1, the same argument ancillas with pne-dimgnsional representations. Their fusion

would show that a correct projection was obtained. Further—ﬂ_Jles are part_lcularly S"T‘p'e because these states ha"e. aone

more, there are many other ways in which the relative phasetgmensmnal internal Hllpert space. Furthermor’e, their fu-

and amplitudes can cancel out. A classical computer, witffionS always produce unique resultsy/(fg) and y'(g) are

knowledge of the values of;_;, can keep repeating the twq one—d|menS|on§1I representanoqs of a gréyphen the.

procedure until such a cancellation occurs. The computgiusion of the electric charges carrying these representations

would also be required to stop after a long sequencé of Produces a charge of representatigh(g) = (g9) y'(9). A

=0 resu|ts, in which case the state would have been procharge will only fuse into the vacuum when fused with its

jected ontg|0). conjugate representation. Therefore, after a series of fusions
In the end, as long appp is fixed and finite, we have that end up producing the vacuum state, we can determine

produced the desired probabilistic projection to the spacéhe representation of the original electric charge.

|0)*. Different values ofppp will just affect the complexity In fact, for groups withg=2 such asS;, there is a further

of an algorithm as a multiplicative constant. Furthermore, forsimplification. In these groups there are only two one-

the small groups that are likely to appear in the laboratorydimensional representations: the vacuum and sign represen-

pep should be reasonably large. For example, in the case aftions. Since the fusion ofR(a'))gr produces a one-

G=S;, ppp Can be made exponentially close to 1 in thedimensional charge, if it does not fuse into the vacuum, then

number of measurements. it must have produced the sign charge. Therefore, for these
It should be noted that because we are working with qugroups, we do not even require one-dimensional electric

dits of dimensiond=p and the semidirect product requires charge ancillas.

p>qg=2, the above projection will always be a nontrivial

operation. In fact, it will always be powerful enough to com- I. Other possibilities

plete a universal gate set. In thi . il briefly di | ibil
At this point, all that remains to be done is to prove the, N this section, we will briefly discuss one last possibility

universality of the gates constructed from the basic any0|f|Or producing u_seful operations: using the pro_ducts of fusion.
operations. This will be the subject of Sec. IV. However,ThOugh not _strlc_tly ne(_aded to. complete a unlverse}l gate set,
before closing this section, we shall discuss some issues rdiS Subsection is an interesting study of alternative opera-
garding the measurability of electric charges and look af!©ns and the effects of decoherence during fusion.

some alternative operations that could have been employed. A(‘jtc::::t v?/:?r?;u Itt Sgﬁza(resletcljt?itctt?]e?r;jocjeic\t/:/(i)t?] ?2?]‘0%3\””9

procedure: first fuse one anyon from the state to be measured

with ab ™! flux. Only the|0) state can fuse into the vacuum.
The feasibility and accuracy of the probabilistic projec- If an anyon remains, fuse again withbdlux to restore it to

tion onto |0)* depend crucially on being able to identify its previous state and pair it with its old partner. Repeating

electric charges carrying one-dimensional representationghe procedure multiple timg®ecause thi) could turn into

H. On the measurement of one-dimensional representations
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an electric charge rather than the vacyuwields the desired gacy class. Therefore, the above trick can produce a projec-
projection. tion onto |0)* using only magnetic charges. Of coursg,
There are, however, two problems with the above con=p—1 only holds forG=S;.
struction. The first, and smaller, problem is that when fusing For other groups, the operation could become useful if we
with b~ or with b we could be turning our magnetic charges could tell into which superselection sector the state deco-
into dyons. For groups of the forff, X , Z, the dyonic elec- hered, producing a probabilistic projection onto a smaller
tric charges are all one dimensional, however, and will therespace. The smaller projections may also be computationally
fore have no effect on braiding, as discussed in the previougowerful. However, since we have completed a universal
section. The probabilities of fusion into the vacuum will be gate set without the results of this subsection, we shall work
reduced and, therefore, so will the respective projectioron proving universality from the previously constructed
probabilities, but they will still remain nonzero. In fact, a gates, rather than pursuing this matter further.
careful examination of the operations constructed so far
shows that they work with a probabilistic mixture of dyons IV. GATE-SET UNIVERSALITY
and regular magnetic charges. ) . ) )
The second and larger problem, though, is decoherence. The_: goal of this section is _to prove the universality (_)f the
The fluxesa'ba b~ 1=a!(*! belong, in general, to differ- following qudit ga.t.e set, Whl_ch |nclu_de§ measuremg@):s
ent conjugacy classes and therefore different superselectigiPntrolledX gate, (ii) probabilistic projection ontgo), (iii)
sectors. When the quantum state is encoded in this form, it iBrobabilistic projection ont¢0), and (iv) probabilistic pro-
susceptible to decohere into the different superselection seggction onto|0)*, where we assume that the qudits are of
tors. dimensiond>2, with d prime. The first requirement cthis
When does this decoherence occur? It occurs during fureeded to make the gate set universal, whereas the second
sion. In general, fusion takes twn-dimensional Hilbert one will allow us to relate this gate set to Gottesman’s gate
spacesH and maps them to oné{; X H,— Hz. But quan-  set[8]. The above gate set must be supplemented by a con-
tum mechanics is unitary; therefore, what must really be haptrolling computer capable of universal classical computation.
pening is a mapping to a tensor product’éfand the envi- The above gates were selected as those arising naturally
ronment: H, X H,—Hz X E. When two states are mapped from the anyons based on the groifys<, Z,. The proof of
onto new states that are orthogonal in the environment suniversality of the above gate set is the last step needed to
space, decoherence occurs. show that universal quantum computation is feasible with
How do we know if states will have orthogonal environ- these anyons.
ment components after fusion? If two states belong to the The proof of universality will proceed in two steps. In the
same superselection sectors, they are related by symmetffifst step we will turn the second and third gates into proper
which protects them from decoherence. This may not be thgieasurements in thé and X bases. Most of the methods of
case when they come from different superselection sectoréhe first step were described while building computation with
though. nonsolvable anyonfkl]. The second step involves using the
For example, consider the states)®|alb) for i andj probabilistic projection ontd0)* to construct magic states
between 0 ando—1, where the kets will denote single that complete the universal gate set. This is the new element
anyons in this paragraph and the next. States of différaere ~ needed to achieve universality with solvable anyons.
all in the same conjugacy class, but states of differeante

grouped into conjugacy classes @felements(except fori A. Nondestructive measurement oZ and X
=0, Wh'ChZ'S its own conjugacy clasdn total, we are talk- By the end of this subsection we will have constructed
ing aboutp® states. measurements in th& and X bases. These measurements

These states fuse into the states with fakb for 0<k il be nondestructive in the sense that if resulvas ob-
<p. The resulting states may also have oneqoélectric
charges. In total, we fuse into a space contairprgstates.
Sincepg< p?, what must be happening is that different con-
jugacy classes are mapped to states that are orthogonal in t
environment subspace.

Note that the decoherence seems to occur when fusing o
of a state made up of different superselection sectors. How-
ever, fusion is the only operation that could have measurepla
the relative phase between the sectors, and it clearly do
not. Therefore, it is acceptable to assume that the decoher-
ence occurs as soon as states are mapped into different su- 1.]0) and [B) ancillas
perselection sectors. '

Returning to the question of alternative implementations Clearly, given|0) ancillas we can use the third gate to
of the projection ontd0), it is clear that the procedure produce/0) ancillas. Similarly, giver0) ancillas we can use
described above does not achieve its goals without causinge second gate to produd¢®) ancillas. Therefore, if the
decoherence in the general case. However, in the special cagitial state of the quantum computer overlaps with either
wheng=p—1, the nontrivial powers of form one conju- state, we can produce both kinds of ancilla.

tained, the measured qudit will be in stéite or [1), respec-
tively. Because the measurements in question are complete,
he nondestructive requirement can be achieved by having
ficillas for every eigenstate of and Z, and then using the
cgntrolledx gate to swap the ancillas into the computational
ace.

