THE CLASSIFICATION OF HYPERFINITE BOREL EQUVALENCE RELATIONS

par A.S. Kechris

Let X be a standard Borel space and E a Borel equivalence relation on X. We call E hyperfinite if there is a Borel automorphism T of X such that $xEy \Leftrightarrow \exists n \in \mathbb{Z}(T^n x = y)$.

For Borel equivalence relations E, F on X, Y resp. we write

$$E \preceq F \Leftrightarrow \exists f : X \rightarrow Y (f \text{ Borel, injective with } E = f^{-1}[F])$$

$$E \approx F \Leftrightarrow E \preceq F \text{ and } F \preceq E$$

$$E \cong F \Leftrightarrow \exists f : X \rightarrow Y (f \text{ a Borel isomorphism with } E = f^{-1}[F])$$

A Borel equivalence relation E on X is called smooth if there is a Borel map $f : X \rightarrow Y$ (Y some standard Borel space) with $xEy \Leftrightarrow f(x) = f(y)$.

THEOREM 1. (Doughe rty-Jackson-Kechris). Let E, F be two non-smooth, hyperfinite Borel equivalence relations. Then $E \approx F$.

A hyperfinite E is called aperiodic if every E-equivalence class of E is infinite. Given such an E, we denote by $\mathcal{E}(E)$ the space of E-ergodic, invariant probability measures. (A
measure is E-ergodic if every E invariant Borel set is null or conull and E-invariant if it is T-invariant for a Borel automorphism T that induces E - this is independent of T).

THEOREM 2. (Dougherty-Jackson-Kechris). Let E, F be aperiodic, non-smooth hyperfinite Borel equivalence relations. Then

$$E \cong F \iff \text{card } (\mathcal{E}(E)) = \text{card } (\mathcal{E}(F)).$$

This has been conjectured by M.G. Nadkarni, who proved first the case when the above cardinality is countable.

It follows that up to Borel isomorphism the only aperiodic, non-smooth hyperfinite Borel equivalence relations are

- E_t (on $2^\mathbb{N}$, where $x E_t y \iff \exists n \exists m \forall k(x_{n+k} = y_{m+k})$
- $E_0 \times \Delta(n)$ (where E_0 on $2^\mathbb{N}$ is given by $x E_0 y \iff \exists n \forall m \geq n(x_m = y_m)$ and $\Delta(n)$ is the equality relation on n elements, for $1 \leq n \leq \aleph_0$)
- E_5^* (where E_5^* is the aperiodic part of the equivalence relation induced by the shift on $2^\mathbb{Z}$).

The above results will appear in a forthcoming paper by the author entitled: The structure of hyperfinite Borel equivalence relations.

Department of Mathematics
CALTECH
Pasadena
CA 91125 U.S.A.