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Anyon computers with smaller groups

Carlos Mochon*
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA

~Received 10 July 2003; published 11 March 2004!

Anyons obtained from a finite gauge theory have a computational power that depends on the symmetry
group. The relationship between group structure and computational power is discussed in this paper. In par-
ticular, it is shown that anyons based on finite groups that are solvable but not nilpotent are capable of universal
quantum computation. This extends previously published results to groups that are smaller and therefore more
practical. Additionally, a new universal gate set is built out of an operation called a probabilistic projection, and
a quasiuniversal leakage correction scheme is discussed.
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I. INTRODUCTION

The two main obstacles to building a practical quant
computer are the decoherence produced by the environm
and the need for unitary operators of sufficiently high pre
sion. Topological quantum computation provides a way
encoding quantum information in nonlocal observables t
are protected from the environment, thereby solving the fi
problem. In some instances, the second problem can als
addressed by using operations that only depend on topo
cal invariants.

Anyons present a concrete realization of the ideas of
pological quantum computation that may have practi
implementations. An anyon is a particle that has exotic qu
tum statistics and exists in a two-dimensional space. Any
carry certain topological charges which cannot be loca
measured or modified and can therefore be used to s
protected quantum information. The charges can be dete
though, using two elementary operations called braiding
fusion. In the first operation, the positions of two anyons
the plane are exchanged, causing their world lines to br
Because clockwise and counterclockwise rotations can
distinguished in two dimensions, braiding can produce
sults more complicated than the usual bosonic and fermio
cases. The second operation involves fusing two anyons
a single anyon that carries the combined charges of the o
nal particles. In both cases, the results only depend on
charges and topological class of the paths involved. Th
operations can be used as a basis of error-free gates
manipulate the stored information.

Many different models of anyons can be constructed
specifying different spectra of charges together with a se
braiding and fusion rules. A convenient and physically
spired set of models can be obtained from the electric
magnetic charges of a two-dimensional finite-group ga
theory. These models depend on a finite groupG, which acts
as the symmetry of the gauge theory. While every fin
group produces a consistent model, the computational po
of the resulting anyons depends on the structure of the gr

Previous work by the same author@1# has shown that
finite nonsolvable groups produce anyons capable of uni
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sal quantum computation. However, the smallest finite n
solvable group isA5, the even permutations of five object
which has 60 elements. Unfortunately, anyons with a la
symmetry group are less likely to be found in nature and
also harder to engineer. A more desirable symmetry gr
would beS3, with only 6 elements. The purpose of this pap
is to study the feasibility of quantum computation with the
smaller groups. In fact, it will be shown that the groups th
are solvable but not nilpotent, which includesS3 as the
smallest case, produce anyons capable of universal quan
computation. The caveat, though, is that the construction
this paper require both electric and magnetic charg
whereas magnetic charges alone were sufficient in the n
solvable case@1#. The use of electric charges complicates t
procedure significantly and will occupy the bulk of the di
cussion.

The ideas of this paper and its predecessor@1# are built on
the foundations laid out by Kitaev@2#, who introduced the
notion of a quantum computer based on anyons. The
concrete description for the groupA5 was done by Ogburn
and Preskill in Refs.@3,4#. An unpublished construction fo
the groupS3 was also worked out by Kitaev, and its use
electric charges served as a basis for much of the pre
work.

The organization of this paper is as follows: Section
contains a review of the basic properties of anyons and
scribes the notation used in this paper. The next two sect
prove the universality of anyons based on groups that
semidirect products of certain cyclic groups of prime ord
which includes the important case ofS3. Section III con-
structs an abstract set of gates out of the fundamental an
operations, whereas Sec. IV proves that this gate set is
versal. In Sec. V, the discussion is expanded to general fi
groups, and the relationship between group structure
computational power is established. This section will a
review the definitions of solvability and nilpotency. Th
main result of this paper, which is the feasibility of univers
quantum computation with anyons from groups that are so
able but non-nilpotent, is proved in Sec. VI. The discuss
in Sec. VI is motivated by Sec. III and includes many of t
same steps, but the details are significantly more com
cated. Finally, Sec. VII discusses a leakage correct
scheme that can be applied to anyons, as well as many o
quantum systems.
©2004 The American Physical Society06-1
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II. REVIEW AND NOTATION

In this section we present a brief review of the any
properties and operations that will be used throughout
paper. Notation for anyon pairs, qudit bases, and a spe
type of gate will be introduced.

The gauge theory model for anyons that is used in
paper was first presented in Ref.@5# and is summarized in the
review in Ref. @6#. Our notation will be closer to the on
used in the author’s previous work@1# though. In the interes
of space, we present only a very brief review of the ba
ideas and refer the reader to the above references for fu
details. The only new ideas introduced in this section bey
Ref. @1# are the notation for electric charge pairs and a g
called the probabilistic projection.

A. Anyon model and spectrum

To fully characterize a system with anyons, we mu
specify a set of braiding and fusion rules. A set of consist
rules can be obtained from the behavior of electric and m
netic charges in a finite-group gauge theory. Though m
other anyon models exist, including models with continuo
groups and models with a finite spectrum that cannot
obtained from a gauge theory, only the finite-group gau
theory model will be discussed in this paper.

For each finite groupG, there is a gauge theory wit
symmetry groupG that contains anyons. The anyonic spe
trum of the finite-group gauge theory consists of elec
charges, magnetic charges, and particles called dyons w
carry both electric and magnetic charge. The magn
charges, also known as fluxes, are labeled by elements o
group G. The electric charges are labeled by an irreduci
unitary representationR of G and have an internal state th
transforms as a vector underR. The dyons are labeled by a
element ofgPG and a representation of the stabilizer ofg.
The dyons, however, will not play an significant role in th
paper.

B. Magnetic charge pairs

We begin by discussing the braiding rules for the ma
netic charges, which will be the most important particles
this paper. The basic rule for magnetic charges is the follo
ing: when two fluxes are exchanged, the flux of one is c
jugated by the flux of the other. Though this is the ba
interaction that will be used between magnetic charges, it
the undesirable consequence that moving single flu
through the system can introduce unwanted correlatio
Therefore, it will be necessary to work with pairs of fluxes
trivial total flux.

For anygPG, we define the stateug& to denote a mag-
netic charge pair, where the first anyon has fluxg and the
second anyon has fluxg21. Because the effects of actions o
the compensating fluxg21 will mimic the effects on the flux
g we will generally not mention them explicitly. In fact, w
shall refer to the stateug& as ‘‘a state of fluxg,’’ by which we
describe the flux of the first anyon, rather than the total fl
of the anyon pair which shall always be trivial.

A general state ofn magnetic charge pairs has the form
03230
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uC&5 (
g1 , . . . ,gnPG

ag1 , . . . ,gn
ug1& ^ •••^ ugn&, ~1!

whereag1 , . . . ,gn
are the complex quantum amplitudes. D

to the existence of superselection sectors, which will be d
cussed below, thegi in the above sums are restricted to
single conjugacy class, which may be different for eachi.

Because we are dealing with pairs of trivial total flux, a
two states can be swapped simply by exchanging the ph
cal position of the anyons:

(
g1 ,g2PG

ag1 ,g2
ug1& ^ ug2&→ (

g1 ,g2PG
ag1 ,g2

ug2& ^ ug1&.

~2!

By repeatedly exchanging pairs of adjacent anyons, any
pairs of anyons can be exchanged. This operation will a
allow us to move pre-made ancillas into the computatio
space and to move anyons that have been fused out o
computational space.

The basic interaction between pairs is a pass-through
eration by which one pair passes in between a second
The result of the operation leaves the first pair invariant,
conjugates the second pair by either the flux of the first p

(
g1 ,g2PG

ag1 ,g2
ug1& ^ ug2&→ (

g1 ,g2PG
ag1 ,g2

ug1& ^ ug1g2g1
21&,

~3!

or its inverse,

(
g1 ,g2PG

ag1 ,g2
ug1& ^ ug2&→ (

g1 ,g2PG
ag1 ,g2

ug1& ^ ug1
21g2g1&,

~4!

depending on the direction of the pass-though. By using
swap operation, the pass-though can be performed on
two pairs of anyons.

Furthermore, the above operation can be generalized
conjugation by a function of the fluxes of a set of anyon
That is, consider a functionf :Gn→G that can be written as
a product of its inputs, their inverses, and fixed elements
G. For example,

f ~g1 ,g2!5c1g1
21c2g1c3g1c4g2c5 , ~5!

where the$ci% are fixed elements ofG and this case hasn
52. Then, if we assume the existence of ancillas of the fo
ug& for eachgPG, we can perform the unitary transforma
tion

ug1& ^ ug2& ^ ug3&→ug1& ^ ug2& ^ u f ~g1 ,g2!g3f ~g1 ,g2!21&,
~6!

where we have denoted its action on basis elements and
general transformation follows by linearity. The operation
implemented by conjugating in sequence by the entries of,
starting from right to left, where an ancilla of known flux
used for every fixed element off. In general, a conjugation
6-2
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by a function can be performed with any state as target
any number of inputs, as long as the function can be writ
in product form.

C. Electric charge pairs

In addition to pairs of magnetic charges, this paper w
often deal with pairs of electric charges, where the fi
charge transforms under the irreducible representationR and
the second charge transforms under the complex conju
representationR* . Of course, for some representationsR*
.R, which will not be a problem for what follows.

We introduce the bases$u i R&% and $u j R* &% on which the
representations act. The indicesi , j take values from 1 todR ,
the dimension of the representation. We assume that the b
vectors are compatible in the sense that

^ i R* uR* ~g!u j R* &5^ i RuR~g!u j R&* . ~7!

The combined state of the two charges is spanned by
vectors u i R& ^ u j R* & and can be described by specifying
d3d matrix M:

uM &R[
1

AdR
(
i , j

M i j u i R& ^ u j R* &, ~8!

where we have introduced a convenient normalization fac
We will be interested in the braiding and fusion propert

of these states. However, when two electric charges m
past each other, even when they are not in pairs, their cha
remain unchanged. It is only the magnetic fluxes that have
effect on the electric charges. In particular, when a magn
flux g goes around an electric charge, the flux remains
variant, but the charge transforms as if multiplied byg in the
representationR. Starting with a stateuM &R , if the flux
circles the first electric charge, then it becomes

U~g! ^ I uM &R5
1

AdR
(
i , j ,k

Rik~g!Mk ju i R& ^ u j R* &

5uR~g!M &R , ~9!

whereR(g)M is the matrix obtained by left multiplyingM
by the elementg in the representationR. Similarly, if we act
on the second charge, we obtain

I ^ U~g!uM &R5
1

AdR
(
i , j ,k

M ikRjk* ~g!u i R& ^ u j R* &

5
1

AdR
(
i , j ,k

M ikRk j
† ~g!u i R& ^ u j R* &

5uMR~g21!&R , ~10!

where we have used the fact thatR is unitary.
Note that, just as in the case of the magnetic charge

we have a functionf ($gi%) of some anyon fluxes, written ou
in product form, then we can apply this function to o
charges,
03230
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uM &R→U~ f ! ^ I uM &R5uR~ f !M &R , ~11!

by applying sequentially from right to left the elements
the product.

D. Superselection sectors, fusion, and vacuum pairs

Before describing the fusion rules for the magnetic a
electric charges, we need to address the issue of supers
tion sectors, which is familiar to particle physicists. A supe
selection sector is a subspace of a Hilbert space that is
variant under all the implementable transformations. A use
analogy is to consider the Hilbert space of a particle cal
the nucleon, spanned by the four states

u0↑&,u0↓&,u1↑&,u1↓&, ~12!

corresponding to a spin-1
2 particle with two possible charge

values. This is nothing more than the direct sum of the H
bert spaces of the proton and neutron:

Hnucleon5Hproton% Hneutron. ~13!

At the energies of atomic physics, it is not possible to m
sure in the proton plus neutron basis or to perform a unit
rotation along this direction. Therefore, we could say tha
nucleon automatically decoheres into either a proton o
neutron.

A similar situation occurs with the anyons. Each con
gacy class ofG is a magnetic charge superselection sec
The irreducible representations are the electric charge su
selection sectors. When given an unknown anyon—for
ample, an anyon created from the vacuum—we can ass
that it has decohered into a specific, though possibly
known, conjugacy class and/or irreducible representat
Furthermore, when storing quantum information, it will b
important to keep the computational space in a single su
selection sector to avoid decoherence.

Let uC& be a pair of anyons created from the vacuum. W
may assume that each anyon has decohered into a sp
superselection sector. Furthermore, because a vacuum
must consist of a particle with its antiparticle, the two sup
selection sectors are related. That is, the pair must h
vacuum quantum numbers and be able to fuse back into
vacuum. Therefore, if the first anyon is a magnetic cha
with flux in a given conjugacy class, the second anyon w
be a magnetic charge with flux in the inverse conjuga
class. If the first anyon is an electric charge of representa
R, then the second anyon will be a electric charge of
complex conjugate representation. Finally, if one anyon i
dyon, then so is the other.

In the case of magnetic charges, there is exactly one s
with vacuum quantum numbers in each conjugacy class.
state is

uVac~C!&5
1

AuCu
(
gPC

ug&, ~14!

where C is a conjugacy class ofG. Note that, given our
notation, the above state is an entangled state of two any
6-3
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In the case of electric charges, the vacuum state for re
sentationR is simply uR(I )&R , where R(I ) is the dR3dR
identity matrix.

The operation of fusion is in a sense the inverse
vacuum pair creation. Fusing two anyons produces a sin
anyon that must carry the total magnetic and electric cha
of the pair. In the special case when both total charges
trivial ~i.e., one of the above vacuum states! the state can
fuse into the vacuum, leaving no particle behind and tra
ferring its energy to some other medium such as photons
theory, this case can easily be detected in the laboratory
is the primary way of obtaining measurement results.

In the case of magnetic charges, the net resulting flu
just the product of the two fluxes, where the ordering of
product depends on some conventions which will not be
portant here. While one of our standard anyon pairs alw
has trivial total flux, we sometimes may fuse anyons fro
different pairs to determine if their flux is equal. Even if th
total flux is trivial, though, the pair may not fuse into th
vacuum but may produce an electric charge. This will be
case if the state transforms nontrivially under simultane
conjugation of both anyons.

The fusion of two electric charges can only produce
other electric charge~or the vacuum, which is the charg
carrying the trivial representation!. To calculate the possible
products of fusion, note that fusion implies that a flux can
longer be braided around only one of the two elect
charges. Mathematically, it is a restriction to the diago
transformations

uM &R→U~g! ^ U~g!uM &R5uR~g!MR~g21!&R . ~15!