The construction begins by producing a set of basic ancil-
s. Along the way we will also produce tixeandZ unitary

tes.
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Usually, the initial state of the quantum computetQ$. At this point, if we were unlucky enough to get=0 or
However, by using the controlled-gate, in combination y=0, then one of the transformation§ or Z will be the
with the projections ont¢0), we can obtain these states no identity operator. This can easily be checked by applying
matter what the qudits are initialized to. The procedure is justhem to |0) or |0) ancillas and then using the available
to apply a controlled ! gate (equivalent to d—1 probabilistic projections.
controlledX gates to two qudits and then project the target  The X andZ gates can also be used to produce a reservoir
to the|0) space. If the initial state had some overlap with anyq¢ 1) and |~1> ancillas that will be consistent with the origi-
of the statesi)®|i), then this produces the desired ancillas. 5| states. Two elements in the reservoir can also be com-
Furthermore, even if we allow states that are initially en'pared, for example, by applying z built from one ancilla
tangled, once we involve more thargudits, atleast one pair - to|1owed by az~* built from the other. Therefore, even if the
must have an overlap with the diagonal states. Therefofe, gtates were to decay over time, by using majority voting the

states can always be produced. damaged states can be weeded out.
Henceforth, we shall assume an ample supplj0pfand In some cases, the one-qubit Hilbert spaces do have natu-

|0) ancillas. ral |1) or |1) states, which implies a natural way of measur-
_ ing or obtaining such states. For those systems, either the
2.|1) states|1) states;X gates,Z gates natural ancillas or the arbitrary ones constructed above can
be used. For example, for the anydd$=|aba ). How-

The next step is to producil) and|1) ancillas. The ’ : . . .
importance of these ancillas is that they will break the Sym_ever, choosing a differerit) state is equivalent to choosing

metry currently present in the one-qudit Hilbert space. a different elemena.
There are two symmetries in the Hilbert space that are not

fixed by the basic four gates of our set. The first symmetry is

a relabelinglix)—|i), calculated modula, for some G<x At this point all the elements are in place to produce mea-

<d. The second, is the relabeliy —Z, for integer 6<y  surements in either the basis or theX basis.

<d. For fixedx, the second symmetry is a relabeling of our  The key element of th¥ basis measurement is the circuit

dth root of unityw by w’— w and a relabelingjy)—|j).
Therefore, given an ancilla in a stdte), with x>0, we , o
can just rename it so that it becomefla ancilla. Similarly, |0) Al li —7)

given an ancillain a stadé'), y>0, we can relabel it aﬁ).
In fact, both can be done simultaneously in a consistent fash- . .
ion, even if we do not know the values »fandy. |2) X! |2)

The initial stategx) and[y) can be obtained from two
maximally mixed states. The maximally mixed states can be _
described either as a stdte with x chosen at random or a applied to a/0) ancilla and the state to be measured. If the

stateﬁ/) with y chosen at random. Therefore, two maximally above Eircuit is repeated many times, each time with a dif-
mixed states serve our purpose as long as we do not obtafarent |0) ancilla and withj varying from 0 tod—1, we
x=0 ory=0. These two bad cases will be detected belowobtain the transformation
in which case the process can be restarted with two new
mixed states. ~ L .
To produce the maximally mixed states we apply a > BiH—= ghell). - e|i—1)eli—1)---
controlledX gate with|0) as source an{D) as target. The ' '
result is a maximally entangled state, which can be turned ®|T—\0Pr-i>. (59
into a maximally mixed state by discarding one of the two
gudits. Two of these mixed states will serve as our ancillas. o o ~ )
Given our two ancillas, which we have now labeldd A probab|'llsnc projection ont(.10> can thenﬁs appl.led to
and|1), we can buildX and Z gates which are consistent each qudit. If one of the qudits of the forfn—J) projects

with the new labeling. ThX gate is clearly just a controlled- ©onto the spacg0), then the outcome of the measurement

X gate with a|1) state as control, whereas tHegate is just IS J- _
a controlledX gate with a|1) as target. The less familiar Note that because of the one-sided error model of the

second construction is just a specific case of the foIIowingDrObabIIIStIC prolect_lon, an erroneous measurement result

circuit: can never be obtained, no matter how sn@lb is. The
worst possible outcome is that after all the qudits have been

. o . measured, no conclusion can be reached. Of course, a stan-
|2) li — ) = Z7|i) dard small two-sided probability of error can also be made
exponentially small by using enough qudits in the above
measurement.
17) X 17) The measurement in thiebasis proceeds similarly, where
the transformation

3. Measurements o¥ and X
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to which an ancilla| ¢y,,) is appended. A controlled-*

Z ai|i>—>2i ailiy®li)---oli-1)®[i-1)- - gate is applied to the first data qudit with the first ancilla
qudit as control. Similarly, a controlled=* gate is applied
®li—d+1) (60)  to the second data qudit from the second ancilla qudit, and a

controlledX gate is applied to the third ancilla qudit, from

is performed using th¥ and controlledX gates, followed by ~the third data qudit. The first two data qudits are then mea-
a probabilistic projection ontf0). sured in theZ basis and the third data qudit is measured in

Finally, the above measurements can be performed noribeX basis. If the results of the measurementsar@, and
destructively, by projecting all but one of the qudits. Alter- - respectively, then the remaining qudits are left in the state
natively, the eigenstates of and Z can be directly con-

structed from these gates af@) or |0) eigenstates. D Yapcw’a—a)e|b—B)e|(a—a)(b—B)+c).
abc

. (63
B. Completing the gate set

So far, we have only shown that our gates can realize |"€ Corrections begin byﬁapplying ama‘@xﬁ‘g’x_%ﬁ
operations in the Clifford group. In order to achieve univer-92te followed by a controlled ga;te from the first qudit to
sal quantum computation we need to complete the gate sé€ third qudit and a controlled® gate from the second

with an operation outside the Clifford group. qudit to the third qudit. The state then becomes

It was shown in Ref[1] that the Toffoli gate, combined
with measurements in th¥ and Z bases, is universal for > Yapcw?a)e|b)®|ab+c). (64)
guantum computation. Therefore, a successful construction ab,c

of the Toffoli out of our gate set will prove it universal. The

Toffoli gate will be constructed out of the previously de- All that is needed to complete the Toffoli gate i¥a” gate

scribed operations, together with the thus far unused proba@pplied to the third qudit and a phasé®” applied to the first

bilistic projection onto|0)*. two qudits. Unfortunately, we must first build the latter trans-
In addition to producing measurement gates, probabilistidormation out of the second magic state.

projections are particularly useful for preparing magic states,

which are ancillas whose use allows us to perform new gates 2. Using| ¢bwi2)

such as the Toffoli. In particular, we shall show that we can Once again, the magic state is appended to a pair of qu-
produce the two magic states dits. Now controlledX gates are applied with the data qudits
1 as source and the ancilla qudits as targets. Then the ancilla
|¢Ml>:a > livelj)elij), qudits are measured in the computational basis. The out-
i comesa and B will be uniformly distributed, and at the end
we will have produced the transformation

:E @%.09.0]j i
| bu2) dEJ ii)@lj), 6D > vasla)elo) =3 g poehsla)olo).  (69)

where g; j is the Kronecker delta function. The first of these This procedure randomly and uniformly chooses a computa-

states produces the Toffoli gate up to some errors in thgona) pasis state and multiplies it by a phasesofRepeated
Clifford group. Th_e second magic state aIIow_s us to Correcrapplication of this transformation will eventually yield any
these errors and, in fact, allows the construction of the com

plete Clifford group even without the use of the first magic
state.

We shall begin by discussing how to use each of the 2 l/,a‘bwf(alb)|a>®|b>, (66)
magic states and then afterwards turn to the task of describ- ab
ing their construction out of the available operations.

of the d®” states of the form

wheref is an arbitrary integer-valued function. This process
1. Using| 1) is effectively a classical random walk ondg-dimensional

periodic lattice withd?” nodes, where each use of a magic
0 ; state is equivalent to taking one step. Because the lattice is
gate was first introduced by ShiB] and generalized to qu finite, after a polynomially large number of steps the prob-

dits in Ref.[8]. We shall give a brief description of its use in _, .. ) .
; ; ability of not having arrived at least once at any one of the
order to give an account of the exact Clifford group opera-

. : . above states becomes exponentially small.
tions needed in the last step as corrections. . . .
) h The final correction needed to complete the Toffoli gate
The procedure begins with a general state

was the phase transformation to the state wifa,b)

=yab and can therefore be realized using many copies of

W)= E Yabda)®|b)®]c), (62) the second magic state. All that remains to prove universality
abc is to describe the production of the magic states.

The magic statépy ;) and its use in producing the Toffoli
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3. Making the magic states

1 1

The final piece of the puzzle is the production of the |q>):i20 ,-Z‘o pijlheli), (70
magic states using the probabilistic projection offtp".

Probabilistic projections onto a subspace are particularly
powerful for making magic states, because it can be assum%ie can produce the three-qudit ancillas
that they successfully project into the subspace every time.
That is, if the probabilistic projection does not project onto
the desired subspace, the state is tossed out and the proce- 11
dure is restarted from the beginning. Therefore, the probabi- "n_ VST o
listic projection onto|0)* effectively takes a state and re- %) Z’o jZO il @1i)®16i 090 71
moves thg0) component of the state:

d-1 d-1 The procedure again involves appendin@)+|1))/y2 to

> aliy—=AD aili), (67)  the ancilla|®), which now generically has eight nonzero
1=0 =1 . . . L. .
coefficients, and removing four of them. This is done with a

) o _set of controlledX gates with the third qudit as target, fol-
whereA is some normalization constant. In fact, by combin-|o\yeq by a probabilistic projection of the third qudit onto
ing this projection with theX gate, we can remove any of the |0)*, followed by the inverse controlle¥-gates. If we use

coq]ﬁonen_ts#l).t ¢ for thi tion is t fruct ._two controlledX ! gates controlled by the first two qudits
€ main strategy for this section IS o construct a Serle?espectively, the projection will remove the components with

of a}ncnla states of mcreasmg_complexny, unpl finally theI bels|0)[0[0), |1)[0Y[1), and|0)|1)[1). In addition, us-

desired magic states are obtained. At this point, we have f%g WO controll,edx(d*“’zigates we removEL)|1)|1) ’and

supply of ancillas of the formi) and|j) for any | a-ndj. |0)|0)|0) (again. These are the four states that need to be
From the |0) state we can also make the ancillflOX removed to produce the ancilld").

