State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
(Received 4 November 2002; published 3 April 2003)

Single cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap, with observed lifetimes of 2–3 s. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ≈1 s. The loss of successive atoms from the trap \(N \geq 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \) is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the trap potential, for which the center-of-mass motion is only weakly dependent on the atom’s internal state.

A major obstacle to the integration of a conventional red-detuned FORT within the setting of cavity QED is that excited electronic states generally experience a positive ac-Stark shift of comparable magnitude to the negative (trapping) shift of the ground state [13]. This effectively introduces a spatially dependent detuning between the atom and cavity resonances, an unfortunate additional complication [16]. However, due to the specific multilevel structure of cesium, the wavelength \(\lambda_F \) of the trapping laser can be tuned to a region where both of these problems are eliminated for the \(6S_{1/2} \rightarrow 6P_{3/2} \) transition, as illustrated in Fig. 1 [14–16]. Around the magic wavelength \(\lambda_F = 935 \) nm, the sum of ac-Stark shifts coming from different allowed optical transitions results in the ground \(6S_{1/2} \) and excited \(6P_{3/2} \) states both being shifted downwards by comparable amounts, \(\delta_{6S_{1/2}} \approx \delta_{6P_{3/2}} \), albeit with small dependence on \((F', m_F) \) for the shifts \(\delta_{6P_{3/2}} \).

The task then is to achieve state-independent trapping while still maintaining strong coupling for the \(6S_{1/2} \rightarrow 6P_{3/2} \) transition. Our experimental setup to achieve this end is schematically depicted in Fig. 2 [2]. Significantly, the cavity has a TEM00 longitudinal mode located nine

FIG. 1 (color online). ac-Stark shifts \(\delta_{6S_{1/2}} \) and \(\delta_{6P_{3/2}} \) for the \(6S_{1/2}, 6P_{3/2} \) levels in Cs for a linearly polarized FORT. The inset shows \(\delta_{6S_{1/2}}, \delta_{6P_{3/2}} \) as functions of wavelength \(\lambda_F \). The full plot gives \(\delta_{6P_{3/2}} \) versus \(m_F \) for each of the levels \(6P_{3/2}, F' = 2, 3, 4, 5 \) for \(\lambda_F = 935.6 \) nm. In each case, the normalization is \(\delta = \delta / \delta_{6S_{1/2}}(\lambda_F = 935.6 \) nm).
mode orders below the mode employed for cavity QED at 852 nm, at the wavelength $\lambda_F = 935.6 \text{ nm}$, allowing the implementation of a FORT with $\delta_{6S_{1/2}} \approx \delta_{6P_{3/2}}$. The field to excite this cavity mode is provided by a laser at λ_F, which is independently locked to the cavity. The finesse of the cavity at λ_F is $\mathcal{F} \sim 2200$ [17], so that a mode-matched input power of 1.2 mW gives a peak ac-Stark shift $\delta_{6S_{1/2}}/2\pi = -47 \text{ MHz}$ for all states in the $6S_{1/2}$ ground manifold, corresponding to a trap depth $U_0/k_B = 2.3 \text{ mK}$, which was used for all experiments.

Principal parameters relevant to cavity QED with the system in Fig. 2 are the Rabi frequency $2g_0$ for a single quantum of excitation and the amplitude decay rates (κ, γ) due to cavity losses and atomic spontaneous emission. For our system, $g_0/2\pi = 24 \text{ MHz}$, $\kappa/2\pi = 4.2 \text{ MHz}$, and $\gamma/2\pi = 2.6 \text{ MHz}$, where g_0 is for the $(6S_{1/2}, F = 4, m_F = 4) \rightarrow (6P_{3/2}, F' = 5, m'_F = 4)$ transition in atomic Cs at $\lambda_0 = 852.4 \text{ nm}$. Strong coupling is thereby achieved [$g_0 \gg (\kappa, \gamma)$], resulting in critical photon and atom numbers $n_0 = \gamma^2/(2g_0^2) \approx 0.006$, $N_0 = 2\kappa\gamma/g_0^2 \approx 0.04$. The small transition shifts for our FORT mean that g_0 is considerably larger than the spatially dependent shift δ_0 of the bare atomic frequency employed for cavity QED. $g_0 \gg \delta_0 \equiv |\delta_{6P_{3/2}} - \delta_{6S_{1/2}}|$, whereas in a conventional FORT, $\delta_0 \sim 2|\delta_{6S_{1/2}}| \gg g_0$.