However, the above action of the group is not irreducible
this space. The vector space spanned by all possible s
uM &R decomposes into invariant subspaces. The invar
subspaces correspond to electric charges transforming u
irreducible representations. The probability of obtaining ea
irreducible representation corresponds to the magnitud
the state vector projected down to the appropriate invar
subspace. Furthermore, after fusion, it is no longer poss
to measure the relative phase between the different repre
tations and therefore decoherence occurs in the repres
tion basis.

The net result of fusion is a mixed state of different re
resentations. Which representations occur is determined
the decomposition ofR(g) ^ R* (g) into irreducible repre-
sentations. The probability of obtaining each of these rep
sentations is determined by the projection ofM to the differ-
ent invariant subspaces.

In particular, the trace ofM is the unique invariant unde
conjugation byG ~which is the content of Schur’s lemma!.
Therefore the probability of fusion into the vacuum is

Pvac5u^R~1!uM &Ru25U Tr~M !

dR
U2

. ~16!

E. Requirements for the physical system

To complete our review of the properties of anyons,
will list the operations, ancillas, and measurements that
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assume are available on any realistic system and which
will use to build our quantum gate set:

~1! We can braid or exchange any two particles.
~2! We can fuse a pair of anyons and detect whether th

is a particle left behind or whether they had vacuum quant
numbers.

~3! We can produce a pair of anyons in a state tha
chosen at random from the two-particle subspace that
vacuum quantum numbers.

~4! We have a supply of ancillas of the formug& for any
gPG.

~5! We have a supply of ancillas of the formuR(I )&R for
any irreducible unitary representationR.

The last two requirements are the only questionable on
as it is not obvious how to produce this reservoir of ca
brated electric and magnetic charges. In fact, since man
these ancillas will be destroyed during fusion, the reserv
will have to have a large number of ancillas of each type

One of the main difference between the constructions
this paper and the one used in producing computations w
nonsolvable groups@1# is that the latter case required n
electric charge ancillas, which may be harder to produ
Additionally, Ref.@1# presented a protocol for producing th
magnetic ancillas for a simple non-Abelian group. The p
duction of calibrated flux and charge ancillas for the grou
discussed in the present paper, though similar, will not
addressed here.

A final note is that the requirement of calibrated magne
charge ancillas will have to be slightly modified in Sec. VI
in order to work with certain large groups.

F. Notation for qudits

Throughout this paper it will be useful to perform com
putations with qudits rather than the usual qubits. We de
our computational basis as the statesu i & for 0< i ,d, where
we will assume thatd is prime. The unitaryZ andX gates can
be defined as follows:

Zu i &5v i u i &, ~17!

Xu i &5u i 11&, ~18!

wherev is a fixed nontrivialdth root of unity and sums are
understood to be modulod. As usual, the eigenstates ofZ
correspond to the computational basis. We can also introd
the eigenstates ofX,

u ĩ &5
1

Ad
(
j 50

d21

v2 i j u j &, ~19!

which have the following transformations under the action
our unitary gates:

Zu ĩ &5u i 21̃&, ~20!

Xu ĩ &5v i u ĩ &. ~21!

Note that when appropriate, we shall assume all operat
are modulod without further comment.
6-4
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G. Probabilistic projection onto K
To conclude with the introduction of notation, we define

new type of gate called a probabilistic projection onto a s
space. The operation is essentially a projective measurem
that distinguishes between a subspaceK and its orthogonal
complement. However, the operation has a one-sided p
ability of error, corresponding to a failure to notice the pr
jection intoK.

For example, consider an operation that emits a photo
and only if the state is projected into the subspaceK. The
photon is then received at a photodetector that has a p
ability 0,p<1 of absorbing the photon. A photon will neve
be detected if the state was projected into the complemen
K, but even if the measurement projected intoK, the photo-
detector may remain silent.

To formalize the idea of a probabilistic projection, letK
be a subspace of a Hilbert spaceH and letPK be the pro-
jection ontoK. We define a probabilistic projection ontoK
as a two-outcome POVM with operators

F05pPPPK , F1512pPPPK , ~22!

where 0,pPP<1. We say that we can do a probabilist
projection ontoK if we can do the above operation for an
fixed pPP .

Furthermore, we demand that if outcome 0 is obtain
when applying the operation to a stateuC&, we obtain the
state

uC0&5
PKuC&

A^CuPKuC&
. ~23!

On the other hand, if we get the result 1, we will consider
state damaged, and trace it out of our computational sys

As an example consider

uC&5
1

A2
~ u0& ^ u1&1u1& ^ u0&) ~24!

and letK5$u0&%. Applying a probabilistic projection to the
first qubit, we obtain with probabilitypPP/2 the state

uC0&5u0& ^ u1&, ~25!

and with probability 12pPP/2 we obtain the mixed state

r15
1

22pPP
@~12pPP!u1&^1u1u0&^0u#, ~26!

where we have already traced out the first qubit. Notice t
if the probabilistic projection ontou0& is applied to both
qubits simultaneously, it is possible to obtain the resul
twice, but it is not possible to obtain the result 0 twice.

III. BASE CASE: GÄZPÃu ZQ

Before tackling the general case of groups that are s
able but not nilpotent, we will describe the procedure
producing quantum computation using a special type
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group based on the semidirect product. The construction
these groups is very similar to the general case, but can
described in more concrete terms. In particular, these gro
are very useful in eliminating operations whose usefulnes
unclear in the general case, but that have no computati
power when reduced to this special case.

A. Algebraic structure

We will be interested in the groupsG5Zp3u Zq , the se-
midirect product of the cyclic groups of orderp and q. We
assume thatpÞq are both prime and that the functionu is
nontrivial, which guarantees thatG is not nilpotent.

The group can be described using two generatorsa andb
which satisfy the relations

ap51, bq51, bab215at, ~27!

where specifying an integert between 0 andp is equivalent
to specifying the functionu:Zq→Aut(Zp) used for the semi-
direct product. We will require thattÞ1 which is equivalent
to u being nontrivial. Furthermore, consistency requires t

a5bqab2q5atq ⇒ tq51 modp, ~28!

which can always be solved for somet as long asq divides
p21. We henceforth assume thatp, q, andt have been cho-
sen in a self-consistent fashion.

The best example of one of these groups and, in fact,
smallest non-Abelian group isS3. This group can be ex-
pressed asZ33u Z2, with t52. We can choosea to be any
order three element such as~123!, and we can chooseb to be
any order two element such as~12!.

The first example of such a group with odd order isZ7
3u Z3 with t52 or t54, both of which are equivalent. On
of the most important features of this example is that not
the nontrivial powers ofa are conjugate to one another. Th
elementsa, a2, and a4 form one conjugacy class, wherea
the elementsa3, a5, anda6 form another.

Both of the above examples will be revisited when w
discuss group representations and fusion of electric char

B. Computational basis

We choose a qudit computational basis

u i &5uaiba2 i& ~29!

for 0< i ,p. Note that all these states are unique beca
aiba2 i5ai (12t)b and a12t is a nontrivial generator of the
groupZp . We are therefore using a complete conjugacy cl
for the computational subspace.

While the above choice of computational subspace m
seem arbitrary, most other choices are either equivalen
less powerful. The conjugacy classesaibja2 i , for different
nontrivial values ofj, are all equivalent. Dyons with thes
fluxes are also equivalent since they are just the combina
of the above states with electric charges that cannot be
tected by braiding. Finally, the powers ofa and pure electric
6-5
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charges are suboptimal as they are difficult to entangle~for
more on this see the discussion on using nilpotent group
Sec. V!.

Initializing a quantum computer in this basis is easy,
we have assumed the existence of flux ancillas in the s
u0&, which can be used as computational anyons. We th
fore turn to the task of implementing gates on this space

C. Operations involving braiding fluxes

We begin by characterizing the operations that can
achieved by braiding fluxes. Fix a target qudit which we w
be conjugating, and assume that it is in the computatio
subspace. We can conjugate this qudit by the fluxes of a
trary ancillas in the group. It can also be conjugated by
fluxes of other qudits, which we will also assume to hav
definite flux in the computational subspace~as the effect of a
superposition of fluxes can be inferred by linearity!.

Let us begin with the case when only one qudit~in addi-
tion to the target! is involved. If the source qudit is in a stat
ug&, then the target will get conjugated by an expression

f ~g!5c1gc2gc3•••cn ~30!

for somen, where the$cj% are fixed elements ofG corre-
sponding to the ancillas used. Of course, these elements
resent the product of any ancillas that were used in series
can equal the identity if no ancillas were used.

Because of the structure of the group, all the fixed e
ments can be expanded asci5aj ibki for some integersj i ,
ki . Furthermore, since the source flux is in the computatio
basis, it can be written out asg5axba2x5ax(12t)b for some
x. Inserting these expressions, we get

f ~g!5aj 1bk1ax(12t)baj 2bk2
•••aj nbkn. ~31!

Using the group relationbai5aitb, we can move all theb’s
to the right and combine factors to get

f ~g!5aaabxbd ~32!

for some integersa, b, andd. The effect of each of thes
factors can be considered separately. Conjugating byaa is
just the application of the gateXa. Conjugating byabx is just
a controlled-X gate from the source to the target, repeatedb
times. Finally, conjugating byb mapsu i & to u i t &. This opera-
tion can be generated using a controlled-X gate and an an
cilla u0&:

where 21/t is computed modulop. Following the above
circuit, we can either replace the original qudit with the a
cilla or use a swap, which can also be built out of controlle
X gates.
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So far we have shown that theX and controlled-X gates
generate the set of operations achieved by conjugati
However, we have yet to show that these operations ar
fact included in the set of achievable operations. TheX gate
is rather trivial as it is a conjugation by an ancilla of fluxa.
The controlled-X gate is a conjugation by the function

f ~g!5~gb21!1/(12t) modp5~ax(12t)bb21!1/(12t) modp5ax,
~33!

where 1/(12t) can be computed modulop because we as
sumed 1,t,p.

The case involving many source qudits, all of which c
be used to conjugate the target, is very similar to the abo
The expression can be simplified by moving all theb’s to the
left and combining similar factors. In the end, the net effe
will again be a series ofX and controlled-X gates.

Finally, one may wonder about using an ancilla as
intermediate step. That is, first we take an ancilla~say,g8),
conjugate it by some function~say, f ) of some qudits, and
then conjugate the target by the ancilla. However, the sa
effect can be achieved by conjugating the target first byf 21,
then byg8, and finally by f. This procedure therefore pro
vides no extra computational power.

The conclusion is that the operations achievable fr
braiding magnetic charges are exactly those generated b
X and controlled-X gates. In fact, theX gate is redundant a
we have assumed the existence ofu1& ancillas, which can be
used as control qudits in a controlled-X gate.

D. Operations involving fusion of fluxes

Now we turn to the operations achieved by the fusion
magnetic fluxes. For these operations it will be sufficient
determine whether the two particles fused into the vacuum
not, thereby obtaining at most one bit of information fro
each fusion.

At this point we remind the reader that standard sta
consist of pairs of anyons, whose total flux is trivial. That
the stateug& describes an anyon of fluxg paired with an
anyon of fluxg21. There are therefore two basic choices f
fusion: we can fuse the two anyons that compose a sin
pair with each other or we can fuse one of them with
anyon from another pair, typically an ancilla. To avoid co
fusion, in the latter case we will always use the anyon of fl
g ~rather thang21) for the fusion.

The case of fusion with an ancilla will lead to a measu
ment in theZ basis. The fusion of anyons from the same p
will lead to a measurement in theX basis. However, we will
delay the construction of the actual measurement gates
the next section. For this section, we will simply describe
fusions as abstract operations on the computational spac
employing the construction of probabilistic projections.

The fusion of an anyon from a stateuC& with an anyon
ancilla of fluxb21 is a probabilistic projection onto the sub
spaceK5$u0&%. That is, an anyon of fluxaiba2 i can only
fuse into the vacuum with a fluxb21 if i 50 ~modulo p as
usual!. Wheni .0 there must be an anyon left over to car
the nontrivial total flux. Wheni 50 the fusion can either
produce the vacuum state or an anyon with nontrivial cha
6-6
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The probability for fusion into the vacuum in this case
1/p. Furthermore, if we fuse into the vacuum we can repla
the state with au0& ancilla. Therefore the whole operation
a probabilistic projection ontou0& with pPP51/p.

The fusion of two anyons from the same pair is a pro

bilistic projection onto the subspaceK5$u0̃&%. Because the
total magnetic flux of the pair is always trivial, the fusio
product must be an electric charge. The charge corresp
to a representation ofG given by the action of conjugation

on the anyon fluxes. The stateu0̃& transforms trivially and

corresponds to the vacuum, whereas the statesu ĩ &, for i
.0, are orthogonal to the vacuum and correspond to n
trivial representations. In fact, this procedure is a probab
tic projection withpPP51. However, since the state is d
stroyed during fusion, to complete the projection we must
able to produceu0̃& states. This will be discussed below.

The other choices for fusion are equivalent to a combi
tion of one of the above measurements and anX or
controlled-X gate. Fusing with a flux of the formaib21a2 i is
equivalent to first applying aX2 i gate and then performing
fusion with b21. A fusion with any other flux can neve
produce the vacuum if the qudit is in the computational s
space. Finally, one can consider fusion of anyons from
different qudits. If the state of the two qudits isu i & ^ u j &, the
fusion will only produce the vacuum state ifi 5 j . Therefore,
the operation can be simulated by a controlled-X21 gate,
followed by the fusion of the target with ab21 flux.

The conclusion so far is that fusion of magnetic charg
provides us with two new operations: the probabilistic p
jections onto the subspacesu0& and u0̃&, which will eventu-
ally become measurements in theZ and X bases. The only
operation that has not been considered is using the prod
of fusion for further operations or fusions. This subject w
be briefly touched upon after discussing fusion of elec
charges.

Production of z0̃‹ states

To conclude the discussion on fusion of fluxes, we pres
the construction ofu0̃& states, which were needed to com
plete the probabilistic projection ontou0̃&.

Just as the stateu0̃& naturally fuses into the vacuum, it i
also naturally produced from the vacuum. Unfortunate
producing a pair of anyons from the vacuum is just as lik
to produce the vacuum state for one of the other superse
tion sectors as it is to produce the stateu0̃&. Therefore, after
producing a vacuum state we must measure its supers
tion sector. Vacuum pairs that are produced in the comp
tion subspace~magnetic charge in the conjugacy class ofb)
will be kept asu0̃& states and the rest will be tossed out.