+1))/+/2 by removing alli) for i >1 with the probabilistic The above two procedures allow us to finally produce the

projection. desired magic states. Starting wiie))® |0), we apply the

The next step is to produce entangled two-qudit ancillasﬁrst procedure to each ancilla and then apply the second
Given a supply of ancillas of the forft) =, s|i) we shall procedure to the appended qudits. The resulting state is

produce ancillas of the form

a1 o Lard
| >:¢0|0>®|1>+;1 ¢i||>®|0>:i20 TAINCIE NS 5 .Zo JZO Y®|j)®|8 026,008 08 0. (72
(68) o

The procedure begins with the state If the last three qudits are measured in théasis and the

results are 0, 0, and 1, respectively, then we will have pro-
! o duced the magic stafeby;»).
;o %ili)®lj), In fact, measuring in th& basis and only accepting if the
(69) result is zero is a convenient way to unentangle the system
with temporary qudits. Therefore, the previously described
procedures can be combined into the probabilistic transfor-
mation

1 1

1
B )

d-1
[¥)e

which in general has @ nonzero coefficients. We need to
removed of these coefficients to obtain the state’).
The procedure, done once for edclirom 1 tod—1, is
the following: First, apply a controlled* gate with the left d-1d-1 d-1d-1
qudit as source and the right qudit as target. Then, the right .t i r i Y
qudit is projected ontd0)*, and finally the controlleckX i:EO ,ZO ¢"’|I>®|J>_>igo jgo i4[)®11) @1 310) m).
gate is undone. For eadh we remove the componeni) (73
®|0) and|—1k)®|1). The operation-1/k is modulod as
usual and ranges over all integers between 1 &nd be-
caused is prime. Therefore, given a supply p¥) ancillas, where the first state is either transformed into the second
we can probabilistically convert some of them into a supplystate with some nonzero probability or else it is damaged.
of |¥') ancillas. The above transformation has only been discussed so far for
Note that the above procedure works even if the coeffin=m=0, but a trivial use ofX gates before and after the
cientsy; represent the state of other qudits, as long as thes&ansformation will allow anyn andm.
are ancilla qudits that can be tossed out if the projection Starting with[0)®|0)®|0), repeated application of the
procedure fails. In the same spirit, given ancillas of the formabove procedure can produce
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Consider now a pair of these states. We are interested in

d—1d-1
% E E liYy®|j)®|0) the operations that can be achieved by conjugating the sec-
1=0 =0 ond state by the flux of the first state, with the help of ancil-
g d-1d-1 d—1 d—1 las. Letge{b,b’} be the flux of the first state. The most
—3 > iY®]j)®|0)® & [8 18 m general conjugation possible is by a function of the form
=0 j=0 n=0m=0
41 d-1 o1 f(g)=ci9c,9c39- - -gc,
1 . f . rq—1 rq—1 rq—1
~a2 & helelin® @ [800m, =(d19'dy1)(dzg'dz )+ (dn-19"dy 1) dy (76)

for some fixed element§c;} € G. In the second line, the
expression has been rewritten in termg6tgb~ ! and new

where the second step involves only controllédates from  €lements{d;} e G which can easily be determined in terms
the extra qudits to the third qudit. Erasing the extra qudit<’f {Ci} € G. For exampled,=c;bc,.
with a measurement in thé basis and retaining only when  The power of the second line is that it expresses the con-
all results are zero produces the desired magic $taig). jugation as a composition of two basic operations. The first is
The construction of the magic states out of the probabi2 conjugation by an ancilla with flud, and is independent
listic projection onto|0)' completes the description of the Of the state of the first qubit. The second is conjugation by a
Toffoli gate. Though the procedures of this section are faProduct of conjugates af’, which was defined so that ¢
from optimal in terms of resources, they are sufficient to=D0, theng’=1 and the product of its conjugates is trivial.
demonstrate universality. In particular, this completes thén the other case, i§=b’, theng’=[a,b]=aba 'b™* and
proof that universal quantum computation is feasible withthe operation is conjugation by a product of conjugates of

(74

anyons from groups of the form,x, Z, . [a,b]l. _ .
We defineCg(x) as the conjugacy class ofin G and
V. COMPUTATIONAL POWER OF MAGNETIC CHARGES ~ C6(X) as the group generated by the elemeniS(x). The

_ _ ' _ _ o operations discussed so far are conjugation by fixed elements

In thls_secuon, we will be interested in classifying _the in G and controlled conjugation by elementsdé([a,b]).
computational power that can be achieved by braiding The most natural controlled operation is the logical
anyonic magnetic charges of a finite group. The range ofontrolledX gate, which acts as a controlled conjugation by
operations that can be achieved by braiding is closely relateg Naturally, if a2+ 1, then we could arrive at the qudit state
to the structure of the group to which the magnetic chargeF2>:|a2ba—2>_ However, our interest lies in proving that
belong. In particular, the possibility of realizing the opera-certain groups cannot produce a controliegate, in which
tions of controlledX and Toffoli gates (equivalently a case it is sufficient to prove that a controlled conjugation by
doubly-controlledX gate are, respectively, related to the 3 is unfeasible.
group properties of nilpotency and solvability. These stan- |t seems that a requirement for a controlled conjugation
dard properties of group theory will also be defined below. py 3 is the existence of elementa,b such thata

There are certain important assumptions that go into the c%([a,b]). There is a potential loophole in the argument,

discussion in this section. First, we assume that each qubit it'ﬁough because different qubits could use different basis
carried by a pair of anyons. Furthermore, we choose a confy ves The target qubit could uge as the zero state and

putational basis corresponding to the states of definite f|U)é b.a-! as the one state. I&,eC*

= ; . 2M242 . 2 E G([al’bl])’ then the
(e'g',g't??;lﬁ) fcir ?omegeG). Wg r(t-:-mmd the rea(:er at th'ts.' controlledX gate would be possible. Considering many qu-
point that the stateg) corresponds to an anyon of magnetic pig requires a sequence of nontrivial elemeatg and{b;}

chargeg paired with a compensating anyon of chagje! which satisfy, at a minimum, the conditions
whose only purpose is to allow the pair to move through the ' '

system without introducing undesired correlations. Finally, ai+1eCé([ai bi]). 77
we will restrict the discussion to operations that can be
achieved by braiding magnetic charges. The consequences phe above equations are related to the series of subgroups of
lifting these restrictions will be discussed near the end of thiss, defined by
section. _ _

Let the fluxes corresponding to the zero and one states be GU=[c) G], (78)
the elementd,b’ e G, respectively. If we desire a coherent o _ .
superposition between the zero and one states, they must éth base cas&(®)=G. By definition, if a; G, then
in the same conjugacy class, and therefote=aba ! for  [& ,bi]E_G((J“))- Furthermore, since the gro@ U+ js
some nontriviala e G. This is summarized by normal inG, the requirement oa; , ; reads

|0)=1|b), |1)=|b")=|aba ). (75) a1 1eCh([a,b])cGUTD), (79

Even if the basis in use is a qudit basis, with additionalOf course,a; e G{®)=G. Therefore, repeating the above
states, we will only concern ourselves with states that havargument shows that a controlléd-gate requiresa;
support on the above two basis vectors. e GU=1) with a;#1 for everyi=1.
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Given thatG is finite andG(U ™) c G(())| the series must whered,, is a constant element @, f; is a product of con-
converge after a finite number of subgroups to some finajugates ofg; , andf(g;,93) is the factor with all the com-
SUng‘OUpG((OC)). The final subgroup can either be trivial or mutators. The functiorf; has the property thatc(gi']_)
nontrivial. The groups witlG{(*)={1} are called nilpotent. —fo(lg))=1.