In addition to the FORT field, the input to the cavity consists of probe and locking beams, all of which are directed to separate detectors at the output. The transmitted probe beam is monitored using heterodyne detection, allowing real-time detection of individual cold atoms within the cavity mode [18]. The cavity length is actively controlled using a cavity resonance at $\lambda_C = 835.8 \text{ nm}$, so the length is stabilized and tunable independently of all other intracavity fields [2]. The probe as well as the FORT beam are linearly polarized along a direction \hat{L}_z orthogonal to the x axis of the cavity [17,19].

Cold atoms are collected in a magneto-optical trap (MOT) roughly 5 mm above the cavity mirrors and then released after a stage of sub-Doppler polarization-gradient cooling [13]. Freely falling atoms arrive at the cavity mode over an interval of about 10 ms, with kinetic energy $E_K/k_B \approx 0.8 \text{ mK}$, velocity $v \approx 0.30 \text{ m/s}$, and transit time $\Delta t = 2w_0/v \approx 150 \text{ ms}$. Two additional orthogonal pairs of counterpropagating beams in a $\sigma^+ - \sigma^-$ configuration illuminate the region between the cavity mirrors along directions at $\pm 45^\circ$ relative to \hat{y}, \hat{z} (the “$y-z$ beams”) and contain cooling light tuned red of $F = 4 \rightarrow F' = 5$ and repumping light near the $F = 3 \rightarrow F' = 3$ transition [20]. These beams eliminate the free-fall velocity to capture atoms in the FORT and provide for subsequent cooling of trapped atoms.

We employed two distinct protocols to study the lifetime for single trapped atoms in our FORT: (1) Trapping in the dark with the atom illuminated only by the FORT laser at λ_F and the cavity-locking laser at λ_C. For this protocol, strong coupling enables real-time monitoring of single atoms within the cavity for initial triggering of cooling light and for final detection. (2) Trapping with continuous observation of single atoms with cavity probe and cooling light during the trapping interval. In this case, atoms in the cavity mode are monitored by way of the cavity probe beam, with cooling provided by the auxiliary $y-z$ beams.

(1) In our first protocol, the $F = 4 \rightarrow F' = 5$ transition is strongly coupled to the cavity field, with zero detuning of the cavity from the bare atomic resonance, $\Delta_p = \omega_p - \omega_{4-5} = 0$. In contrast to Ref. [2], here the FORT is ON continuously without switching, which makes a cooling mechanism necessary to load atoms into the trap. The initial detection of a single-atom falling into the cavity mode is performed with the probe beam tuned to the lower sideband of the vacuum-Rabi spectrum ($\Delta_p = \omega_p - \omega_{4-5} = -2\pi \times 20 \text{ MHz}$). The resulting increase in transmitted probe power when an atom approaches a region of optimal coupling [21,22] triggers ON a pulse of transverse cooling light from the $y-z$ beams, detuned 41 MHz red of ω_{4-5}. During the subsequent trapping interval, all near-resonant fields are turned OFF (including the transverse cooling light). After a variable delay τ_T, the probe field is switched back ON to detect whether the atom is still trapped, now with $\Delta_p = 0$.

Data collected in this manner are shown in Fig. 3(a), which displays the conditional probability P to detect an atom given an initial single-atom triggering event versus the time delay τ_T. The two data sets shown in Fig. 3(a) yield comparable lifetimes, the upper acquired with mean intracavity atom number $\bar{N} = 0.30$ atoms and the lower with $\bar{N} = 0.019$ [23]. The offset in P between these two curves arises primarily from a reduction in duration δt of the cooling pulses, from 100 to 5 μs, which results in a reduced capture probability. Measurements with constant δt but with \bar{N} varied by adjusting the MOT parameters allow us to investigate the probability of trapping an atom other than the “trigger” atom and of capturing more than one atom. For example, with $\delta t = 5 \mu$s as in the lower set,
we have varied \(0.011 \leq \tilde{N} \leq 0.20 \) with no observable change in either \(P_T \) or the trap lifetime \(\tau \). Since a conservative upper bound on the relative probability of trapping a second atom is just \(\tilde{N}/2 \) (when \(\tilde{N} \ll 1 \)), these data strongly support the conclusion that our measurements are for single trapped atoms. We routinely observe lifetimes \(2 \, \text{s} < \tau < 3 \, \text{s} \) depending upon the parameters chosen for trap loading and cooling.