Since measurements are done by fusion, which is a
structive procedure, we must copy the vacuum state be
measuring the conjugacy class. The procedure starts w
pair created from the vacuum and au0& ancilla,

uVac& ^ u0&, ~34!
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and applies to it a swap, made out of the conjugation-ba
controlledX:

where the circuit depicts the result for the case when
vacuum pair was created in the computational superselec

sector, in which caseuVac&5u0̃&.
In the case when the vacuum state was not created in

computational superselection sector, then the effect of
conjugations will be different. However, since the conjug
tions are performed using braiding, which never changes
superselection sector, the vacuum state can only be tr
formed into a state that is orthogonal tou0&5ub&.

After applying the above controlled-X gates, we attemp
to fuse an anyon from what was the vacuum state with
ancilla of fluxb21. If they fuse into the vacuum, this implie
that the vacuum state was created in the computational
perselection sector and the above circuit worked correc
The ancillasu0& will have been transformed properly into

u0̃& ancilla, which can be used for computation. In the ca
when the fusion does not produce a vacuum state, the s
probably did not produced the desired state, so we disca
and start over.

To summarize, we now have a source ofu0̃& ancillas,
which can be used as the last step needed to complete
probabilistic projection ontou0̃&.

E. Representations and fusion of electric charges

Thus far, we have only considered operations involvi
magnetic fluxes. These operations led to a controlled-X gate
and measurements in theX and Z bases. However, thes
gates do not form a universal gate set. We must there
consider operations involving electric charges as well.

The electric charges transform as irreducible represe
tion of the groupG. To obtain the spectrum of electri
charges, as well as their braiding and fusion rules, we m
therefore discuss the representation theory ofG.

It is easy to see that the commutator subgroupG8 of
groups of the formG5Zp3u Zq is just G85Zp . The repre-
sentation theory ofG can be obtained by inducing represe
tations fromG8. Starting from the trivial representation o
G8, the induced representations are the one dimensional
resentations wherea→1 andb is a qth root of unity.

The rest of the irreducible representations have dimens
q and are obtained by inducing from the nontrivial repres
tations ofZp . The induced representations are all irreducib
though not necessarily distinct. In fact, they can be ea
described in their natural basis as
6-7
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a→S v

v t

�

v tq21
D , b→S 0 1

0

� 1

1 0

D ,

wherev is the pth root of unity of the representation from
which we are inducing. The matrix fora is diagonal, whereas
b is the permutation matrix with entries 1 above the diagon

Even though the representation theory for these partic
groups is easy, we will use abstract language to describe
fusion rules, which will make the connection to the gene
case clearer.

Take any non-Abelian irreducible representation, and c
sider a pair of electric charges in the stateuR(ai)&R . What
representations do we get if we fuse the two charges?
product of fusion is invariant under the action ofa,

U~a! ^ U~a!uR~ai !&R5uR~a!R~ai !R~a21!&R5uR~ai !&R ,
~35!

and therefore represents the commutator subgroupG8 by the
identity. This implies that the representation is Abelian.
particular, it is easy to see that the one-dimensional s
spaces

u@g j #&R[udiag~g j ,g2 j , . . . ,gq j!&R , ~36!

with gq51, are the spaces corresponding to the represe
tions a→1, b→g j .

We will be interested in the quantum amplitude that
state uR(ai)&R fuses into theb→g j representation. This
quantity will be denoted by the fusion amplitude

Fi→ j[^@g j #uR~ai !&R5
1

q (
k51

q

g2k jv i t (k21)
, ~37!

with 0< i ,p and 0< j ,q.
Let uC& be an arbitrary state entangled with an elect

charge pair:

uC&5 (
i 50

p21

uC i& ^ uR~ai !&R , ~38!

where theuC i& denotes~unnormalized! states of the rest o
the system. The fusion amplitudes allowuC& to be rewritten
as

uC&5 (
i 50

p21

(
j 50

q21

Fi→ j uC i& ^ u@g j #&R . ~39!

The basisu@g j #&R labels the total charge of the two anyo
that comprise the electric charge pair. A fusion of the t
electric charges, followed by a measurement of the resul
fusion product, will be a measurement in this basis.

Note that the basisu@g j #&R only spans the diagonal sub
space ofuM &R . However, this is the subspace containing
the statesuR(ai)&R . The subspaces spanned byuR(bjai)&R ,
for some fixedj .0, are mapped unchanged into the space
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a single higher-dimensional irreducible representation
are therefore not useful for the purposes of this paper.

While the representationR does not appear explicitly in
the fusion coefficients, it enters implicitly in the above e
pression as the choice forpth root of unity v. Though we
could use the notationvR , this will not be necessary as w
will generally work with only one higher-dimensional irre
ducible representation.

The most important feature of theFi→ j coefficients is that
uR(a0)&R is the vacuum state and therefore

F0→ j5d j ,0 , ~40!

which can be verified by direct calculation. Another impo
tant property is that

uFi→ j u.0 ~41!

for all i .0. The proof involves showing that a linear relatio
of roots of unity only vanishes if it is a combination of th
obvious regular polygon relations~which is proved in@7#!.

A final interesting property is that

Fit k→ j5g2 jkFi→ j , ~42!

which is a consequence of

uR~ait k
!&R5uR~bkaib2k!&R5U~bk! ^ U~bk!uR~ai !&R .

~43!

F. Examples

1. S3

The groupS3 has three irreducible representations, t
trivial ~identity! representation~where a→1, b→1), the
sign of the permutation~wherea→1, b→21), and a two-
dimensional one:

a→S v 0

0 v̄
D , b→S 0 1

1 0D , ~44!

wherev is a nontrivial cube root of unity. The fusion ampl
tudes are

F0→051, F1→052
1

2
, F2→052

1

2
,

F0→150, F1→152 i
A3

2
, F2→15 i

A3

2
. ~45!

The best way to visualize these coefficients is to start wit
stateu0̃& and a pair of electric charges in the vacuum state
the two-dimensional representation:uR(I )&R . Then entangle
with a controlled sum to get

1

A3
(

j
u j &uR~aj !&R5

1

A3
(

j
u j &US v j 0

0 v̄ j D L
R

. ~46!
6-8
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Fusion of the electric charge pair produces either the vacu
~trivial representation! or a charge transforming under th
sign representation. The probability of getting each is

Pvac5(
j
U 1

A3
F j→0U2

5
1

2
,

Psgn5(
j
U 1

A3
F j→1U2

5
1

2
, ~47!

and the state of the magnetic charges afterwards is one

uCvac&5
1

A6
~2u0&2u1&2u2&),

uCsgn&5
1

A2
~ u1&2u2&). ~48!

These are obtained by multiplying the initial state by t
appropriateF coefficients and renormalizing to unit magn
tude. In the case of the second state we also introduce
extra global phase ofi, which is related to the arbitrary
choice of phase of theu@g j #&R states.

2. Z7Ãu Z3

The groupZ73u Z3 has five irreducible representation
Three of them are one dimensional and seta→1 andb to a
cube root of unity. The other two are three dimensional a
are complex conjugates of each other.

The main new feature of this group is that the nontriv
powers ofa are not all conjugate to one another. This lea
to more complicated fusion coefficients. For example,

F0→150,

F1→15
1

3
A, F2→15

g2

3
A, F3→15

g

3
B,

F4→15
g

3
A, F5→15

g2

3
B, F6→15

1

3
B, ~49!

with

A5g2v1gv21v45e2p i (17/21)1e2p i (13/21)1e2p i (12/21),

B5g2v211gv221v245e2p i (11/21)1e2p i (1/21)1e2p i (9/21),
~50!

where we have choseng5e2p i /3 andv5e2p i /7. Notice how
A is close in magnitude to 3 whereasB is close in magnitude
to 1.

G. Operations involving electric charges

Now it is time to apply the discussion in the previo
subsections to build a useful operation out of elec
charges. While there seems to be a wealth of strange anc
that could be produced using electric charges, most of th
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have complicated relative amplitudes or phases that are
to use in a constructive proof of universal computation. W
will therefore focus our attention on producing an operat
that arises naturally from the fusion amplitudes: the proj
tion onto the subspace orthogonal tou0&.

Consider a qudit in the state

uC&5 (
i 50

p21

c i u i &, ~51!

where the coefficients$c i% could either be complex number
or could represent the state of the rest of the system if
qudit is entangled with other qudits.

We append to the qudit an electric charge pairuR(I )&R in
the vacuum state of a non-Abelian representationR. Using
braiding, we can right multiply the state of the electr
charge by some functionf of the qudits flux:

uC& ^ uR~ I !&R→ (
i 50

p21

c i u i & ^ uR„f ~ i !…&R . ~52!

We have shown in Sec. III C that the most general function
of the form f ( i )5aaab ibd. ChoosingdÞ0 turns out not to
be useful, and choosingaÞ0 can be used to get projection
to the spaces orthogonal tou i & for i .0, but this can be
achieved as well with anX gate. We will therefore focus on
f ( i )5ab i so that we obtain the state

(
i 50

p21

c i u i & ^ uR~ab i !&R5 (
i 50

p21

(
j 50

q21

Fb i→ jc i u i & ^ u@g j #&R .

~53!

A fusion of the electric charge pair, followed by a me
surement of the resulting electric charge~the feasibility of
which will be the subject of Sec. III H below!, leads to a
state that is proportional to

(
i 50

p21

Fb i→ jc i u i &, ~54!

wherej now labels the result of the measurement in the ba
u@g j #&R .

Because of the propertyF0→ j5d j ,0 , if the measuremen
result isj Þ0, we will have projected into the space orthog
nal to u0&. Unfortunately, we will have also introduced un
desired relative phases and amplitudes. The trick will be
balance these out.

Consider repeating the above procedurep21 times, with
b taking values from 1 top21. Furthermore, assume that
each case the fusion results inj 51. The resulting state will
be, up to normalization,

} (
i 51

p21 S )
b51

p21

Fb i→1Dc i u i &} (
i 51

p21

c i u i &, ~55!

where we have used the fact that multiplication byi, modulo
p, is just a rearrangement of the values ofb.
6-9
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The above procedure is a probabilistic projection ontoK
5u0&'. As usual, if we do not obtainj 51 as the result of
each measurement, we just discard the state being proje

What is the probability of success of the above pro
dure? The probability for obtainingj 51 on the first try is

Pj 515 (
i 51

p21

uFi→1c i u2>min
i .0

~ uFi→1u2! (
i 51

p21

uc i u2. ~56!

On subsequent measurements, the state has previously
projected tou0&' and renormalized. Therefore the probabili
of success for each trial is simply bounded by

Pj 51>min
i .0

~ uFi→1u2!. ~57!

The total probability of success is just the product of the
quantities. In particular, the probabilitypPP associated with
the probabilistic projection can be bounded by

pPP>min
i .0

~ uFi→1u2!p21.0, ~58!

where we used the fact thatuFi→ j u.0 for i .0.
Of course, the above is a underestimation of the proba

ity of obtaining a good projection. For example, if all th
resultsj were equal to some fixedj .1, the same argumen
would show that a correct projection was obtained. Furth
more, there are many other ways in which the relative pha
and amplitudes can cancel out. A classical computer, w
knowledge of the values ofFi→ j , can keep repeating th
procedure until such a cancellation occurs. The comp
would also be required to stop after a long sequence oj
50 results, in which case the state would have been p
jected ontou0&.

In the end, as long aspPP is fixed and finite, we have
produced the desired probabilistic projection to the sp
u0&'. Different values ofpPP will just affect the complexity
of an algorithm as a multiplicative constant. Furthermore,
the small groups that are likely to appear in the laborato
pPP should be reasonably large. For example, in the cas
G5S3 , pPP can be made exponentially close to 1 in t
number of measurements.

It should be noted that because we are working with
dits of dimensiond5p and the semidirect product require
p.q>2, the above projection will always be a nontrivi
operation. In fact, it will always be powerful enough to com
plete a universal gate set.

At this point, all that remains to be done is to prove t
universality of the gates constructed from the basic an
operations. This will be the subject of Sec. IV. Howev
before closing this section, we shall discuss some issue
garding the measurability of electric charges and look
some alternative operations that could have been emplo

H. On the measurement of one-dimensional representations

The feasibility and accuracy of the probabilistic proje
tion onto u0&' depend crucially on being able to identif
electric charges carrying one-dimensional representati
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However, these charges have a special property that m
them hard to identify: when only using braiding, a on
dimensional representation is indistinguishable from
vacuum.

The reason behind the above difficulty is that on
dimensional representations of a groupG are constant on
conjugacy classes ofG. Therefore, a magnetic charge that
braided around one of these electric charges will have
state change by an overall phase. These global phases a
measurable in quantum mechanics.

Of course, an interference experiment would produc
measurement of the charge. The standard double-slit exp
ment, with the electric charge located in between the s
will produce a pattern on the screen that depends on
representation of the electric charge. However, during
experiment, the anyon will be in a superposition of spa
positions which is no longer protected from decoherence
topology. Since the interference experiment can be repe
many times without affecting the electric charge, this m
not necessarily be a problem. However, it does involve wo
ing in a regime where the anyons can be treated as wa
rather than particles.

On the bright side, these electric charges can also be
tected by fusion, assuming the availability of electric cha
ancillas with one-dimensional representations. Their fus
rules are particularly simple because these states have a
dimensional internal Hilbert space. Furthermore, their
sions always produce unique results. Ifg(g) andg8(g) are
two one-dimensional representations of a groupG, then the
fusion of the electric charges carrying these representat
produces a charge of representationg9(g)5g(g)g8(g). A
charge will only fuse into the vacuum when fused with
conjugate representation. Therefore, after a series of fus
that end up producing the vacuum state, we can determ
the representation of the original electric charge.

In fact, for groups withq52 such asS3, there is a further
simplification. In these groups there are only two on
dimensional representations: the vacuum and sign repre
tations. Since the fusion ofuR(ai)&R produces a one-
dimensional charge, if it does not fuse into the vacuum, th
it must have produced the sign charge. Therefore, for th
groups, we do not even require one-dimensional elec
charge ancillas.

I. Other possibilities

In this section, we will briefly discuss one last possibili
for producing useful operations: using the products of fusi
Though not strictly needed to complete a universal gate
this subsection is an interesting study of alternative ope
tions and the effects of decoherence during fusion.

At first sight, it appears that the projection ontou0&' can
be done without using electric charges with the followi
procedure: first fuse one anyon from the state to be meas
with a b21 flux. Only theu0& state can fuse into the vacuum
If an anyon remains, fuse again with ab flux to restore it to
its previous state and pair it with its old partner. Repeat
the procedure multiple times~because theu0& could turn into
6-10
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an electric charge rather than the vacuum! yields the desired
projection.