The conclusion thus far is that nilpotent groups cannot gettingf=f implies the conditions
implement a controlleck gate by braiding. The inverse of
this statement—i.e., that groups that are not nilpotent can 1=1(1,)=d,,

implement the controlledk gate—will be shown in Sec. VI.
1=f(c,1)=f4(c)d,,

A. Conjugations with multiple sources 1=f(1c)=",(c)d
il n»

A similar analysis can be used to study the relationship
between group structure and gates produced using multiple a=f(c,c)=f,(c)fc(c,c)f,(c)d,, (83
qubits as sources of conjugation. Clearly any group thatis = |
not nilpotent can produce a series of controllégrates with  Which imply fc(c,c)=a. - _
different sources. However, certain groups are capable of However,fc has the additional property that, N is a
producing much more powerful gates such as the Toffolinormal subgroup of5 containingc, thenfc(c,c) e[N,N].
which is universal for classical computation. Furthermore, since=[a,b], the requirement on needed to
In the rest of this section we shall prove that groups tha€XPress the Toffoli function in product form is
are solvable cannot produce a Toffoli gate, or equivalently ceN=ce[N,N] (84)
universal classical computation, by braiding magnetic '
charges. This connection between universality for classicalr any normal subgroupl. This condition is related to the
computation and nonsolvability had been previously identiseries of subgroups defined by
fied by Barrington10] in 1989. Though we shall mostly be

interested in groups that are solvable, this result will place GUT=rcW G, (85)
limits on the power that we can expect to obtain from braid-
ing magnetic charges. again with base cas&(®=G. Just as before, this series
Just as above, the most general conjugation with Must converge to a final subgro@™. The groups where
sources is the conjugation by a function of the form G(*)={1} are known as solvable. Any group that is nilpotent
is also solvable. ‘
f(gy,. .. ,gm)=(dlgi’ld1’1) Because the subgroud’)) are all normal inG, the re-
quirement of Eq.(84) can only be satisfied i€, which by
X(dzgi'zdil)' ' '(dn—lgi,nfldri—ll)dnn definition cannot be 1, is contained @*). We have there-

fore shown that if the group is solvable, then the functign
cannot be expressed in product form, and therefore we can-
not conjugate by it. This is true even if the target of conju-
whereg/ =g;b~* and the indices take values from 1 tan.  gation is in a known state, which implies that even if we had
For brevity, we assume that all qubits are expressed in thgsed the target as a source of conjugations as (vell by
same basis, though the general case would not be very difising it to conjugate ancillas and then using the angitias

(80)

ferent. Toffoli gate would still not be feasible by using only braiding
The Toffoli gate is simply a conjugation by a function of anyons from a solvable group.
fr(g1,93), such that The fact that the Toffoli gate can be produced for nonsolv-
able groups is a consequence of the results of Réfsand
fr(ckch=ak, (81)  [10] and will not be discussed here. In fact, the computa-

tional model discussed in this section resembles the nonuni-

. ., form deterministic finite automata presented in R&t]. For
Wh'Ch has been expressed as a functiogjoand wherg WE " honsolvable groups, the two models are almost identical.
introducedc=[a,b]. In order to produce the Toffoli gate \gnetheless, for solvable groups, the magnetic charges pre-
using conjugation alone, we must be able to express thegniaq in this section have significantly less computational
above equation in the form of E(B0) with m=2. We shall  oer, because the zero and one states have to be repre-

show that this Is not possible for a solvable group. sented by group elements in the same conjugacy class.
Form=2, Eq.(80) is a product of conjugates @f; and

g, . We can rewrite it by moving all the conjugatesgdif to
the left and all the conjugates g} to the right. In the center . )
The results discussed so far have been summarized by

we will pick up factors of the fornid,g;d; ,d.g5d -] and . :
commu{aators %f commutators a:ﬁd Isgol oln. Inj?ﬁejen]d we willl.—able l. For gach type of group, I describes the computa-
obtain ' ional operations that can be achieved through braiding of
magnetic fluxes, as well as an example. The examples are the
o, ) L, ) smallest group in the class, with the exception of the Abelian
f(91,92)=F1(91)fc(91,92)f2(92)dn, (82 case where the trivial group could also be listed. For the

B. Summary of computational power
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TABLE I. Computational power achieved by conjugation for The proof of universality will then be a small generalization
different groups. of the ideas presented in Sec. Ill.

Abelian Nilpotent Solvable Example Computational power A. Group decomposition

yes yes yes Zy | Let G be a group as above and defide= G(*)) in terms
no yes yes Q X of the series discussed in Sec. V. BecaBss non-nilpotent,
no no yes S ControlledX H is nontrivial, and becausé is solvable,H# G. Further-
no no no As Toffoli more, H is normal inG and G/H is nilpotent. The second

fact is due to

non-Abelian, nilpotent case there are two examples with  (G/H)UF=[(G/H)) (G/H)]=[G'),G]/H
eight elements: the dihedral grodip, and the quaternionic — Ui+ 86)
group Q, which is listed in the table and has elemerit§, '
*i,xj,+k. . . ' o and therefore G/H)(“V=H/H={1}.

The most basic case is whéhis Abelian, in which case Any nilpotent group can be written as the direct product

it is also nilpo_tent gnd solvable. C_Iearly conjugation can onlyof jts Sylow p-groups, which are groups whose order is a
produce the identity transformation. In fact, every superseprime power. Therefore,

lection sector consists of a one-dimensional Hilbert space,
and therefore quantum information cannot even be stored in G/H= Kq1>< Kq2>< e X qu, (87)
Abelian anyons in a topologically protected manner.

At the other extreme are anyons from nonsolvable groupswvhereK, denotes a group of ordef™ for some primeg and
Universal classical computation can be accomplishedntegerm. We further defineNK, to be the lifting ofK, to

through braiding, and universal quantum computation can bgye full groupG that isSNK, /N=Kg. Note that to maintain

obtained by completing the gate set W'th. measurgments .'eonsistency with the notation in Sec. Ill, the primes involved

theX andZ bases. The complete construction for this case ig, thesep-groups are labeled by the lettgr

described in Refl1]. . Having fully characterized/H, we turn to the study of
Anyons from groups that are solvable, but not mlpotent,H itself. LetN be the largest normal subgroup @fthat also

can also be used for universal quantum computation, but thgatisfieéNCH andN#H. If more than one subgroup satis-

28:233&5’; ;rsomofrlif(:)rp;i)g?r?teinﬁ Cﬁgggﬂﬁg?naetﬁém;ﬁe fies the above requirements, thenNgbe any such subgroup.
g, an L BecauseH is finite, there must be at least one maximal sub-
and Z bases can be constructed in a manner similar to th roup

nonsolvable groups. However, to complete a universal gat o . .
set, fusions of electric charges must be employed. The proof We shall prove thak/N =7, for some primep and inte-

of universality, along with the details of the gates, will be the 9" M- The basic idea is that working moduld, H/N is a
subject of the rest of this paper. normal subgroup o66/N. FurthermoreH/N has no proper

Finally, anyons from groups that are nilpotent seem insuf-S#bglj?np_S tzzt <|’:_1re ngrmal @'/N' In particular, th'i'mp“es.
ficient for universal computation. In the constructions for thetnat I Abelian, because its commutator subgroup is a

non-nilpotent groups, the only operation that can produc&©Mal subgroup oG/N. Note that the possibility that the
entanglement between multiple qudits is the controMedr ~ cOMmutator subgroup dfi/N is equal toH/N is excluded
Toffoli gates obtained by braiding fluxes. However, for nil- Pecauseéd/N is solvable.

potent groups, braiding fluxes does not seem to yield an op- FOr anyxeH/N co_nS|derCé,N(_x),_ the group generated
eration capable of producing entanglement. Either a neWY the conjugates of in G/N. This is a subgroup ofi/N
type of operation or a different basis must be used. Simpl@nd is normal inG/N. Therefore,

modifications to the basis, such as encoding a qudit on mul- _

tiple anyons, are of no help. However, there are countless Com(X)=HIN, ¥xeH/N, (88)
strange bases that are hard to discredit. For example, a Iatti%hich implies that all elements iH/N, with the exception

of electric charges could serve as a Hilbert space, with mags¢ yhe jgentity, have the same order. That is because conju-
netic charges used to create or measure entanglement amogg < o havé the same order asind a product of elements

the charges. Therefore, while the prospects of universal confs orqerk in an Abelian group must have order less than or

putation with nilpotent anyons seem bleak, the question reéqual tok. This concludes the proof th&t/N:Z’,}.
mains open.

Thus far, we have the following tower of groups
VI. SOLVABLE NON-NILPOTENT GROUPS NCHCHinCG, (89

In this sgction, we will prove Fhat anyons bas.,e.d on aﬁnit.ewhere N, H, andHK, are all normal inG and the group
group that is solvable but not nilpotent are sufficient for uni- 4
versal quantum computation. The first step will be to decomHKq; can be any of the groups found above.
pose an arbitrary grou@ that is solvable, but non-nilpotent, ~ Because G/N)(*)=H/N=73, the groupG/N is also
into a form similar to the previously studiéf <, Z, groups.  solvable and non-nilpotent. However, its structure is simpler
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than that of the full grougs. We shall therefore be interested  The first example i$\,= 75X, Z5. The group can be de-
in working moduloN and shall denote groups modulbby  scribed asa; =(12)(34),a,=(23)(41),b=(123) with
a tilde. That is,
ai=a=1, aja,=aa,
G=G/N, HKy=HK,/N, H=H/N=7). (90) . _—
' ! b3=1, bajalb l=ala,"’. (93
The final~step is to study thel relationship bejwiﬂerarld For this groupN={1}, H=72, andK =Zs. Its most impor-
the groupsHKg. By construction, we know G,H]=H (gt feature is thap=2, which was not previously possible.
ZZS. but what abou(ﬁ Kq_,ﬁ]? Because botfi Kq (for Because =2 implies working with qubits, these groups will
' ' be have to be handled specially.

" The next example i§=(73) X, (Z3X7,). Leta,, a, be
furthermore, is contained iH. But N was defined to be the the generators dt2, and letb be the generator &f, andx be
largest proper subgroup &f that was normal irG. There-  the generator of the remainiriy. The semidirect product is
fore H has no proper subgroups that are normaGinand  defined by the conjugations

[HKq,H] must be either the trivial group or all éf.

anyi) andH are normal irG, [HK,,,H] is normal inG and,

N P oyl A—iqi—i
bajalb *=a;'a;’, xajalx t=a;'a,’!. (99

If q;=p, thenH in is ap-group and, therefore, nilpotent.

T ; — 72 _ _ 3
This means thafHK,,H]#H and by the previous para- For this groupH = Z5 beE?qséG,G]—[G,H]—H. The sub
group generated bg;a, - is normal inG and thereforeN

graph[HK, H]={1}. The rfSt of the groupbiKg, ce~1n~ei- =173. Finally H/IN=73; and K=7,. Note thatx commutes
ther commute or not wittH. However, becaus¢G,H] with H moduloN, as discussed in the last section.
=H, at least one of them must not commute. Fixiauch The final pair of examples illustrate the case whisres
that [HKq H]=H, and definek =K, FK=FKy, andq ~ non-Abelian. The examples ax, Q andZ§x, D,. La-
—q;. This will be the group to take the place &f. beling the g;:neratqrs 071’13 by a; and a,, the semidirect
We would like to show that there exists an element Product forZzx, Q is defined by
e HK, such tha{b,H]=H. Let X be the stabilizer ofi in
HK—that is, the largest subgroup &fK such that[X,H]
=1. ClearlyHC X andX+ HK. BecauséiK/X is nilpotent, where+1, =i, =, =k are the standard quaternionic ele-
it has a nontrivial center. Lebe HK be any element that MeNts. ForZ3x ) D4 the semidirect product is defined by
projects, moduloX to one of the nontrivial elements in the
center. We will show thaftb,H] is normal inG, which im-
plies[b,H]=H. The proof is that modul (which is nor-  where the relationg*=y?=1 andyB8y=p"! defineD,.

inXaYi—1_— —X iaXayi—1_ Xty X—
iajadi “=ajay, jajalj T=ayYay’, (95

pajaypt=aja,”, vyajayy '=ajaj, (96

mal inG), every elemenge G commutes witth. Therefore In both of the above casgs=3, =2, N={1}, andH

gbg '=bx for somexe X and =Z§ However, forZ%xg Q the nontrivial elements dfl are
conjugate to one another, and none of the nontrivial elements

glb,hlg 1= bxh'x b~ *h'~Lbh'b~ih & [b,H] of Q commute with any of the nontrivial elementsidf The

(92 ngg D, case dividesH into three conjugacy classdm-
cluding the identity. Furthermore, each of the elements of

for anyhe H, whereh’=ghg 'eH. the form 8y commute with two nontrivial elements 6.
To summarize, working modull, we have the following These differences will become important when discussing
tower of subgroups: the operations involving electric charges.
HCHKCG, (92 C. N-invariant ancillas

The first lesson from the above analysis is that we should

b £ ord ¢ i ‘ | work moduloN. That is, we want flux states labeled by ele-
subgroup of order a power of for some primeg not equa ments of G=G/N that are invariant undeN. The idea of

to p. Finally, 3be HK such tha{b,H]=H. _N-invariant states was already discussed in R&f.when
Note that th|s notauon is consistent with the one used INyeneralizing simple non-Abelian anyons to nonsolvable

Sec. lll. That is, ifG=7,X4 74, thenN={1}, H=7,, K gnes and therefore the discussion below will be brief.

=74, and the definitions of, q, andb would be consistent. A basis for theN-invariant magnetic fluxes is justy) for

ge G. The braiding and fusion properties of these states be-

have almost exactly as if the full group wet and these

There are a few good examples to keep in mind that il-states were flux eigenstates. The only difference is that when

lustrate the potential new complications arising from groupgusing two anyons from pairs with opposite fluxes, the prob-
with more structure thaff, X, 7. ability of disappearing into the vacuum is lower.

with H=Z] for some primep. FurthermoreHK/H=K is a

B. Examples
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Even producing anyons from the vacuum behaves cor-  |i ... D@1y =iz, in)
rectly with respect to\ invariance. Pairs produced from the o o
vacuum are naturally invariant under the full gro@p Nor- ®lig+j1, - sintin)-
mally, when braiding with other states, this invariance will (100
be broken. However, if the vacuum pair only interacts with
N-invariant states, then the invariance under the gitduyill It can be implemented as a conjugation of the second anyon
remain. by a function of the flux of the first anyon such that

At this point we will change our requirements for the
physical system. Instead of requiring a reservoir of flux an- f(hbh™1)=h (101
cillas for every element o6, we will require a reservoir of
N-invariant flux ancillas for every element @&. This is for anyheH. Because the mdjb, - ] defined above is just a
likely a reasonable modification, as it appears that the lattgsermutation of the elements of, it has a finite periodsay,
ancillas are no harder to produce than the original ones. 1). The desired function is

It should be noted that, when working modiNpthe elec-
tric charges need no modification. That is, becanse nor- f(9)=[[[gb 1,b],b], ... b], (102

mal in G, any representation @& extends to a representation ) ) i
of G that is invariant undeiN. Furthermore, fusing two which consists of —1 nested commutators. The final com-

N-invariant electric charges must produce a éinvariant ~ mutator needed to complete the period is the one formed in

electric charge. Therefore, working witirinvariant electric ~ the expressiogh™* wheng has the formhbh™*.

charges simply involves working with a subset of the charges At this point, one may wonder how does working modulo
of the groupG. a normal subgroupN affect the discussion regarding the

Given the above caveats, we can effectively replace th§omputability of .the controlledk gate. The cpntrolled@
group G with the groupG = G/N, which will be done with- ~ 9ate can only be implemented beca(ses non-nilpotent. In

out further comment for the rest of this section. a senseG was constructed to be as small as possible, but
still maintain the property of being non-nilpotent. On the
D. Computational basis other hand, if a groui®s is nilpotent to begin with, then any

. . . . subgroup or quotient group will also be nilpotent, and no
We will begin by defining an extended computational ba'controlledx gate can be constructed using braiding.

sis and discuss the operations that can be performed on this Using the same techniques as in Sec. Il D, anyon fusions

e?'ttinded tsutbspa_(ile.bTov_varld éhe ?nd (t)rf1 tht's section, ?§Ub§n be used to perform measurements. Fusion it
or these states will be singled out as the trué computationgy, .55 produces a probabilistic projection on@...,0.

basis. - Fusing the two anyons that form a qudit is a probabilistic
Let a,....,a, be a set of generators fdi=7;, and projection onto
recall the definition of the elemebte G. The extended com-
putational basis consists of the states .1 bt _
L |0""’0>E¢_ni2:o"'i2:0|'1"""“>' (103
lig,...ip=la}---arba "--a ), 97 Pl n
N As usual, to complete the probabilistic projection, these fu-
where each of the's takes values from 0 tp—1. sions must be supplemented by a reservoifOyf..,0 and
To prove that the states are all distinct consider the ma%' ..., 0 ancillas. The first case is trivial, because the exis-

from H—H defined by tence of these ancillas has been assumed as one of the physi-

cal requirements of the system. The productiofiof . . ,0)

[9.-]:h—[g.h]. (98) ancillas is more complicated and will occupy the rest of the
o _ _ _ _ subsection.
BecauseH is Abelian, this map is an homomorphism for any 1o procedure to distil|6, o ,~0> states begins with a

geG. In particular, sincgb,H]=H, the homomorphism pair created from the vacuum andG. ..,Q ancilla:
defined by[ b, - ] is surjective and has trivial kernel. That is,

no element of commutes withb. But [Vagy®|0,...,0. (104

hbh’1=h'bh'*Q(h'*lh)b(h'*lh)*:b (99 Using only braiding, an incomplete swap is applied to the

state:
for any elementsh,h’ e H, which can only be true ih
—h' [Vac) X!
E. Basic operations 0,...,0) X
The generalized controlled-gate is the transformation

032306-19



CARLOS MOCHON PHYSICAL REVIEW A69, 032306 (2004

Once again, the circuit denotes the action of the conjugations |)\b)\‘1) (107
on the computational basis, but their extension to the full