There are, however, two problems with the above c
struction. The first, and smaller, problem is that when fus
with b21 or with b we could be turning our magnetic charg
into dyons. For groups of the formZp3u Zq the dyonic elec-
tric charges are all one dimensional, however, and will the
fore have no effect on braiding, as discussed in the prev
section. The probabilities of fusion into the vacuum will b
reduced and, therefore, so will the respective project
probabilities, but they will still remain nonzero. In fact,
careful examination of the operations constructed so
shows that they work with a probabilistic mixture of dyo
and regular magnetic charges.

The second and larger problem, though, is decohere
The fluxesaiba2 ib215ai (12t) belong, in general, to differ-
ent conjugacy classes and therefore different supersele
sectors. When the quantum state is encoded in this form,
susceptible to decohere into the different superselection
tors.

When does this decoherence occur? It occurs during
sion. In general, fusion takes twon-dimensional Hilbert
spacesH and maps them to one:H13H2→H3. But quan-
tum mechanics is unitary; therefore, what must really be h
pening is a mapping to a tensor product ofH and the envi-
ronment: H13H2→H33E. When two states are mappe
onto new states that are orthogonal in the environment s
space, decoherence occurs.

How do we know if states will have orthogonal enviro
ment components after fusion? If two states belong to
same superselection sectors, they are related by symm
which protects them from decoherence. This may not be
case when they come from different superselection sec
though.

For example, consider the statesuai& ^ uajb& for i and j
between 0 andp21, where the kets will denote singl
anyons in this paragraph and the next. States of differentj are
all in the same conjugacy class, but states of differenti are
grouped into conjugacy classes ofq elements~except fori
50, which is its own conjugacy class!. In total, we are talk-
ing aboutp2 states.

These states fuse into the states with fluxakb for 0<k
,p. The resulting states may also have one ofq electric
charges. In total, we fuse into a space containingpq states.
Sincepq,p2, what must be happening is that different co
jugacy classes are mapped to states that are orthogonal i
environment subspace.

Note that the decoherence seems to occur when fusing
of a state made up of different superselection sectors. H
ever, fusion is the only operation that could have measu
the relative phase between the sectors, and it clearly d
not. Therefore, it is acceptable to assume that the deco
ence occurs as soon as states are mapped into differen
perselection sectors.

Returning to the question of alternative implementatio
of the projection ontou0&', it is clear that the procedur
described above does not achieve its goals without cau
decoherence in the general case. However, in the special
whenq5p21, the nontrivial powers ofa form one conju-
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gacy class. Therefore, the above trick can produce a pro
tion onto u0&' using only magnetic charges. Of course,q
5p21 only holds forG5S3.

For other groups, the operation could become useful if
could tell into which superselection sector the state de
hered, producing a probabilistic projection onto a sma
space. The smaller projections may also be computation
powerful. However, since we have completed a univer
gate set without the results of this subsection, we shall w
on proving universality from the previously constructe
gates, rather than pursuing this matter further.

IV. GATE-SET UNIVERSALITY

The goal of this section is to prove the universality of t
following qudit gate set, which includes measurements~i!
controlled-X gate,~ii ! probabilistic projection ontou0&, ~iii !
probabilistic projection ontou0̃&, and ~iv! probabilistic pro-
jection ontou0&', where we assume that the qudits are
dimensiond.2, with d prime. The first requirement ond is
needed to make the gate set universal, whereas the se
one will allow us to relate this gate set to Gottesman’s g
set @8#. The above gate set must be supplemented by a c
trolling computer capable of universal classical computati

The above gates were selected as those arising natu
from the anyons based on the groupsZp3u Zq . The proof of
universality of the above gate set is the last step neede
show that universal quantum computation is feasible w
these anyons.

The proof of universality will proceed in two steps. In th
first step we will turn the second and third gates into pro
measurements in theZ andX bases. Most of the methods o
the first step were described while building computation w
nonsolvable anyons@1#. The second step involves using th
probabilistic projection ontou0&' to construct magic state
that complete the universal gate set. This is the new elem
needed to achieve universality with solvable anyons.

A. Nondestructive measurement ofZ and X

By the end of this subsection we will have construct
measurements in theZ and X bases. These measuremen
will be nondestructive in the sense that if resulti was ob-
tained, the measured qudit will be in stateu i & or u ĩ &, respec-
tively. Because the measurements in question are comp
the nondestructive requirement can be achieved by ha
ancillas for every eigenstate ofX andZ, and then using the
controlled-X gate to swap the ancillas into the computation
space.

The construction begins by producing a set of basic an
las. Along the way we will also produce theX andZ unitary
gates.

1. z0‹ and z0̃‹ ancillas

Clearly, givenu0& ancillas we can use the third gate
produceu0̃& ancillas. Similarly, givenu0̃& ancillas we can use
the second gate to produceu0& ancillas. Therefore, if the
initial state of the quantum computer overlaps with eith
state, we can produce both kinds of ancilla.
6-11
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CARLOS MOCHON PHYSICAL REVIEW A69, 032306 ~2004!
Usually, the initial state of the quantum computer isu0&.
However, by using the controlled-X gate, in combination
with the projections ontou0&, we can obtain these states n
matter what the qudits are initialized to. The procedure is
to apply a controlled-X21 gate ~equivalent to d21
controlled-X gates! to two qudits and then project the targ
to theu0& space. If the initial state had some overlap with a
of the statesu i & ^ u i &, then this produces the desired ancilla
Furthermore, even if we allow states that are initially e
tangled, once we involve more thand qudits, at least one pai
must have an overlap with the diagonal states. Thereforeu0&
states can always be produced.

Henceforth, we shall assume an ample supply ofu0& and
u0̃& ancillas.

2. z1‹ states,z1̃‹ states;X gates,Z gates

The next step is to produceu1& and u1̃& ancillas. The
importance of these ancillas is that they will break the sy
metry currently present in the one-qudit Hilbert space.

There are two symmetries in the Hilbert space that are
fixed by the basic four gates of our set. The first symmetr
a relabelingu ix&→u i &, calculated modulod, for some 0,x
,d. The second, is the relabelingZy→Z, for integer 0,y
,d. For fixedx, the second symmetry is a relabeling of o
dth root of unityv by vy→v and a relabelingu j ỹ&→u j̃ &.

Therefore, given an ancilla in a stateux&, with x.0, we
can just rename it so that it becomes au1& ancilla. Similarly,
given an ancilla in a stateu ỹ&, y.0, we can relabel it asu1̃&.
In fact, both can be done simultaneously in a consistent fa
ion, even if we do not know the values ofx andy.

The initial statesux& and u ỹ& can be obtained from two
maximally mixed states. The maximally mixed states can
described either as a stateux& with x chosen at random or
stateu ỹ& with y chosen at random. Therefore, two maxima
mixed states serve our purpose as long as we do not ob
x50 or y50. These two bad cases will be detected belo
in which case the process can be restarted with two n
mixed states.

To produce the maximally mixed states we apply
controlled-X gate with u0̃& as source andu0& as target. The
result is a maximally entangled state, which can be tur
into a maximally mixed state by discarding one of the tw
qudits. Two of these mixed states will serve as our ancill

Given our two ancillas, which we have now labeledu1&
and u1̃&, we can buildX and Z gates which are consisten
with the new labeling. TheX gate is clearly just a controlled
X gate with au1& state as control, whereas theZ gate is just
a controlled-X gate with au1̃& as target. The less familia
second construction is just a specific case of the follow
circuit:
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At this point, if we were unlucky enough to getx50 or
y50, then one of the transformationsX or Z will be the
identity operator. This can easily be checked by apply
them to u0& or u0̃& ancillas and then using the availab
probabilistic projections.

TheX andZ gates can also be used to produce a reser
of u1& and u1̃& ancillas that will be consistent with the orig
nal states. Two elements in the reservoir can also be c
pared, for example, by applying aZ built from one ancilla
followed by aZ21 built from the other. Therefore, even if th
states were to decay over time, by using majority voting
damaged states can be weeded out.

In some cases, the one-qubit Hilbert spaces do have n
ral u1& or u1̃& states, which implies a natural way of measu
ing or obtaining such states. For those systems, either
natural ancillas or the arbitrary ones constructed above
be used. For example, for the anyonsu1&5uaba21&. How-
ever, choosing a differentu1& state is equivalent to choosin
a different elementa.

3. Measurements ofZ and X

At this point all the elements are in place to produce m
surements in either theZ basis or theX basis.

The key element of theX basis measurement is the circu

applied to au0̃& ancilla and the state to be measured. If t
above circuit is repeated many times, each time with a
ferent u0̃& ancilla and withj varying from 0 tod21, we
obtain the transformation

(
i

b i u ĩ &→(
i

b i u ĩ & ^ u ĩ &•••^ u i 21̃& ^ u i 21̃&•••

^ u i 2d11̃&. ~59!

A probabilistic projection ontou0̃& can then be applied to
each qudit. If one of the qudits of the formu i 2 j̃ & projects
onto the spaceu0̃&, then the outcome of the measureme
is j.

Note that because of the one-sided error model of
probabilistic projection, an erroneous measurement re
can never be obtained, no matter how smallpPP is. The
worst possible outcome is that after all the qudits have b
measured, no conclusion can be reached. Of course, a
dard small two-sided probability of error can also be ma
exponentially small by using enough qudits in the abo
measurement.

The measurement in theZ basis proceeds similarly, wher
the transformation
6-12
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ANYON COMPUTERS WITH SMALLER GROUPS PHYSICAL REVIEW A69, 032306 ~2004!
(
i

a i u i &→(
i

a i u i & ^ u i &•••^ u i 21& ^ u i 21&•••

^ u i 2d11& ~60!

is performed using theX and controlled-X gates, followed by
a probabilistic projection ontou0&.

Finally, the above measurements can be performed n
destructively, by projecting all but one of the qudits. Alte
natively, the eigenstates ofX and Z can be directly con-
structed from these gates andu0& or u0̃& eigenstates.

B. Completing the gate set

So far, we have only shown that our gates can rea
operations in the Clifford group. In order to achieve univ
sal quantum computation we need to complete the gate
with an operation outside the Clifford group.

It was shown in Ref.@1# that the Toffoli gate, combined
with measurements in theX and Z bases, is universal fo
quantum computation. Therefore, a successful construc
of the Toffoli out of our gate set will prove it universal. Th
Toffoli gate will be constructed out of the previously d
scribed operations, together with the thus far unused pro
bilistic projection ontou0&'.

In addition to producing measurement gates, probabili
projections are particularly useful for preparing magic sta
which are ancillas whose use allows us to perform new g
such as the Toffoli. In particular, we shall show that we c
produce the two magic states

ufM1&5
1

d (
i , j

u i & ^ u j & ^ u i j &,

ufM2&5
1

d (
i , j

vd i ,0d j ,0u i & ^ u j &, ~61!

whered i , j is the Kronecker delta function. The first of the
states produces the Toffoli gate up to some errors in
Clifford group. The second magic state allows us to corr
these errors and, in fact, allows the construction of the co
plete Clifford group even without the use of the first mag
state.

We shall begin by discussing how to use each of
magic states and then afterwards turn to the task of des
ing their construction out of the available operations.

1. Using zfM1‹

The magic stateufM1& and its use in producing the Toffo
gate was first introduced by Shor@9# and generalized to qu
dits in Ref.@8#. We shall give a brief description of its use
order to give an account of the exact Clifford group ope
tions needed in the last step as corrections.

The procedure begins with a general state

uC&5 (
a,b,c

ca,b,cua& ^ ub& ^ uc&, ~62!
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to which an ancillaufM1& is appended. A controlled-X21

gate is applied to the first data qudit with the first anci
qudit as control. Similarly, a controlled-X21 gate is applied
to the second data qudit from the second ancilla qudit, an
controlled-X gate is applied to the third ancilla qudit, from
the third data qudit. The first two data qudits are then m
sured in theZ basis and the third data qudit is measured
theX basis. If the results of the measurements area, b, and
g, respectively, then the remaining qudits are left in the st

(
a,b,c

ca,b,cv
gcua2a& ^ ub2b& ^ u~a2a!~b2b!1c&.

~63!

The corrections begin by applying anXa
^ Xb

^ X2ab

gate followed by a controlled-Xb gate from the first qudit to
the third qudit and a controlled-Xa gate from the second
qudit to the third qudit. The state then becomes

(
a,b,c

ca,b,cv
gcua& ^ ub& ^ uab1c&. ~64!

All that is needed to complete the Toffoli gate is aZ2g gate
applied to the third qudit and a phasevgab applied to the first
two qudits. Unfortunately, we must first build the latter tran
formation out of the second magic state.

2. Using zfM2‹

Once again, the magic state is appended to a pair of
dits. Now controlled-X gates are applied with the data qud
as source and the ancilla qudits as targets. Then the an
qudits are measured in the computational basis. The
comesa andb will be uniformly distributed, and at the en
we will have produced the transformation

(
a,b

ca,bua& ^ ub&→(
a,b

ca,bvda,adb,bua& ^ ub&. ~65!

This procedure randomly and uniformly chooses a compu
tional basis state and multiplies it by a phase ofv. Repeated
application of this transformation will eventually yield an
of the dd2

states of the form

(
a,b

ca,bv f (a,b)ua& ^ ub&, ~66!

wheref is an arbitrary integer-valued function. This proce
is effectively a classical random walk on ad2-dimensional
periodic lattice withdd2

nodes, where each use of a mag
state is equivalent to taking one step. Because the lattic
finite, after a polynomially large number of steps the pro
ability of not having arrived at least once at any one of t
above states becomes exponentially small.

The final correction needed to complete the Toffoli ga
was the phase transformation to the state withf (a,b)
5gab and can therefore be realized using many copies
the second magic state. All that remains to prove universa
is to describe the production of the magic states.
6-13
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CARLOS MOCHON PHYSICAL REVIEW A69, 032306 ~2004!
3. Making the magic states

The final piece of the puzzle is the production of t
magic states using the probabilistic projection ontou0&'.

Probabilistic projections onto a subspace are particul
powerful for making magic states, because it can be assu
that they successfully project into the subspace every ti
That is, if the probabilistic projection does not project on
the desired subspace, the state is tossed out and the p
dure is restarted from the beginning. Therefore, the prob
listic projection ontou0&' effectively takes a state and re
moves theu0& component of the state:

(
i 50

d21

a i u i &→A(
i 51

d21

a i u i &, ~67!

whereA is some normalization constant. In fact, by comb
ing this projection with theX gate, we can remove any of th
componentsu i &.

The main strategy for this section is to construct a se
of ancilla states of increasing complexity, until finally th
desired magic states are obtained. At this point, we hav
supply of ancillas of the formu i & and u j̃ & for any i and j.
From the u0̃& state we can also make the ancilla (u0&
1u1&)/A2 by removing allu i & for i .1 with the probabilistic
projection.

The next step is to produce entangled two-qudit ancil
Given a supply of ancillas of the formuC&5( ic i u i & we shall
produce ancillas of the form

uC8&5c0u0& ^ u1&1 (
i 51

d21

c i u i & ^ u0&5 (
i 50

d21

c i u i & ^ ud i ,0&.

~68!

The procedure begins with the state

uC& ^ S 1

A2
u0&1

1

A2
u1& D 5

1

A2
(
i 50

d21

(
j 50

1

c i u i & ^ u j &,

~69!

which in general has 2d nonzero coefficients. We need t
removed of these coefficients to obtain the stateuC8&.

The procedure, done once for eachk from 1 to d21, is
the following: First, apply a controlled-Xk gate with the left
qudit as source and the right qudit as target. Then, the r
qudit is projected ontou0&', and finally the controlled-Xk

gate is undone. For eachk, we remove the componentsu0&
^ u0& and u21/k& ^ u1&. The operation21/k is modulod as
usual and ranges over all integers between 1 andd21 be-
caused is prime. Therefore, given a supply ofuC& ancillas,
we can probabilistically convert some of them into a sup
of uC8& ancillas.

Note that the above procedure works even if the coe
cientsc i represent the state of other qudits, as long as th
are ancilla qudits that can be tossed out if the project
procedure fails. In the same spirit, given ancillas of the fo
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uF&5(
i 50

1

(
j 50

1

f i , j u i & ^ u j &, ~70!

we can produce the three-qudit ancillas

uF8&5(
i 50

1

(
j 50

1

f i , j u i & ^ u j & ^ ud i ,0d j ,0&. ~71!

The procedure again involves appending (u0&1u1&)/A2 to
the ancilla uF&, which now generically has eight nonzer
coefficients, and removing four of them. This is done with
set of controlled-X gates with the third qudit as target, fo
lowed by a probabilistic projection of the third qudit on
u0&', followed by the inverse controlled-X gates. If we use
two controlled-X21 gates controlled by the first two qudit
respectively, the projection will remove the components w
labels u0&u0&u0&, u1&u0&u1&, and u0&u1&u1&. In addition, us-
ing two controlled-X(d21)/2 gates, we removeu1&u1&u1& and
u0&u0&u0& ~again!. These are the four states that need to
removed to produce the ancillauF8&.

The above two procedures allow us to finally produce

desired magic states. Starting withu0̃& ^ u0̃&, we apply the
first procedure to each ancilla and then apply the sec
procedure to the appended qudits. The resulting state is

1

d (
i 50

d21

(
j 50

d21

u i & ^ u j & ^ ud i ,0& ^ ud j ,0& ^ ud i ,0d j ,0&. ~72!

If the last three qudits are measured in theX basis and the
results are 0, 0, and 1, respectively, then we will have p
duced the magic stateufM2&.

In fact, measuring in theX basis and only accepting if th
result is zero is a convenient way to unentangle the sys
with temporary qudits. Therefore, the previously describ
procedures can be combined into the probabilistic trans
mation

(
i 50

d21

(
j 50

d21

c i , j u i & ^ u j &→ (
i 50

d21

(
j 50

d21

c i , j u i & ^ u j & ^ ud i ,nd j ,m&,

~73!

where the first state is either transformed into the sec
state with some nonzero probability or else it is damag
The above transformation has only been discussed so fa
n5m50, but a trivial use ofX gates before and after th
transformation will allow anyn andm.

Starting with u0̃& ^ u0̃& ^ u0&, repeated application of the
above procedure can produce
6-14
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1

d (
i 50

d21

(
j 50

d21

u i & ^ u j & ^ u0&

→ 1

d (
i 50

d21

(
j 50

d21

u i & ^ u j & ^ u0& ^
n50

d21

^
m50

d21

ud i ,nd j ,m&

→ 1

d (
i 50

d21

(
j 50

d21

u i & ^ u j & ^ u i j & ^
n50

d21

^
m50

d21

ud i ,nd j ,m&,

~74!

where the second step involves only controlled-X gates from
the extra qudits to the third qudit. Erasing the extra qud
with a measurement in theX basis and retaining only whe
all results are zero produces the desired magic stateufM1&.

The construction of the magic states out of the proba
listic projection ontou0&' completes the description of th
Toffoli gate. Though the procedures of this section are
from optimal in terms of resources, they are sufficient
demonstrate universality. In particular, this completes
proof that universal quantum computation is feasible w
anyons from groups of the formZp3u Zq .

V. COMPUTATIONAL POWER OF MAGNETIC CHARGES

In this section, we will be interested in classifying th
computational power that can be achieved by braid
anyonic magnetic charges of a finite group. The range
operations that can be achieved by braiding is closely rela
to the structure of the group to which the magnetic char
belong. In particular, the possibility of realizing the oper
tions of controlled-X and Toffoli gates ~equivalently a
doubly-controlled-X gate! are, respectively, related to th
group properties of nilpotency and solvability. These st
dard properties of group theory will also be defined belo

There are certain important assumptions that go into
discussion in this section. First, we assume that each qub
carried by a pair of anyons. Furthermore, we choose a c
putational basis corresponding to the states of definite
~e.g.,u0&5ug& for somegPG). We remind the reader at thi
point that the stateug& corresponds to an anyon of magne
chargeg paired with a compensating anyon of chargeg21

whose only purpose is to allow the pair to move through
system without introducing undesired correlations. Fina
we will restrict the discussion to operations that can
achieved by braiding magnetic charges. The consequenc
lifting these restrictions will be discussed near the end of
section.

Let the fluxes corresponding to the zero and one state
the elementsb,b8PG, respectively. If we desire a cohere
superposition between the zero and one states, they mu
in the same conjugacy class, and thereforeb85aba21 for
some nontrivialaPG. This is summarized by

u0&5ub&, u1&5ub8&5uaba21&. ~75!

Even if the basis in use is a qudit basis, with addition
states, we will only concern ourselves with states that h
support on the above two basis vectors.
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Consider now a pair of these states. We are intereste
the operations that can be achieved by conjugating the
ond state by the flux of the first state, with the help of anc
las. Let gP$b,b8% be the flux of the first state. The mos
general conjugation possible is by a function of the form

f ~g!5c1gc2gc3g•••gcn

5~d1g8d1
21!~d2g8d2

21!•••~dn21g8dn21
21 !dn ~76!

for some fixed elements$ci%PG. In the second line, the
expression has been rewritten in terms ofg85gb21 and new
elements$di%PG which can easily be determined in term
of $ci%PG. For example,d25c1bc2.

The power of the second line is that it expresses the c
jugation as a composition of two basic operations. The firs
a conjugation by an ancilla with fluxdn and is independen
of the state of the first qubit. The second is conjugation b
product of conjugates ofg8, which was defined so that ifg
5b, theng851 and the product of its conjugates is trivia
In the other case, ifg5b8, theng85@a,b#[aba21b21 and
the operation is conjugation by a product of conjugates
@a,b#.

We defineCG(x) as the conjugacy class ofx in G and
C G

# (x) as the group generated by the elements inCG(x). The
operations discussed so far are conjugation by fixed elem
in G and controlled conjugation by elements inC G

# (@a,b#).
The most natural controlled operation is the logic

controlled-X gate, which acts as a controlled conjugation
a. Naturally, if a2Þ1, then we could arrive at the qudit sta
u2&5ua2ba22&. However, our interest lies in proving tha
certain groups cannot produce a controlled-X gate, in which
case it is sufficient to prove that a controlled conjugation
a is unfeasible.

It seems that a requirement for a controlled conjugat
by a is the existence of elementsa,b such that a
PC G

# (@a,b#). There is a potential loophole in the argume
though, because different qubits could use different ba
fluxes. The target qubit could useb2 as the zero state an
a2b2a2

21 as the one state. Ifa2PC G
# (@a1 ,b1#), then the

controlled-X gate would be possible. Considering many q
bits requires a sequence of nontrivial elements$ai% and$bi%
which satisfy, at a minimum, the conditions

ai 11PC G
# ~@ai ,bi # !. ~77!

The above equations are related to the series of subgrou
G, defined by

G(( j 11))5@G(( j )),G#, ~78!

with base caseG((0))5G. By definition, if aiPG(( j )), then
@ai ,bi #PG(( j 11)). Furthermore, since the groupG(( j 11)) is
normal inG, the requirement onai 11 reads

ai 11PC G
# ~@ai ,bi # !,G(( j 11)). ~79!

Of course,a1PG((0))5G. Therefore, repeating the abov
argument shows that a controlled-X gate requiresai
PG(( i 21)) with aiÞ1 for everyi>1.
6-15
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Given thatG is finite andG(( j 11)),G(( j )), the series mus
converge after a finite number of subgroups to some fi
subgroupG((`)). The final subgroup can either be trivial o
nontrivial. The groups withG((`))5$1% are called nilpotent.
The conclusion thus far is that nilpotent groups can
implement a controlled-X gate by braiding. The inverse o
this statement—i.e., that groups that are not nilpotent
implement the controlled-X gate—will be shown in Sec. VI

A. Conjugations with multiple sources

A similar analysis can be used to study the relations
between group structure and gates produced using mul
qubits as sources of conjugation. Clearly any group tha
not nilpotent can produce a series of controlled-X gates with
different sources. However, certain groups are capable
producing much more powerful gates such as the Toff
which is universal for classical computation.

In the rest of this section we shall prove that groups t
are solvable cannot produce a Toffoli gate, or equivalen
universal classical computation, by braiding magne
charges. This connection between universality for class
computation and nonsolvability had been previously ide
fied by Barrington@10# in 1989. Though we shall mostly b
interested in groups that are solvable, this result will pla
limits on the power that we can expect to obtain from bra
ing magnetic charges.

Just as above, the most general conjugation withm
sources is the conjugation by a function of the form

f ~g1 , . . . ,gm!5~d1gi 1
8 d1

21!

3~d2gi 2
8 d2

21!•••~dn21gi n21
8 dn21

21 !dn ,

~80!

wheregi85gib
21 and the indicesi take values from 1 tom.

For brevity, we assume that all qubits are expressed in
same basis, though the general case would not be very
ferent.

The Toffoli gate is simply a conjugation by a functio
f T(g18 ,g28), such that

f T~ck,cl !5akl, ~81!

which has been expressed as a function ofgi8 and where we
introducedc[@a,b#. In order to produce the Toffoli gate
using conjugation alone, we must be able to express
above equation in the form of Eq.~80! with m52. We shall
show that this is not possible for a solvable group.

For m52, Eq. ~80! is a product of conjugates ofg18 and
g28 . We can rewrite it by moving all the conjugates ofg18 to
the left and all the conjugates ofg28 to the right. In the center
we will pick up factors of the form@dig18di

21 ,djg28dj
21# and

commutators of commutators, and so on. In the end we
obtain

f ~g18 ,g28!5 f 1~g18! f C~g18 ,g28! f 2~g28!dn , ~82!
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wheredn is a constant element ofG, f i is a product of con-
jugates ofgi8 , and f C(g18 ,g28) is the factor with all the com-
mutators. The functionf C has the property thatf C(g18,1)
5 f C(1,g28)51.

Setting f 5 f T implies the conditions

15 f ~1,1!5dn ,

15 f ~c,1!5 f 1~c!dn ,

15 f ~1,c!5 f 2~c!dn ,

a5 f ~c,c!5 f 1~c! f C~c,c! f 2~c!dn , ~83!

which imply f C(c,c)5a.
However, f C has the additional property that, ifN is a

normal subgroup ofG containingc, then f C(c,c)P@N,N#.
Furthermore, sincec5@a,b#, the requirement onc needed to
express the Toffoli function in product form is

cPN⇒cP@N,N# ~84!

for any normal subgroupN. This condition is related to the
series of subgroups defined by

G( j 11)5@G( j ),G( j )#, ~85!

again with base caseG(0)5G. Just as before, this serie
must converge to a final subgroupG(`). The groups where
G(`)5$1% are known as solvable. Any group that is nilpote
is also solvable.

Because the subgroupsG( j ) are all normal inG, the re-
quirement of Eq.~84! can only be satisfied ifc, which by
definition cannot be 1, is contained inG(`). We have there-
fore shown that if the group is solvable, then the functionf T
cannot be expressed in product form, and therefore we c
not conjugate by it. This is true even if the target of con
gation is in a known state, which implies that even if we h
used the target as a source of conjugations as well~i.e., by
using it to conjugate ancillas and then using the ancillas! the
Toffoli gate would still not be feasible by using only braidin
of anyons from a solvable group.

The fact that the Toffoli gate can be produced for nonso
able groups is a consequence of the results of Refs.@1# and
@10# and will not be discussed here. In fact, the compu
tional model discussed in this section resembles the non
form deterministic finite automata presented in Ref.@11#. For
nonsolvable groups, the two models are almost identi
Nonetheless, for solvable groups, the magnetic charges
sented in this section have significantly less computatio
power, because the zero and one states have to be r
sented by group elements in the same conjugacy class.

B. Summary of computational power

The results discussed so far have been summarized
Table I. For each type of group, it describes the compu
tional operations that can be achieved through braiding
magnetic fluxes, as well as an example. The examples are
smallest group in the class, with the exception of the Abel
case where the trivial group could also be listed. For
6-16
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non-Abelian, nilpotent case there are two examples w
eight elements: the dihedral groupD4 and the quaternionic
group Q, which is listed in the table and has elements61,
6 i ,6 j ,6k.

The most basic case is whenG is Abelian, in which case
it is also nilpotent and solvable. Clearly conjugation can o
produce the identity transformation. In fact, every super
lection sector consists of a one-dimensional Hilbert spa
and therefore quantum information cannot even be store
Abelian anyons in a topologically protected manner.

At the other extreme are anyons from nonsolvable grou
Universal classical computation can be accomplish
through braiding, and universal quantum computation can
obtained by completing the gate set with measurement
theX andZ bases. The complete construction for this cas
described in Ref.@1#.