Hilbert space needs to be discussed. After applying the NG, All elementsk < X . which will also be denoted bk. The
essary braidings to perform the circuit, the top state is fused’ ' '

with a |b~1) ancilla. If the fusion does not produce the Probabilistic projection onta\ will be the first gate. -

vacuum state, the final product is discarded and the proce- 1he Second gate is the probabilistic projection onto
dure restarted from the beginning. Since conjugations cannd®. - ...0"NA. This second gate can be though of as an ap-
change the superselection sector, the only case that needspiécation of the first gate, followed by a probabilistic projec-
be considered is when the vacuum state is created in thgon onto|0)* that only works on states containedAn For
superselection sector that contains the computational sulthe moment, we will assume that the first gate can be imple-
space(i.e., the conjugacy class df). In this superselection mented and work on the construction of the second gate.

sector the vacuum state has the form The basic building block for this section involves working
5 3 with the state to be measuréd#l) and an electric charge pair
|Vac)x|0, .. .,0+| "), (105 in the vacuum statéR(1))g of some non-Abelian represen-

' _ tation R. The state to be measured is contained in the com-
where| W) is a state in the space spanned by vectors of thgutational basis and can therefore be expanded as
form |gbg™!) that are not contained in the computational

basis.
Because we want to guarantee that after the contrled- W)= 2, ¢plhbh™?), (108
gate the statéo,...,0 remains in the computational sub- heH

space, we need the conjugation function to satis . .
P g fy where, as in Sec. Il G, the coefficientg,} could be num-

£(3)eH bers or could denote the state of the rest of the system.
' Using braiding, the statg¥’) can be entangled with the
electric charges. In particular, i#(g) is a function con-

structed as a product gfand fixed elements dB, then the
following transformation can be realized:

f(hbh™H)=h VheH. (106)

The second requirement can be satisfied by chodsama
sequence of commutators as in Eq02, as long as the

number of commutators is one minus a multiplelofthe . 1
period of[ b, - ]). Furthermore, the result aftecommutators ¥)e[RM)r Ea YnlNOI™5) @ [R(H(M))r-
must be contained irG(()). Because the series is finite, (109

G =GN =H for some finitej, and the first requirement _

can also be satisfied by definirigo be a long enough se- Note that the state of the electric charge can depend(én

quence of commutators. Both requirements can be satisfig@ther thang(hbh =) by composing with the function de-

simultaneously by correctly choosing the number of commufined in Eq.(102. That is ¢(f(hbh™7))= ¢(h).

tators in the expression, and this completes the definition of Now the electric charge pair is fused together, and the

the first controlledX. resulting particle is measured. More specifically, in accor-
The second controlled-gate can be a regular controlled- dance with the discussion in Sec. IllH, we just check

X gate because in this case the control is known to be in th@/hether the resulting particle belongs to some one-

computational subspace. In the end, the vacuum state will b@mensional representation labelgd If the chargey is de-

: ~ tected, then the electric charge will have disentangled with
conjugated by an element bf and, therefore, can only have . o ) .
. . . . the state being measured, because its internal Hilbert space is
flux b if it was originally in the computational subspace.

) ' ~ ~ one dimensional. Furthermore, because each one-
_ Having completed the construction of tf@ ...,0) an-  gimensjonal representation occurs only once in the decom-
cillas, all that is required to complete a universal set of gateﬁosition of ROR*, the state will be unentangled with the

is an analog of the probabilistic projection orf@)" con-  gnyironment as well. The proof of the latter property uses

structed out of fusions of electric charges. Schur’s lemma and the fact that|f1,) and|M,)g always
fuse into representation, then|M1M£>R will always fuse
F. Using electric charges into the vacuum.

The ideal goal for this section would be the construction  The result of the complete operation, when the outcome
of the probabilistic projection ont[®, . ..,0* gate. Unfortu- IS obtained, is the transformation
nately, this is not possible for most groups. However, we will
produce a pair of gates that have an equivalent computational
power.

The first gate involves a nontrivial subgrodp—H, to be
defined later, which could equal all ¢f. Note that this where the state after the measurement has been left unnor-
subgroup defines a subspace of the computational spacealized. The coefficients,,_., depend implicitly on the
spanned by original representatioR and will be defined carefully below.

[W)— >, Fym¥nlhbh™2), (110
heH
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The above procedure can be repeated many times for dif- 1. ChoosingA
ferent functions¢(g). If on each occurrence the outcome

is obtained, the resultingunnormalized state will be There are groups, such ﬂéxg D,, Tor which there is no

choice ofR and nontrivialy such that~,_,,#0 for all non-
trivial heH. It is therefore advantageous to chookeas

> ( I1 Fd,(h)ﬂ) ynlhbh™ 1), (11)  small as possible. Furthermore, a smallwill also help

heH \ 4@ when proving the existence of a set of functions balanced

onA.
where ® is the set of functions used. As usual, if the out- . ~ .

. . . L Let a be a nontrivial element dfl, and consider the set of
come vy is not obtained on each instance, the state is dis;

carded, and the probabilistic projection reports a projectior%cuncuonS of the form

onto the complement.

We assume that all functions in the getare products of ¢(g)=H giggi’l, (115
conjugates of the input, and therefoggl)=1 for any ¢ :
e ®. BecausdR(l))g is the vacuum state, it will always

fuse back into the vacuum. Therefore, ifis a nontrivial b 1 th ins the el We defineX
representation, therF, ,,=0 and the above operation SUPYroup offi that contains the elemeat We defineA as

projects out theo, ...,0 state. the intersection of all the_sg kernels. o

At this point we have almost constructed a probabilistic Because there are a finite set of maps frnio H, we
projection onto|0, ...,0* NA. The states outside af can ?ff@flr;itgfgmte set of functiongs;}, in the form of Eq.
be removed using the probabilistic projection oAtpwhich ' 9
for the moment we assume can b.e |mplemen§ed. Therefore, NeRA=Vi ¢(\)=I,
the desired gate will be complete if the coefficients

such thatp(a) =1. The kernel of each of these functions is a

he A=3i ¢;(h)#I. (116

II Faooy—y (112 o L ~ )
ded A probabilistic projection ontoA can be constructed using

controlled conjugations on an ancilla),
are nonzero and equal for every nontriviak A. The re-

quirement of equality is accomplisbed if the orbits under the 2~ ap/lhbh™H®|b)— Z aplhbh™1)
functions in®, of all nontrivial A € A, are equal. heH heH
More specifically, letb be a set of maps from to A that ®|di(hbegi(h)™Y), (117
fix the identity. We say thab is balanced or if it satisfies , i i o
the relation and then using fusion to make sure that the ancilla remains in

the |b) state. Repeating the procedure for eaghproduces
the desired projection.

To build the set of functions that are balancedanlet ®
be the set of functions in the form of EqL15 such that
where N, .\, denotes the number of elements= ® such  ¢(a)e A —{I}. We shall prove that this is the desired set of
thatp(N\)=N\". The requirement thab be balanced guaran- fynctions.
tees that the expressions in E@12) are equal for everx.

- Let A e A be nontrivial and letp be any map inb. The
Of course, for the coefficients to be nonzero, we must prove | £ (N b trivial and tained ®. Oth
separately that the value &f, . , is nonzero for every non- value o .d’( ) must be hontrivial and contained Ik. )
ivial e X erwise, it would be possible to construct a map in product
S .

. oo ) form such that is in its kernel bufx is not, contrary to the
The goal for the rest of this section is, therefore, to find a

~ o~ . . ) ~ definition of A. In fact, the functions inb are just automor-
subgroupA of H, an irreducible representatidghof G, and . ~ . L .

X . . ~ . phisms of A and form a group with multiplication given by
a one-dimensional representatignof G such that(i) the

e o ~ ) .. function composition. Furthermore, beca ioa =H, for
probabilistic projection ontoA can be implementediii) P 5(a)

F\—,#0 for every nontrivial\ eA, and(iii) there exists a any nontrivialx € A there exists a functiorp,..., € ® such

~ . ~ that ¢, .,(a)=\. If A’ eA is a third nontrivial element,
Zit gs?:(;)zgom to A that is balanced o and can be then for every functionp € ® such thatp(A)=\' there is a
P function ¢’ (a)=\" given by ¢’ = ¢po,_., . Therefore,®

is balanced on\.

N)\li,}\/:./\/';\zﬁ)\/ V)\l,)\z,)\lez_{l}, (113)

-1
= 90 11
#(9) 1_|[ 9i9% (114 2. The amplitudes F_,.,
5 To chooseR and y we first need to examine and define
for some element$g;} € G. Fn_, more carefully. Since we are mostly interested in
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We are now guaranteed thatcorresponds to powers of an

with its magnitude squared, which has the simple expressionth root of unity such thap does not dividen. The terms in

[Fh_,I2=IP,IR(h))g[%, (118

where P, is the projector onto the space that will turn into
the representatiory after fusion. This subspace is just the

subspace that transforms gsunder conjugation. It can be
projected out using the orthogonality of charact@nsd ma-
trix entries for non-Abelian representations

1

P W)=
g

> PU(g)eU(g)| V),

geG

(119

where;is the conjugate representation. Note that the values

of the representatioy on ge G will be denoted byy?, as a

reminder that it is always a power of some root of unity

which we shall also denote by.

the above expression have the form

p—1
> cio, (123
=0
where the coefficients; are sums ohth roots of unity. By
Ref. [7], the expression will be zero if and only if the
coefficientsc; are all equal.