Anyons from groups that are solvable, but not nilpote
can also be used for universal quantum computation, but
construction is more complicated. A controlled-X gate can be
constructed from flux braiding, and measurements in thX
and Z bases can be constructed in a manner similar to
nonsolvable groups. However, to complete a universal g
set, fusions of electric charges must be employed. The p
of universality, along with the details of the gates, will be t
subject of the rest of this paper.

Finally, anyons from groups that are nilpotent seem ins
ficient for universal computation. In the constructions for t
non-nilpotent groups, the only operation that can prod
entanglement between multiple qudits is the controlled-X or
Toffoli gates obtained by braiding fluxes. However, for n
potent groups, braiding fluxes does not seem to yield an
eration capable of producing entanglement. Either a n
type of operation or a different basis must be used. Sim
modifications to the basis, such as encoding a qudit on m
tiple anyons, are of no help. However, there are count
strange bases that are hard to discredit. For example, a la
of electric charges could serve as a Hilbert space, with m
netic charges used to create or measure entanglement a
the charges. Therefore, while the prospects of universal c
putation with nilpotent anyons seem bleak, the question
mains open.

VI. SOLVABLE NON-NILPOTENT GROUPS

In this section, we will prove that anyons based on a fin
group that is solvable but not nilpotent are sufficient for u
versal quantum computation. The first step will be to deco
pose an arbitrary groupG that is solvable, but non-nilpoten
into a form similar to the previously studiedZp3u Zq groups.

TABLE I. Computational power achieved by conjugation f
different groups.

Abelian Nilpotent Solvable Example Computational pow

yes yes yes Z2 I
no yes yes Q X
no no yes S3 Controlled-X
no no no A5 Toffoli
03230
h

y
-

e,
in

s.
d
e
in
is

,
he

e
te
of

f-

e

p-
w
le
l-

ss
ice
g-
ong

-
e-

e
-
-

The proof of universality will then be a small generalizatio
of the ideas presented in Sec. III.

A. Group decomposition

Let G be a group as above and defineH[G((`)) in terms
of the series discussed in Sec. V. BecauseG is non-nilpotent,
H is nontrivial, and becauseG is solvable,HÞG. Further-
more, H is normal inG and G/H is nilpotent. The second
fact is due to

~G/H !(( i 11))5@~G/H !(( i )),~G/H !#5@G(( i )),G#/H

5G(( i 11))/H, ~86!

and therefore (G/H)((`))5H/H5$1%.
Any nilpotent group can be written as the direct produ

of its Sylow p-groups, which are groups whose order is
prime power. Therefore,

G/H5Kq1
3Kq2

3•••3Kql
, ~87!

whereKq denotes a group of orderqm for some primeq and
integerm. We further defineNKqi

to be the lifting ofKqi
to

the full groupG that isNKqi
/N5Kqi

. Note that to maintain
consistency with the notation in Sec. III, the primes involv
in thesep-groups are labeled by the letterq.

Having fully characterizedG/H, we turn to the study of
H itself. Let N be the largest normal subgroup ofG that also
satisfiesN,H andNÞH. If more than one subgroup satis
fies the above requirements, then letN be any such subgroup
BecauseH is finite, there must be at least one maximal su
group.

We shall prove thatH/N5Zp
n for some primep and inte-

ger n. The basic idea is that working moduloN, H/N is a
normal subgroup ofG/N. Furthermore,H/N has no proper
subgroups that are normal inG/N. In particular, this implies
that H/N is Abelian, because its commutator subgroup is
normal subgroup ofG/N. Note that the possibility that the
commutator subgroup ofH/N is equal toH/N is excluded
becauseH/N is solvable.

For anyxPH/N considerCG/N
# (x), the group generated

by the conjugates ofx in G/N. This is a subgroup ofH/N
and is normal inG/N. Therefore,

CG/N
# ~x!5H/N, ;xPH/N, ~88!

which implies that all elements inH/N, with the exception
of the identity, have the same order. That is because co
gates ofx have the same order asx and a product of element
of orderk in an Abelian group must have order less than
equal tok. This concludes the proof thatH/N5Zp

n .
Thus far, we have the following tower of groups

N,H,HKqi
,G, ~89!

where N, H, and HKqi
are all normal inG and the group

HKqi
can be any of the groups found above.

Because (G/N)((`))5H/N5Zp
n , the groupG/N is also

solvable and non-nilpotent. However, its structure is simp
6-17
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than that of the full groupG. We shall therefore be intereste
in working moduloN and shall denote groups moduloN by
a tilde. That is,

G̃5G/N, H̃Kqi
5HKqi

/N, H̃5H/N5Zp
n . ~90!

The final step is to study the relationship betweenH̃ and
the groupsH̃Kqi

. By construction, we know@G̃,H̃#5H̃

5Zp
n , but what about@H̃Kqi

,H̃#? Because bothH̃Kqi
~for

any i ) andH̃ are normal inG̃, @H̃Kqi
,H̃# is normal inG̃ and,

furthermore, is contained inH̃. But N was defined to be the
largest proper subgroup ofH that was normal inG̃. There-
fore H̃ has no proper subgroups that are normal inG̃, and

@H̃Kqi
,H̃# must be either the trivial group or all ofH̃.

If qi5p, thenH̃Kqi
is ap-group and, therefore, nilpoten

This means that@H̃Kp ,H̃#ÞH̃ and by the previous para
graph@H̃Kp ,H̃#5$1%. The rest of the groupsH̃Kqi

can ei-

ther commute or not withH̃. However, because@G̃,H̃#

5H̃, at least one of them must not commute. Fix ani such
that @H̃Kqi

,H̃#5H̃, and defineK5Kqi
, H̃K5H̃Kqi

, andq

5qi . This will be the group to take the place ofZq .
We would like to show that there exists an elementb

PH̃K, such that@b,H̃#5H̃. Let X be the stabilizer ofH̃ in
H̃K—that is, the largest subgroup ofH̃K such that@X,H̃#

51. ClearlyH,X andXÞH̃K. BecauseH̃K/X is nilpotent,
it has a nontrivial center. LetbPH̃K be any element tha
projects, moduloX to one of the nontrivial elements in th
center. We will show that@b,H̃# is normal inG̃, which im-
plies @b,H̃#5H̃. The proof is that moduloX ~which is nor-
mal in G̃), every elementgPG̃ commutes withb. Therefore
gbg215bx for somexPX and

g@b,h#g215bxh8x21b21h8215bh8b21h821P@b,H̃#
~91!

for any hPH̃, whereh85ghg21PH̃.
To summarize, working moduloN, we have the following

tower of subgroups:

H̃,H̃K,G̃, ~92!

with H̃5Zp
n for some primep. Furthermore,H̃K/H̃5K is a

subgroup of order a power ofq, for some primeq not equal
to p. Finally, 'bPH̃K such that@b,H̃#5H̃.

Note that this notation is consistent with the one used
Sec. III. That is, ifG5Zp3u Zq , then N5$1%, H5Zp , K
5Zq , and the definitions ofp, q, andb would be consistent

B. Examples

There are a few good examples to keep in mind that
lustrate the potential new complications arising from grou
with more structure thanZp3u Zq .
03230
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The first example isA45Z2
23u Z3. The group can be de

scribed asa15(12)(34), a25(23)(41), b5(123) with

a1
25a2

251, a1a25a2a1 ,

b351, ba1
i a2

j b215a1
j a2

i 1 j . ~93!

For this groupN5$1%, H5Z2
2, andK5Z3. Its most impor-

tant feature is thatp52, which was not previously possible
Becausep52 implies working with qubits, these groups wi
be have to be handled specially.

The next example isG5(Z3
2)3u (Z33Z2). Let a1 , a2 be

the generators ofZ3
2, and letb be the generator ofZ2 andx be

the generator of the remainingZ3. The semidirect product is
defined by the conjugations

ba1
i a2

j b215a1
2 ia2

2 j , xa1
i a2

j x215a1
2 ja2

i 2 j . ~94!

For this groupH5Z3
2 because@G,G#5@G,H#5H. The sub-

group generated bya1a2
21 is normal inG and thereforeN

5Z3. Finally H/N5Z3 and K5Z2. Note thatx commutes
with H moduloN, as discussed in the last section.

The final pair of examples illustrate the case whereK is
non-Abelian. The examples areZ3

23u Q andZ3
23u D4. La-

beling the generators ofZ3
2 by a1 and a2, the semidirect

product forZ3
23u Q is defined by

ia1
xa2

yi 215a1
ya2

2x , ja1
xa2

y j 215a1
x1ya2

x2y , ~95!

where61, 6 i , 6 j , 6k are the standard quaternionic el
ments. ForZ3

23u D4 the semidirect product is defined by

ba1
xa2

yb215a1
ya2

2x , ga1
xa2

yg215a1
ya2

x , ~96!

where the relationsb45g251 andgbg5b21 defineD4.
In both of the above casesp53, q52, N5$1%, andH

5Z3
2. However, forZ3

23u Q the nontrivial elements ofH are
conjugate to one another, and none of the nontrivial eleme
of Q commute with any of the nontrivial elements ofH. The
Z3

23u D4 case dividesH into three conjugacy classes~in-
cluding the identity!. Furthermore, each of the elements
the form b ig commute with two nontrivial elements ofH.
These differences will become important when discuss
the operations involving electric charges.

C. N-invariant ancillas

The first lesson from the above analysis is that we sho
work moduloN. That is, we want flux states labeled by el
ments ofG̃5G/N that are invariant underN. The idea of
N-invariant states was already discussed in Ref.@1# when
generalizing simple non-Abelian anyons to nonsolva
ones, and therefore the discussion below will be brief.

A basis for theN-invariant magnetic fluxes is justug& for
gPG̃. The braiding and fusion properties of these states
have almost exactly as if the full group wereG̃ and these
states were flux eigenstates. The only difference is that w
fusing two anyons from pairs with opposite fluxes, the pro
ability of disappearing into the vacuum is lower.
6-18
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Even producing anyons from the vacuum behaves c
rectly with respect toN invariance. Pairs produced from th
vacuum are naturally invariant under the full groupG. Nor-
mally, when braiding with other states, this invariance w
be broken. However, if the vacuum pair only interacts w
N-invariant states, then the invariance under the groupN will
remain.

At this point we will change our requirements for th
physical system. Instead of requiring a reservoir of flux a
cillas for every element ofG, we will require a reservoir of
N-invariant flux ancillas for every element ofG̃. This is
likely a reasonable modification, as it appears that the la
ancillas are no harder to produce than the original ones.

It should be noted that, when working moduloN, the elec-
tric charges need no modification. That is, becauseN is nor-
mal in G, any representation ofG̃ extends to a representatio
of G that is invariant underN. Furthermore, fusing two
N-invariant electric charges must produce a newN-invariant
electric charge. Therefore, working withN-invariant electric
charges simply involves working with a subset of the char
of the groupG.

Given the above caveats, we can effectively replace
groupG with the groupG̃5G/N, which will be done with-
out further comment for the rest of this section.

D. Computational basis

We will begin by defining an extended computational b
sis and discuss the operations that can be performed on
extended subspace. Toward the end of this section, a su
of these states will be singled out as the true computatio
basis.

Let a1 , . . . ,an be a set of generators forH̃5Zp
n , and

recall the definition of the elementbPG̃. The extended com
putational basis consists of the states

u i 1 , . . . ,i n&[ua1
i 1
•••an

i nban
2 i n

•••a1
2 i 1&, ~97!

where each of thei ’s takes values from 0 top21.
To prove that the states are all distinct consider the m

from H→H defined by

@g,•#:h→@g,h#. ~98!

BecauseH̃ is Abelian, this map is an homomorphism for an
gPG̃. In particular, since@b,H̃#5H̃, the homomorphism
defined by@b,•# is surjective and has trivial kernel. That i
no element ofH̃ commutes withb. But

hbh215h8bh821⇒~h821h!b~h821h!215b ~99!

for any elementsh,h8PH̃, which can only be true ifh
5h8.

E. Basic operations

The generalized controlled-X gate is the transformation
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u i 1 , . . . ,i n& ^ u j 1 , . . . ,j n&→u i 1 , . . . ,i n&

^ u i 11 j 1 , . . . ,i n1 j n&.

~100!

It can be implemented as a conjugation of the second an
by a function of the flux of the first anyon such that

f ~hbh21!5h ~101!

for anyhPH̃. Because the map@b,•# defined above is just a
permutation of the elements ofH̃, it has a finite period~say,
l ). The desired function is

f ~g!5@@@gb21,b#,b#, . . . ,b#, ~102!

which consists ofl 21 nested commutators. The final com
mutator needed to complete the period is the one forme
the expressiongb21 wheng has the formhbh21.

At this point, one may wonder how does working modu
a normal subgroupN affect the discussion regarding th
computability of the controlled-X gate. The controlled-X

gate can only be implemented becauseG̃ is non-nilpotent. In
a sense,G̃ was constructed to be as small as possible,
still maintain the property of being non-nilpotent. On th
other hand, if a groupG is nilpotent to begin with, then any
subgroup or quotient group will also be nilpotent, and
controlled-X gate can be constructed using braiding.

Using the same techniques as in Sec. III D, anyon fusi
can be used to perform measurements. Fusion withub21&
ancillas produces a probabilistic projection ontou0, . . . ,0&.
Fusing the two anyons that form a qudit is a probabilis
projection onto

u0̃, . . . ,0̃&[
1

Apn (
i 150

p21

••• (
i n50

p21

u i 1 , . . . ,i n&. ~103!

As usual, to complete the probabilistic projection, these
sions must be supplemented by a reservoir ofu0, . . . ,0& and
u0̃, . . . ,0̃& ancillas. The first case is trivial, because the ex
tence of these ancillas has been assumed as one of the p
cal requirements of the system. The production ofu0̃, . . . ,0̃&
ancillas is more complicated and will occupy the rest of t
subsection.

The procedure to distillu0̃, . . . ,0̃& states begins with a
pair created from the vacuum and au0, . . . ,0& ancilla:

uVac& ^ u0, . . . ,0&. ~104!

Using only braiding, an incomplete swap is applied to t
state:
6-19
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Once again, the circuit denotes the action of the conjugat
on the computational basis, but their extension to the
Hilbert space needs to be discussed. After applying the n
essary braidings to perform the circuit, the top state is fu
with a ub21& ancilla. If the fusion does not produce th
vacuum state, the final product is discarded and the pro
dure restarted from the beginning. Since conjugations can
change the superselection sector, the only case that nee
be considered is when the vacuum state is created in
superselection sector that contains the computational
space~i.e., the conjugacy class ofb). In this superselection
sector the vacuum state has the form

uVac&}u0̃, . . . ,0̃&1uC'&, ~105!

whereuC'& is a state in the space spanned by vectors of
form ugbg21& that are not contained in the computation
basis.