Using the above notation it is easy to show two properties
of the amplitudes=, . If |F,_,|#0, then

dr

>

i=1

S

2
= #0,
drlG|?

> P

geG/S

|thHy|2:

(124)

as long ag does not dividg. Note that in generdlFy, .|

Combining the expressions for the projector and the elec#|Fy;_,|. The fact that was used above is thaf,_,,|#0

tric charge state we obtain

1 2

|2= —
[e]

> YR(ghg )k
geG

- 2
> 7R(ghg™)| ,

geG

(120

 delG?

wheredg, is the dimension of representati® In the second
line, the magnitude squared of the matrix is given|Mj?

= Tr(MM?"), which is equivalent to the sum of the magni-

tude squared of the entries of the matrix.
BecauseH is Abelian, the representatid® can be diago-

implies that at least two coefficients of different powerswof
must be different. Replacing by a power of itself just per-
mutes the coefficients; in Eq. (123).

The second property is easier to prove in the form of Eq.
(121) and states that giveji,_,|#0, then

dr
E . 2_ — z E ;gw.gxhxg_1 2
| xhx y| dR|G|2i:1 geé i
1 dr N ha 1 2
= gx - ghg =|F 2
R S e IR e
(129

nalized onH so that the diagonal entries are one-dimensionafor any xe G. The second line involves a relabeling of the
representations ofi. These representations can be labeledsummation variable, whereas the third line is true because

by an indexi running along the diagonal of the matricBs

and described by functions:H—(C. With the new nota-
tion,

2
. (12

1 &R

>

— -1
ghg

) Z ngi

i=1

geG

|FhH7|2:

drlG?
where the representatidr is now implicit in the definition
of the representationisy; }.

Finally, let'S be the stabilizer o in G—that is, the
subgroup ofG that commutes with every element &f.
Clearly, it is a normal subgroup & and HC'S. Further-
more, we had argued that ¢ =p, then Kq €S. Therefore
|G/S| is not divisible byp.

Since the functiorf,_, , will be zero unless we choose a

representation such that=1, we shall assume this from
now on and write

(122

is a group homomorphism ang * is just an overall phase.

Together, the two properties imply that) & _.,|? is non-
zero, then so are the amplitude, .| for any nontrivial
h’=gh'g~!. Unfortunately, even after adding the identity
element, this set is in general not a group. Furthermore, it
remains to be shown that the amplitude is nonzero for at least
oneh.

3. Finding a nonzero amplitude

It is possible to indirectly show that, for every element
heH, there is a pair of representatioRsand y meeting our
requirements, such th§f, . |2#0.

The basic idea is to consider the regular representation of
G. Let ‘Hg be the Hilbert space spanned by the vectors

19)s (126)

for ge G. For the moment, these are just abstract vectors in
a Hilbert space, and therefore we use the above notation to
distinguish them from the anyon magnetic charges.

The groupG has both a left and a right action on this
vector space, which transforms as the regular representation
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in both cases. More generally, we could say that there is a'/(=Zp, then the problem is solved. That is, because we can

action of the grouif;xé on this vector space given by always choose the representations so that the amplitude is
nonzero for some element, then it is guaranteed to be non-

19)6—19199; )& (127 zero for the powers of that element as well.
o The set of functions balanced Jh=Zp can be easily
for any elemeng; X g,e GXG. constructed as simply(g)=g' for 0<i<p. However, the

Let g be the Hilbert space spanned by the vectors of thgyropabilistic projection ontol is more difficult. It can be
form [M)g, whereR in an irreducible representation &. achieved if we are willing to relax the error model of the
These spaces are also representatior® %G and, in fact, ~Probabilistic projections. That is, we use an approximate

are irreducible. The spadég decomposes as a sum of irre- probabilistic projection, where t_he probabilitie; and pro-
. . ~ o~ jected states are close to the desired results. While the results
ducible representations & X G as

will be exponentially close in the number of successful fu-
sions, they will only be polynomially close in the number of
actual fusions, and therefore the machinery of fault tolerant
gquantum computation must be employed. Computation with
with each irreducible representatidR appearing exactly e approximate gate will still be feasible, but one of the
once. Fusion corresponds to a further decomposition into th@dvantages of topological quantum computation—that is, the
) ) . ) ~ exactness of gates—will be lost.

irreducible representations of the diagonal grd&ipThere- To construct this approximate projection, consider the am-
fore, if the statgh)g has a nonzero projection to a represen-pjitude for the fusion of the electric charges into the vacuum,
tation y of the diagonal group, we know th,_.,|#0 for  denoted byF,, ., . It is the same quantity that has been dealt

He=®HRg, (128)
R

at least one irreducible representatien with thus far, only with the representatignreplaced by the
More explicitly, the projection is identity representation. These quantities have the expression
! LSS
P, hg=—= 9 ghg Hz. (129 |FhHI|2: =2 4, "
7| )G 3| g§67|g g )5 ) dR|G|2|:1 o i
d
To make it nonzero, it is sufficient to choogeo be constant _ 1 : o ? (130
over the stabilizerS,, in G of h. This is still possible, even drlCa(MI? =1 |h iz |

with our requirements thay be one dimensional and non-

trivial, becauseS,/Fi is a proper subgroup of the nilpotent WhereCg(h) is the conjugacy class df in G. The ampli-

groupé/ﬁ. Proper subgroups of nilpotent groups are alwaystuoles satisfy the properties

contained in proper normal subgroups because the normal- O<|Fn_i|?<|F_I? (131
izer of the proper subgroup is always a larger grdapd _

eventually the operation of replacing a subgroup with itsfor any nontrivialh e H. The first inequality comes from the
normalizer must yield a normal subgrgufThis concludes fact that we are summingth roots of unity and the number
the proof that, for any nontriviai < F, there exists a choice ©f summands is not d'V'i',me bp. The second inequality
of y andR such thatF_,|#0. comes from the fact thab,’ must be nonconstant over the

In fact, for any two nontrivial elements; \,e A, the conugacy class of. The equation
same representationis useful becausalZSAZ. However,
it is not clear that it is possible to picR such that both = 1_[ h’ (132
|Fy,—,#0 and|F, _.,|#0. This is illustrated by working h"eCa(h)
with the groupZgx ,(Z,X Zs), where certain choices of s true because the right-hand side commutes with aff of
consistent with the above discussion lead to zero amplitudegnd therefore must be the identity. Because the number of
for at least one nontrivial element &f, no matter whictRis  factors on the right is not divisible by, w; cannot be con-
used. On the other hand, the same example does have simgtant over the conjugacy class unless it is the identity. Fur-
taneous choices d® and y that satisfy all our requirements. thermore, since the conjugacy class generateand R is
It is unclear to the author whether it is possible, for anynontrivial, one of thav; must not be the identity. This proves
group G, to chooseR and y such that|F, .,|#0 for all  the second inequality of E4131).

nontrivial elements\ e A simultaneously. The standard procedure of entangling a state with an elec-
tric charge pair, which is then fused, can then be used. The
4. Alternative & state is now kept if the pair fuses into the vacuum, which

) always has a nonzero probability of occurring. The basis
What happens ifR and y cannot be chosen so that state that was entangled witR(1))g will have its amplitude
|F\_,|#0 over all nontrivial elementa e A? While none increased relative to the other basis states. Using braiding to
of the examples in this paper have this problem, if suchachieve a function of the forri(h)=ha', for some element

a case arises, we could try to shridk In particular, if aeA and different values of we can make the basis states

032306-23



CARLOS MOCHON

PHYSICAL REVIEW AB9, 032306 (2004

in X consisting of powers o have an arbitrarily large am- J€ction onto|0,....,Q becaus€0,...,0=|0). The probabi-

plitude relative to the other states. Evenr,_,| varies sig-
nificantly over the nontrivial elements &f, we can use the
old A projector and functions i to balance out the non-

trivial elements while increasing the amplitude of the state
with f(h)=1. After many repetitions, the basis states with
flux a'ba™' can be made to have an amplitude much large
then all the other states. This completes the construction df

the approximate probabilistic projection onto the n&wfor
the special cases when we require- Zy.

G. Putting it all together

At this point we have shown the existence of an extended

computational space, with elements labeledtby 77, on
which we can perform the generalized controlkdate, and

probabilistic projections ont{0, ...,0 and|0, ... ,0). Fur-
thermore, there exists a nontrivial subgrolE H, such that
we can implement probabilistic projections onfo and
|0,...,0"NA.

r

listic projection onto|0, ... ,0) behaves as a probabilistic
projection onto/0) because

(135

with the caveat that we must use the projection onto the

omputational basis to turn tH®, ... . 0) ancillas into|0)
ancillas. Finally, the probabilistic projection onto

|0,...,0"NA reduces to a probabilistic projection ony*

when acting on states in the computational subspace. These
are the gates that were proven universal for quantum com-
putation in Sec. IV.

(6, ... Do,

Case =2

Special treatment must be given to the case when
p=2—that is, when working with qubits. Though all the
gates constructed above are valid fior 2, the gate set is not
universal. The problem is that the probabilistic projection
onto |0)*=|1) does not provide any additional computa-
tional power beyond the probabilistic projection on@.

To define the real computational subspace, choose a non- Just as in Sec. IV B, the gate set can be made universal

trivial elementae A and define

liy=|a'ba™"), (133

given a supply of the magic states:

dun=5 3 Ineleli).

i)

for O<i<p. This subspace corresponds to the subgroup

{a'}CA of powers ofa.

A probabilistic projection onto the real computational

space, corresponding {@'}, can be achieved in two steps.
The first step is to apply the probabilistic projection onto

The second step is repeated for eachA that is not in{a'}.
For fixed\, we use an ancilla to conjugate hy !, then do

the probabilistic projection ont¢0,...,(}iﬂ7\, and then
conjugate by using another ancilla:

> alxbx H— X aAxbx I

XeA xe A
—C D aghxbx AT
XEX,xsﬁ)\
—C 2 ayxbx~ 1y, (134
Xe A, X#N\

1
[#m2)=5 2 whili)el)), (136

where the second state can be produced from the first one by
measuring the third qudit in th¥ basis.

The production of the magic stateby, ) is the step that
requires a projection constructed from the fusion of electric

charges. Given our choice aie A above, assume that

bab *eA. This must be the case it was defined as the
intersection of kernels of functions. Clearly, we can apply a
controlled conjugation by and therefore, additionally, the
controlled conjugation bpab™ ! and byabab *. Note that
a#bab ! becausé was chosen to not commute wigh

We begin with the0)®|0)®|0) state and append |@)
=|b) ancilla. We then conjugate it to obtain
1 1 1
> > 2

L & |i>®|j>®|k>®|fi,j,kbfi_,jl,k>, (137

1=0 ]

@l

where the probabilistic projection was assumed to succeed nere

the second step, and therefore the state is renormalized by
the constantC. The net effect of one such operation is to
project out the statt\b\ ~1). If all the projections succeed,
then we will have projected the original state into the com-with x to be determined in a moment. A probabilistic projec-
putational basis, completing the probabilistic projection ontation onto|0, ...,0" is then applied to the last ancilla, and the

fijk=a'"'(bab™ 1) ixk, (139

{a'}.
For the case of qudits witd=p>2 we are now done.
The generalized controlled-gate behaves as a controll¥d-

conjugations are undone.
If the projection succeeds, we will have projected out two
out of the initial eight basis states, depending on the value of

gate when restricted to act on the computational space. Ac{a,bab™!,abab !}. In all cases, the stat¢l)®|1)

probabilistic projection ont¢0) is just the probabilistic pro-

®|0) is removed, and for each of the three valuex,oéne
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of the other undesirable basis states is removed. Repeating 1)
the procedure once for each valuexgproduces the desired

magic statg ¢y,1). Note that the above procedure succeeds |B)
becausea®?=1 anda commutes witrbab™ 1.

What happens ibab™ ! is not inA ? This is the case when Xozb — |¢)
fusions of electric charges into the vacuum must be used. In
particular, instead of projecting out the undesirable basis
states, we increase the amplitude of the desired basis states
and obtain an ancilla that is exponentially close to the de-
sired magic state. The procedure is almost unchanged, excefeasure the computational qudit and the first ancilla qudit in

M
a,b

FIG. 1. Leakage correction circuit.

that the function involved is the basigla,b)=X3ZP®|®), obtaining outcomea,b. The
correction gatex®Z® is then applied to the second ancilla
fij=a (bab Hix ¥ (139  qudit, which now becomes part of the computational space.

All these operations can be performed using the anyon gates
and the functionf{; ,=a'(bab™*)! must also be used to discussed so far. . _
adjust the relative amplitude ¢f)®|1)®|1) with respect to If the original qudit was in the computational space, then
the other desired states. its state will be flawlessly transfered into the new qudit
In either case, we have now shown that case of qubits ca@Ur case, a fresh anyon paiHowever, if the original qudit
be dealt with in a similar fashion to the general qudit casehad leaked, then the new qudit will be guaranteed to be in the
and therefore, we have completed the construction of univelcomputational subspace, because it was obtained by applying

sal quantum computation for anyons based on solvable nof?auli operators to a qudit known to be in the computational
nilpotent groups. subspace. This is the desired leakage correction protocol.

In fact, this scheme can be applied to almost any system,
as long as we can guarantee that the measurement of the first
two qudits will not affect the third qudit in any way, as

Before concluding this paper, it is important to address thehould be the case if they are sufficiently separated.
issue of fault tolerance. A physical system with anyons will  The leakage correction scheme has caveat from a theoret-
have sources of errors due to the finite separation of anyori§al standpoint, though. We are effectively assuming that we
and nonzero temperatufsee Refs[1,3,4] for detailg. While ~ possess a classical leakage detection machine, through which
the probability of error is exponentially small in the distancethe data ‘a,b” is run. That is, if the measurement produced
and temperature, it is in general nonzero. These errors coulh outcome in the form of a voltage and then the g&tE"
be especially relevant if anyons are used as long-term quatvas constructed as a Hamiltonian controlled by this voltage,
tum memory, in which case error correcting codes must b&ve would need to guarantee that only tifeacceptable volt-
employed. age signals could reach the machine operating on the third

While most of the machinery of error correcting codesqudit. However, in practice, leakage correcting a classical
can be applied directly to anyons, it requires that states witlsignal is trivial, as classical information can be measured
errors remain within the computational subspébat is, the  without any negative side effects.
subspace on which universal quantum computation can be A very similar scheme can be produced given a quantum
done. For our model of computation, this is only a small system that is known to have exactlystates. The qudit is
subspace corresponding to anyons that are magnetic charg@gply swapped into the new system; the first system is then
with fluxes such asi'ba™' and arranged in pairs of trivial erased and restored into the computational space, and then
total flux. Note that only the magnetic charges need errothe qudit is swapped back. In this context, the teleportation
correction as they are the ones in which the quantum state Bcheme is in effect a way of swapping a qudit into a classical
stored. system.

All that is required to perform quantum error correction is ~ Though the leakage correction scheme was discussed in
to be able to replace qudits that have “leaked out” of thegeneral terms, it clearly applies to the anyons discussed in
computational subspace with arbitrary states that are in th#his paper, and its use allows quantum error correction and
computational subspace. This step can then be followed bfault tolerance to be employed. We have therefore shown that
the standard error correcting step, which will remove theeven in the presence of small sources of noise, the anyons
errors. The leakage correction step is equivalent to the swaggan still be used for universal quantum computation.
if-leaked gate described by Kempéal. [12].

In Ref.[1] a leakage correction scheme was presented for
nonsolvable anyons. While a similar scheme could be con-
structed for the solvable anyons discussed in the present pa- The main result of this paper is that anyons from finite
per, it will be easier to present a generic leakage correctiogroups that are solvable but not nilpotent are capable of uni-
scheme that can also be applied to anyons. versal quantum computation. This set includes many groups

The scheme is simply to teleport a computational qudit toof small size, which are more likely to be found in a physical
a fresh qudit. The standard steps, shown in Fig. 1, are first toystem. Combined with the results of R¢l], we have
create the entangled ancill&b)==,|i)®|i)/\/d and then proved that every finite group that is not nilpotent produces

VII. LEAKAGE CORRECTION

VIIl. CONCLUDING REMARKS
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anyons capable of universal quantum computation. hand, the universality of anyons from certain continuous
Furthermore, except for the groups where the methods ajroups has been discussed in R¢18,14.

Sec. VI F 4 must be used, the computations with anyons can Of course, the most important open question is whether

be made error free in the following sense: in the theoreticaive can find a laboratory system with anyons out of which a

limit of zero temperature and infinite separation betweerfuantum computer can be built. The requirement of a two-

anyons, an arbitrarily long calculation can proceed withougdimensional space severely limits the possibilities. However,

the need of error correction. The elementary unitaries arertain exotic systems such as the fractional levels of the

always perfect, whereas the measurements are either perfétyantum Hall effect may contain non-Abelian anyons. An-
or are known to have failefl.e., when none of the probabi- other option is the possibility of engineering a system with

listic projections succead This occurs with a probability the desired anyons. Recent proposals include using optical

that can be made exponentially small in the number of fu_latt|ces[15] olr_ QOSephson-Junctlon ?jrrﬁ{/%]_. Inlthe lattter
sions. Of course, a real system will have additional exponen(-:r?se’ an expl 'C'.t arrclag/ |s"constru§te ¢ art] simu éi@gaugeld b
tially small errors due to finite size and temperature effects.t eory on a att|qe. eally, one day such a system could be
The physical requirements for the constructions in thiSused to turn the ideas presented here into a working quantum
paper include a supply of electric charge ancillas, in additiorFOMPuter:
to the requirements of Reff1]. The necessity of the electric ACKNOWLEDGMENTS
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