Because we want to guarantee that after the controlleX
gate the stateu0, . . . ,0& remains in the computational sub
space, we need the conjugation function to satisfy

f ~G̃!PH̃,

f ~hbh21!5h ;hPH̃. ~106!

The second requirement can be satisfied by choosingf as a
sequence of commutators as in Eq.~102!, as long as the
number of commutators is one minus a multiple ofl ~the
period of@b,•#). Furthermore, the result afteri commutators
must be contained inG̃(( i )). Because the series is finite
G̃(( j ))5G̃((`))5H̃ for some finitej, and the first requiremen
can also be satisfied by definingf to be a long enough se
quence of commutators. Both requirements can be satis
simultaneously by correctly choosing the number of comm
tators in the expression, and this completes the definition
the first controlled-X.

The second controlled-X gate can be a regular controlled
X gate because in this case the control is known to be in
computational subspace. In the end, the vacuum state wi
conjugated by an element ofH̃ and, therefore, can only hav
flux b if it was originally in the computational subspace.

Having completed the construction of theu0̃, . . . ,0̃& an-
cillas, all that is required to complete a universal set of ga
is an analog of the probabilistic projection ontou0&' con-
structed out of fusions of electric charges.

F. Using electric charges

The ideal goal for this section would be the construct
of the probabilistic projection ontou0, . . . ,0&' gate. Unfortu-
nately, this is not possible for most groups. However, we w
produce a pair of gates that have an equivalent computati
power.

The first gate involves a nontrivial subgroupL̃,H̃, to be
defined later, which could equal all ofH̃. Note that this
subgroup defines a subspace of the computational s
spanned by
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for all elementslPL̃, which will also be denoted byL̃. The
probabilistic projection ontoL̃ will be the first gate.

The second gate is the probabilistic projection on
u0, . . . ,0&'ùL̃. This second gate can be though of as an
plication of the first gate, followed by a probabilistic proje
tion ontou0&' that only works on states contained inL̃. For
the moment, we will assume that the first gate can be imp
mented and work on the construction of the second gate

The basic building block for this section involves workin
with the state to be measureduC& and an electric charge pa
in the vacuum stateuR(I )&R of some non-Abelian represen
tation R. The state to be measured is contained in the co
putational basis and can therefore be expanded as

uC&5 (
hPH̃

chuhbh21&, ~108!

where, as in Sec. III G, the coefficients$ch% could be num-
bers or could denote the state of the rest of the system.

Using braiding, the stateuC& can be entangled with the
electric charges. In particular, iff(g) is a function con-
structed as a product ofg and fixed elements ofG̃, then the
following transformation can be realized:

uC& ^ uR~ I !&R→ (
hPH̃

chuhbh21& ^ uR„f~h!…&R .

~109!

Note that the state of the electric charge can depend onf(h)
rather thanf(hbh21) by composing with the function de
fined in Eq.~102!. That isf„f (hbh21)…5f(h).

Now the electric charge pair is fused together, and
resulting particle is measured. More specifically, in acc
dance with the discussion in Sec. III H, we just che
whether the resulting particle belongs to some o
dimensional representation labeledg. If the chargeg is de-
tected, then the electric charge will have disentangled w
the state being measured, because its internal Hilbert spa
one dimensional. Furthermore, because each o
dimensional representation occurs only once in the dec
position of R^ R* , the state will be unentangled with th
environment as well. The proof of the latter property us
Schur’s lemma and the fact that ifuM1&R and uM2&R always
fuse into representationg, then uM1M2

†&R will always fuse
into the vacuum.

The result of the complete operation, when the outcomg
is obtained, is the transformation

uC&→ (
hPH̃

Ff(h)→gchuhbh21&, ~110!

where the state after the measurement has been left un
malized. The coefficientsFh→g depend implicitly on the
original representationR and will be defined carefully below
6-20
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The above procedure can be repeated many times for
ferent functionsf(g). If on each occurrence the outcomeg
is obtained, the resulting~unnormalized! state will be

(
hPH̃

S )
fPF

Ff(h)→gDchuhbh21&, ~111!

whereF is the set of functions used. As usual, if the ou
come g is not obtained on each instance, the state is
carded, and the probabilistic projection reports a project
onto the complement.

We assume that all functions in the setF are products of
conjugates of the input, and thereforef(I )5I for any f
PF. BecauseuR(I )&R is the vacuum state, it will always
fuse back into the vacuum. Therefore, ifg is a nontrivial
representation, thenFI→g50 and the above operatio
projects out theu0, . . . ,0& state.

At this point we have almost constructed a probabilis
projection ontou0, . . . ,0&'ùL̃. The states outside ofL̃ can
be removed using the probabilistic projection ontoL̃, which
for the moment we assume can be implemented. There
the desired gate will be complete if the coefficients

)
fPF

Ff(l)→g ~112!

are nonzero and equal for every nontriviallPL̃. The re-
quirement of equality is accomplished if the orbits under
functions inF, of all nontrivial lPL̃, are equal.

More specifically, letF be a set of maps fromL̃ to L̃ that
fix the identity. We say thatF is balanced onL̃ if it satisfies
the relation

N l1→l85N l2→l8 ;l1 ,l2 ,l8PL̃2$I %, ~113!

whereN l→l8 denotes the number of elementsfPF such
thatf(l)5l8. The requirement thatF be balanced guaran
tees that the expressions in Eq.~112! are equal for everyl.
Of course, for the coefficients to be nonzero, we must pr
separately that the value ofFl→g is nonzero for every non
trivial lPL̃.

The goal for the rest of this section is, therefore, to find
subgroupL̃ of H̃, an irreducible representationR of G̃, and
a one-dimensional representationg of G̃ such that~i! the
probabilistic projection ontoL̃ can be implemented,~ii !
Fl→gÞ0 for every nontriviallPL̃, and~iii ! there exists a
set of maps fromL̃ to L̃ that is balanced onL̃ and can be
expressed as

f~g!5)
i

giggi
21 ~114!

for some elements$gi%PG̃.
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if-

s-
n

re,

e

e

a

1. ChoosingL̃

There are groups, such asZ3
23u D4, for which there is no

choice ofR and nontrivialg such thatFh→gÞ0 for all non-
trivial hPH̃. It is therefore advantageous to chooseL̃ as
small as possible. Furthermore, a smallL̃ will also help
when proving the existence of a set of functions balan
on L̃.

Let a be a nontrivial element ofH̃, and consider the set o
functions of the form

f~g!5)
i

giggi
21 , ~115!

such thatf(a)5I . The kernel of each of these functions is
subgroup ofH̃ that contains the elementa. We defineL̃ as
the intersection of all these kernels.

Because there are a finite set of maps fromH̃ to H̃, we
can find a finite set of functions$f i%, in the form of Eq.
~115!, satisfying

lPL̃⇒; i f i~l!5I ,

h¹L̃⇒' i f i~h!ÞI . ~116!

A probabilistic projection ontoL̃ can be constructed usin
controlled conjugations on an ancillaub&,

(
hPH̃

ahuhbh21& ^ ub&→ (
hPH̃

ahuhbh21&

^ uf i~h!bf i~h!21&, ~117!

and then using fusion to make sure that the ancilla remain
the ub& state. Repeating the procedure for eachf i produces
the desired projection.

To build the set of functions that are balanced onL̃, let F
be the set of functions in the form of Eq.~115! such that
f(a)PL̃2$I %. We shall prove that this is the desired set
functions.

Let lPL̃ be nontrivial and letf be any map inF. The
value off(l) must be nontrivial and contained inL̃. Oth-
erwise, it would be possible to construct a map in prod
form such thata is in its kernel butl is not, contrary to the
definition of L̃. In fact, the functions inF are just automor-
phisms ofL̃ and form a group with multiplication given by
function composition. Furthermore, becauseC G̃

# (a)5H̃, for

any nontriviallPL̃ there exists a functionfa→lPF such
that fa→l(a)5l. If l8PL̃ is a third nontrivial element,
then for every functionfPF such thatf(l)5l8 there is a
function f8(a)5l8 given by f85f+fa→l . Therefore,F
is balanced onL̃.

2. The amplitudes Fh\g

To chooseR and g we first need to examine and defin
Fh→g more carefully. Since we are mostly interested
6-21
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whetherFh→g is zero or nonzero, we will generally wor
with its magnitude squared, which has the simple expres

uFh→gu25uPguR~h!&Ru2, ~118!

wherePg is the projector onto the space that will turn in
the representationg after fusion. This subspace is just th
subspace that transforms asg under conjugation. It can be
projected out using the orthogonality of characters~and ma-
trix entries for non-Abelian representations!:

PguC&5
1

uG̃u
(

gPG̃

ḡgU~g! ^ U~g!uC&, ~119!

whereḡ is the conjugate representation. Note that the val
of the representationg on gPG̃ will be denoted bygg, as a
reminder that it is always a power of some root of un
which we shall also denote byg.

Combining the expressions for the projector and the e
tric charge state we obtain

uFh→gu25U 1

uG̃u
(

gPG̃

ḡguR~ghg21!&RU2

5
1

dRuG̃u2U (
gPG̃

ḡgR~ghg21!U2

, ~120!

wheredR is the dimension of representationR. In the second
line, the magnitude squared of the matrix is given byuM u2
5 Tr(MM†), which is equivalent to the sum of the magn
tude squared of the entries of the matrix.

BecauseH̃ is Abelian, the representationR can be diago-
nalized onH̃ so that the diagonal entries are one-dimensio
representations ofH̃. These representations can be labe
by an indexi running along the diagonal of the matricesR

and described by functionsv i
h :H̃→C. With the new nota-

tion,

uFh→gu25
1

dRuG̃u2
(
i 51

dR U (
gPG̃

ḡgv i
ghg21U2

, ~121!

where the representationR is now implicit in the definition
of the representations$v i%.

Finally, let S̃ be the stabilizer ofH̃ in G̃—that is, the
subgroup ofG that commutes with every element ofH̃.
Clearly, it is a normal subgroup ofG̃ and H̃,S̃. Further-
more, we had argued that ifqi5p, thenKqi

PS̃. Therefore

uG̃/S̃u is not divisible byp.
Since the functionFh→g will be zero unless we choose

representation such thatg S̃51, we shall assume this from
now on and write

uFh→gu25
uS̃u2

dRuG̃u2
(
i 51

dR U (
gPG̃/S̃

ḡgv i
ghg21U2

. ~122!
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We are now guaranteed thatg corresponds to powers of a
nth root of unity such thatp does not dividen. The terms in
the above expression have the form

(
i 50

p21

civ
i , ~123!

where the coefficientsci are sums ofnth roots of unity. By
Ref. @7#, the expression will be zero if and only if then
coefficientsci are all equal.

Using the above notation it is easy to show two propert
of the amplitudesFh→g . If uFh→guÞ0, then

uFhj→gu25
uS̃u2

dRuG̃u2
(
i 51

dR U (
gPG̃/S̃

ḡg~v i
ghg21

! jU2

Þ0,

~124!

as long asp does not dividej. Note that in generaluFh→gu
ÞuFhj→gu. The fact that was used above is thatuFh→guÞ0
implies that at least two coefficients of different powers ofv
must be different. Replacingv by a power of itself just per-
mutes the coefficientsci in Eq. ~123!.

The second property is easier to prove in the form of E
~121! and states that givenuFh→guÞ0, then

uFxhx→gu25
1

dRuG̃u2 (
i 51

dR U (
gPG̃

ḡgv i
gxhxg21U2

5
1

dRuG̃u2 (
i 51

dR U (
gPG̃

ḡgx21
v i

ghg21U2

5uFh→gu2Þ0

~125!

for any xPG̃. The second line involves a relabeling of th
summation variable, whereas the third line is true becausg

is a group homomorphism andḡ2x is just an overall phase
Together, the two properties imply that, ifuFh→gu2 is non-

zero, then so are the amplitudesuFh8→gu2 for any nontrivial
h85ghig21. Unfortunately, even after adding the identi
element, this set is in general not a group. Furthermore
remains to be shown that the amplitude is nonzero for at le
oneh.

3. Finding a nonzero amplitude

It is possible to indirectly show that, for every eleme
hPH̃, there is a pair of representationsR andg meeting our
requirements, such thatuFh→gu2Þ0.

The basic idea is to consider the regular representatio
G̃. Let HG̃ be the Hilbert space spanned by the vectors

ug&G̃ ~126!

for gPG̃. For the moment, these are just abstract vector
a Hilbert space, and therefore we use the above notatio
distinguish them from the anyon magnetic charges.

The groupG̃ has both a left and a right action on th
vector space, which transforms as the regular representa
6-22



a

th

e-

th

n

-
t
y

m

it

d

im
.
ny

t

c

can
e is
on-

e
ate
o-
sults
fu-
of
ant
ith

he
the

m-
m,
alt

sion

r

e

f
r of

ur-

s

lec-
The
ich
sis

g to

s

ANYON COMPUTERS WITH SMALLER GROUPS PHYSICAL REVIEW A69, 032306 ~2004!
in both cases. More generally, we could say that there is
action of the groupG̃3G̃ on this vector space given by

ug&G̃→ug1gg2
21&G̃ ~127!

for any elementg13g2PG̃3G̃.
Let HR be the Hilbert space spanned by the vectors of

form uM &R , whereR in an irreducible representation ofG̃.
These spaces are also representations ofG̃3G̃ and, in fact,
are irreducible. The spaceHG̃ decomposes as a sum of irr
ducible representations ofG̃3G̃ as

HG̃5 %

R
HR , ~128!

with each irreducible representationR appearing exactly
once. Fusion corresponds to a further decomposition into
irreducible representations of the diagonal groupG̃. There-
fore, if the stateuh&G̃ has a nonzero projection to a represe
tation g of the diagonal group, we know thatuFh→guÞ0 for
at least one irreducible representationR.

More explicitly, the projection is

Pguh&G̃5
1

uG̃u
(

gPG̃

ḡgughg21&G̃ . ~129!

To make it nonzero, it is sufficient to chooseg to be constant
over the stabilizer,Sh , in G̃ of h. This is still possible, even
with our requirements thatg be one dimensional and non
trivial, becauseSh/H̃ is a proper subgroup of the nilpoten
groupG̃/H̃. Proper subgroups of nilpotent groups are alwa
contained in proper normal subgroups because the nor
izer of the proper subgroup is always a larger group~and
eventually the operation of replacing a subgroup with
normalizer must yield a normal subgroup!. This concludes
the proof that, for any nontrivialhPH̃, there exists a choice
of g andR such thatuFh→guÞ0.

In fact, for any two nontrivial elementsl1 ,l2PL̃, the
same representationg is useful becauseSl1

5Sl2
. However,

it is not clear that it is possible to pickR such that both
uFl1→guÞ0 anduFl2→guÞ0. This is illustrated by working

with the groupZ5
23u(Z23Z3), where certain choices ofg

consistent with the above discussion lead to zero amplitu
for at least one nontrivial element ofL̃, no matter whichR is
used. On the other hand, the same example does have s
taneous choices ofR andg that satisfy all our requirements
It is unclear to the author whether it is possible, for a
group G̃, to chooseR and g such thatuFl→guÞ0 for all
nontrivial elementslPL̃ simultaneously.

4. AlternativeL̃

What happens ifR and g cannot be chosen so tha
uFl→guÞ0 over all nontrivial elementslPL̃? While none
of the examples in this paper have this problem, if su
a case arises, we could try to shrinkL̃. In particular, if
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L̃5Zp , then the problem is solved. That is, because we
always choose the representations so that the amplitud
nonzero for some element, then it is guaranteed to be n
zero for the powers of that element as well.

The set of functions balanced onL̃5Zp can be easily
constructed as simplyf(g)5gi for 0, i ,p. However, the
probabilistic projection ontoL̃ is more difficult. It can be
achieved if we are willing to relax the error model of th
probabilistic projections. That is, we use an approxim
probabilistic projection, where the probabilities and pr
jected states are close to the desired results. While the re
will be exponentially close in the number of successful
sions, they will only be polynomially close in the number
actual fusions, and therefore the machinery of fault toler
quantum computation must be employed. Computation w
the approximate gate will still be feasible, but one of t
advantages of topological quantum computation—that is,
exactness of gates—will be lost.

To construct this approximate projection, consider the a
plitude for the fusion of the electric charges into the vacuu
denoted byFh→I . It is the same quantity that has been de
with thus far, only with the representationg replaced by the
identity representation. These quantities have the expres

uFh→I u25
1

dRuG̃u2 (
i 51

dR U (
gPG̃

v i
ghg21U2

5
1

dRuCG̃~h!u2
(
i 51

dR U (
h8PCG̃(h)

v i
h8U2

, ~130!

whereCG̃(h) is the conjugacy class ofh in G̃. The ampli-
tudes satisfy the properties

0,uFh→I u2,uFI→I u2 ~131!

for any nontrivialhPH̃. The first inequality comes from the
fact that we are summingpth roots of unity and the numbe
of summands is not divisible byp. The second inequality

comes from the fact thatv i
h8 must be nonconstant over th

conjugacy class ofh. The equation

I 5 )
h8PCG̃(h)

h8 ~132!

is true because the right-hand side commutes with all oG̃
and therefore must be the identity. Because the numbe
factors on the right is not divisible byp, v i cannot be con-
stant over the conjugacy class unless it is the identity. F
thermore, since the conjugacy class generatesH̃ and R is
nontrivial, one of thev i must not be the identity. This prove
the second inequality of Eq.~131!.

The standard procedure of entangling a state with an e
tric charge pair, which is then fused, can then be used.
state is now kept if the pair fuses into the vacuum, wh
always has a nonzero probability of occurring. The ba
state that was entangled withuR(I )&R will have its amplitude
increased relative to the other basis states. Using braidin
achieve a function of the formf (h)5hai , for some element
aPL̃ and different values ofi, we can make the basis state
6-23
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in L̃ consisting of powers ofa have an arbitrarily large am
plitude relative to the other states. Even ifuFh→I u varies sig-
nificantly over the nontrivial elements ofH̃, we can use the
old L̃ projector and functions inF to balance out the non
trivial elements while increasing the amplitude of the st
with f (h)5I . After many repetitions, the basis states w
flux aiba2 i can be made to have an amplitude much lar
then all the other states. This completes the constructio
the approximate probabilistic projection onto the newL̃ for
the special cases when we requireL̃5Zp .

G. Putting it all together

At this point we have shown the existence of an exten
computational space, with elements labeled byH̃5Zp

n , on
which we can perform the generalized controlled-X gate, and
probabilistic projections ontou0, . . . ,0& and u0̃, . . . ,0̃&. Fur-
thermore, there exists a nontrivial subgroupL̃,H̃, such that
we can implement probabilistic projections ontoL̃ and
u0, . . . ,0&'ùL̃.

To define the real computational subspace, choose a
trivial elementaPL̃ and define

u i &[uaiba2 i&, ~133!

for 0< i ,p. This subspace corresponds to the subgro

$ai%,L̃ of powers ofa.
A probabilistic projection onto the real computation

space, corresponding to$ai%, can be achieved in two step
The first step is to apply the probabilistic projection ontoL̃.
The second step is repeated for eachlPL̃ that is not in$ai%.
For fixedl, we use an ancilla to conjugate byl21, then do
the probabilistic projection ontou0, . . . ,0&'ùL̃, and then
conjugate byl using another ancilla:

(
xPL̃

axuxbx21&→ (
xPL̃

axulxbx21l21&

→C (
xPL̃,xÞl

axulxbx21l21&

→C (
xPL̃,xÞl

axuxbx21&, ~134!

where the probabilistic projection was assumed to succee
the second step, and therefore the state is renormalize
the constantC. The net effect of one such operation is
project out the stateulbl21&. If all the projections succeed
then we will have projected the original state into the co
putational basis, completing the probabilistic projection o
$ai%.

For the case of qudits withd5p.2 we are now done
The generalized controlled-X gate behaves as a controlled-X
gate when restricted to act on the computational space
probabilistic projection ontou0& is just the probabilistic pro-
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jection ontou0, . . . ,0& becauseu0, . . . ,0&5u0&. The probabi-
listic projection ontou0̃, . . . ,0̃& behaves as a probabilisti
projection ontou0̃& because

^ ĩ u0̃, . . . ,0̃&}d i ,0 , ~135!

with the caveat that we must use the projection onto
computational basis to turn theu0̃, . . . ,0̃& ancillas intou0̃&
ancillas. Finally, the probabilistic projection ont
u0, . . . ,0&'ùL̃ reduces to a probabilistic projection ontou0&'

when acting on states in the computational subspace. T
are the gates that were proven universal for quantum c
putation in Sec. IV.

Case pÄ2

Special treatment must be given to the case wh
p52—that is, when working with qubits. Though all th
gates constructed above are valid forp52, the gate set is no
universal. The problem is that the probabilistic projecti
onto u0&'5u1& does not provide any additional comput
tional power beyond the probabilistic projection ontou0&.

Just as in Sec. IV B, the gate set can be made unive
given a supply of the magic states:

ufM1&5
1

2 (
i , j

u i & ^ u j & ^ u i j &,

ufM2&5
1

2 (
i , j

vd i ,1d j ,1u i & ^ u j &, ~136!

where the second state can be produced from the first on
measuring the third qudit in theX basis.

The production of the magic stateufM1& is the step that
requires a projection constructed from the fusion of elec
charges. Given our choice ofaPL̃ above, assume tha
bab21PL̃. This must be the case ifL̃ was defined as the
intersection of kernels of functions. Clearly, we can apply
controlled conjugation bya and therefore, additionally, the
controlled conjugation bybab21 and byabab21. Note that
aÞbab21 becauseb was chosen to not commute witha.

We begin with theu0̃& ^ u0̃& ^ u0̃& state and append au0&
5ub& ancilla. We then conjugate it to obtain

1

A8
(
i 50

1

(
j 50

1

(
k50

1

u i & ^ u j & ^ uk& ^ u f i , j ,kb f i , j ,k
21 &, ~137!

where

f i , j ,k5a12 i~bab21!12 j xk, ~138!

with x to be determined in a moment. A probabilistic proje
tion ontou0, . . . ,0&' is then applied to the last ancilla, and th
conjugations are undone.

If the projection succeeds, we will have projected out tw
out of the initial eight basis states, depending on the value
xP$a,bab21,abab21%. In all cases, the stateu1& ^ u1&
^ u0& is removed, and for each of the three values ofx, one
6-24
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of the other undesirable basis states is removed. Repe
the procedure once for each value ofx produces the desire
magic stateufM1&. Note that the above procedure succee
becausea251 anda commutes withbab21.

What happens ifbab21 is not inL̃? This is the case whe
fusions of electric charges into the vacuum must be used
particular, instead of projecting out the undesirable ba
states, we increase the amplitude of the desired basis s
and obtain an ancilla that is exponentially close to the
sired magic state. The procedure is almost unchanged, ex
that the function involved is

f i , j ,k5ai~bab21! j x12k, ~139!

and the functionf i , j ,k8 5ai(bab21) j must also be used to
adjust the relative amplitude ofu1& ^ u1& ^ u1& with respect to
the other desired states.

In either case, we have now shown that case of qubits
be dealt with in a similar fashion to the general qudit ca
and therefore, we have completed the construction of uni
sal quantum computation for anyons based on solvable n
nilpotent groups.

VII. LEAKAGE CORRECTION

Before concluding this paper, it is important to address
issue of fault tolerance. A physical system with anyons w
have sources of errors due to the finite separation of any
and nonzero temperature~see Refs.@1,3,4# for details!. While
the probability of error is exponentially small in the distan
and temperature, it is in general nonzero. These errors c
be especially relevant if anyons are used as long-term q
tum memory, in which case error correcting codes must
employed.

While most of the machinery of error correcting cod
can be applied directly to anyons, it requires that states w
errors remain within the computational subspace~that is, the
subspace on which universal quantum computation can
done!. For our model of computation, this is only a sma
subspace corresponding to anyons that are magnetic ch
with fluxes such asaiba2 i and arranged in pairs of trivia
total flux. Note that only the magnetic charges need e
correction as they are the ones in which the quantum sta
stored.

All that is required to perform quantum error correction
to be able to replace qudits that have ‘‘leaked out’’ of t
computational subspace with arbitrary states that are in
computational subspace. This step can then be followed
the standard error correcting step, which will remove
errors. The leakage correction step is equivalent to the sw
if-leaked gate described by Kempeet al. @12#.

In Ref. @1# a leakage correction scheme was presented
nonsolvable anyons. While a similar scheme could be c
structed for the solvable anyons discussed in the presen
per, it will be easier to present a generic leakage correc
scheme that can also be applied to anyons.

The scheme is simply to teleport a computational qudi
a fresh qudit. The standard steps, shown in Fig. 1, are firs
create the entangled ancillauF&5( i u i & ^ u i &/Ad and then
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measure the computational qudit and the first ancilla qudi
the basisua,b&5XaZb

^ I uF&, obtaining outcomea,b. The
correction gateXaZb is then applied to the second ancil
qudit, which now becomes part of the computational spa
All these operations can be performed using the anyon g
discussed so far.

If the original qudit was in the computational space, th
its state will be flawlessly transfered into the new qudit~in
our case, a fresh anyon pair!. However, if the original qudit
had leaked, then the new qudit will be guaranteed to be in
computational subspace, because it was obtained by app
Pauli operators to a qudit known to be in the computatio
subspace. This is the desired leakage correction protoco

In fact, this scheme can be applied to almost any syst
as long as we can guarantee that the measurement of the
two qudits will not affect the third qudit in any way, a
should be the case if they are sufficiently separated.

The leakage correction scheme has caveat from a the
ical standpoint, though. We are effectively assuming that
possess a classical leakage detection machine, through w
the data ‘‘a,b’’ is run. That is, if the measurement produce
an outcome in the form of a voltage and then the gateXaZb

was constructed as a Hamiltonian controlled by this volta
we would need to guarantee that only thed2 acceptable volt-
age signals could reach the machine operating on the t
qudit. However, in practice, leakage correcting a class
signal is trivial, as classical information can be measu
without any negative side effects.

A very similar scheme can be produced given a quant
system that is known to have exactlyd states. The qudit is
simply swapped into the new system; the first system is t
erased and restored into the computational space, and
the qudit is swapped back. In this context, the teleportat
scheme is in effect a way of swapping a qudit into a class
system.

Though the leakage correction scheme was discusse
general terms, it clearly applies to the anyons discusse
this paper, and its use allows quantum error correction
fault tolerance to be employed. We have therefore shown
even in the presence of small sources of noise, the any
can still be used for universal quantum computation.

VIII. CONCLUDING REMARKS

The main result of this paper is that anyons from fin
groups that are solvable but not nilpotent are capable of
versal quantum computation. This set includes many gro
of small size, which are more likely to be found in a physic
system. Combined with the results of Ref.@1#, we have
proved that every finite group that is not nilpotent produc

FIG. 1. Leakage correction circuit.
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anyons capable of universal quantum computation.
Furthermore, except for the groups where the method

Sec. VI F 4 must be used, the computations with anyons
be made error free in the following sense: in the theoret
limit of zero temperature and infinite separation betwe
anyons, an arbitrarily long calculation can proceed with
the need of error correction. The elementary unitaries
always perfect, whereas the measurements are either pe
or are known to have failed~i.e., when none of the probab
listic projections succeed!. This occurs with a probability
that can be made exponentially small in the number of
sions. Of course, a real system will have additional expon
tially small errors due to finite size and temperature effec

The physical requirements for the constructions in t
paper include a supply of electric charge ancillas, in addit
to the requirements of Ref.@1#. The necessity of the electri
charges may present an extra source of difficulties for a
implementation. The exception isS3, in which case only
magnetic charges are required, as mentioned at the en
Sec. III. In either case, the issue of producing the elemen
electric or magnetic ancillas is not addressed in this pa
though a generalization of the construction in Ref.@1# may
be sufficient.

Another open question is whether anyons from no
Abelian nilpotent groups are capable of universal quant
computation. Additionally, not much is known about com
puting with anyons that do not belong to the electric a
magnetic charge model discussed in this paper. On the o
B

.

te
A,
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hand, the universality of anyons from certain continuo
groups has been discussed in Refs.@13,14#.

Of course, the most important open question is whet
we can find a laboratory system with anyons out of which
quantum computer can be built. The requirement of a tw
dimensional space severely limits the possibilities. Howev
certain exotic systems such as the fractional levels of
quantum Hall effect may contain non-Abelian anyons. A
other option is the possibility of engineering a system w
the desired anyons. Recent proposals include using op
lattices @15# or Josephson-junction arrays@16#. In the latter
case, an explicit array is constructed that simulatesS3 gauge
theory on a lattice. Ideally, one day such a system could
used to turn the ideas presented here into a working quan
computer.
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