Figure 3(b) explores scattering processes within the FORT that transfer population between the \(6S_{1/2}, F = (3, 4) \) ground-state hyperfine levels. For these measurements, the \(F = 4 \) level is initially depleted, and then the population in \(F = 4 \) as well as the total \(3 + 4 \) population are monitored as functions of time \(t_D \) to yield the fractional population \(f_4(t_D) \) in \(F = 4 \). The measured time \(\tau_R = (0.11 \pm 0.02) \, \text{s} \) for reequilibration of populations between \(F = (3, 4) \) agrees with a numerical simulation based upon scattering rates in our FORT, which predicts \(\tau_R = 0.10 \, \text{s} \) for atoms trapped at the peak FORT intensity in an initially unpolarized state in the \(F = 3 \) level.

Turning next to the question of the mechanisms that limit our FORT lifetime, we recall that parametric heating can be caused by intensity fluctuations of the trapping field \([2,24]\). From measurements of intensity fluctuations for our FORT around twice the relevant harmonic frequencies \(\nu_{\text{axial}} = 570, \nu_{\text{radial}} = 4.8 \) kHz, we estimate a lower bound to the FORT lifetime of \(\tau_p^{\text{axial}} > 1.6 \, \text{s} \) \([25]\). Although this estimate suggests that parametric heating could be a limiting factor in Fig. 3, we were later able to reduce the noise, giving a new lower bound \(\tau_p^{\text{axial}} > 9 \, \text{s} \). Unfortunately, the measured FORT lifetime increased only to \(\tau = (3.1 \pm 0.4) \, \text{s} \), indicating that other mechanisms are partially responsible for the observed decay.

A second suspect is a heating process described by Corwin et al. \([26]\) associated with inelastic Raman scattering in an elliptically polarized FORT field \([19]\). We calculate rates \(\Gamma_s \) for spontaneous Raman scattering in our FORT to be \(2.5 \) to \(7 \, \text{s}^{-1} \) for transitions that change the hyperfine quantum number \(F \), and between \(0.8 \) and \(2.5 \, \text{s}^{-1} \) when \(m_F \) changes \([27]\). Based on Eq. 3 in Ref. \([26]\) (a two-state model), we estimate an upper limit to the heating rate from this mechanism, \(\Gamma_{IR} \leq 0.2 \Gamma_s \), giving heating times as short as \(0.7 \, \text{s} \) for the fastest calculated scattering rate. However, we have also undertaken a full multilevel simulation of the optical pumping processes, which indicates much slower heating, \(\Gamma_{IR} \sim 0.02 \, \text{s}^{-1} \). We are working to resolve this discrepancy.

A third suspect that cannot be discounted is the presence of stray light, which we have endeavored to eliminate. For lifetimes as in Fig. 3, we require intracavity photon number \(\bar{n} \ll 10^{-5} \), which is not trivial to diagnose. A final concern is the background pressure in the region of the FORT. Although the chamber pressure is \(3 \times 10^{-10} \, \text{Torr} \) (leading to \(\tau \approx 30 \, \text{s} \)), we have no direct measurement of the residual gas density in the narrow cylinder between the mirror substrates (diameter 1 mm and length 43 \(\mu \text{m} \)), except for the trap lifetime itself.

(2) Toward the goals of continuous observation of single trapped atoms \([3,4]\) and of implementing \(\Lambda \) schemes in cavity QED \([7-9,28]\), we next present results from our second protocol. Here the \(F = 4 \rightarrow F' = 4 \) transition is strongly coupled to the cavity field, with \(\Delta_C' = \omega_C - \omega_{4\rightarrow4} = 0 \). In contrast to our protocol (1), the FORT and the transverse \(y - z \) beams are left \(\text{ON} \) continuously, with the latter containing only light near the \(F = 3 \rightarrow F' = 3 \) resonance, with detuning \(\Delta_3 \). Significantly, we observe trap loading with no cooling light near the \(F = 4 \rightarrow F' = 5 \) transition.

An example of the resulting probe transmission is shown in Fig. 4, which displays two separate records of the continuous observation of trapped atoms. Here the probe detuning \(\Delta_p' = \omega_p - \omega_{4\rightarrow4} = 0 \) and the probe strength is given in terms of \(\bar{m} = (|\bar{b}|)^2 \) deduced from the heterodyne current, with \(\bar{a} \) as the annihilation operator for the intracavity field. We believe that the \(y - z \) repumping beams (which excite \(F = 3 \rightarrow F' = 3 \)) provide cooling, since without them the atoms would “roll” in and out of the near-conservative FORT potential (indeed no trapping occurs in their absence). In addition, this is a continuous cooling and loading scheme, so that we routinely load multiple atoms into the trap.

The most striking characteristic of the data collected in this manner is that \(\bar{m} \) versus \(t \) always reaches its deepest level within the \(\approx 10 \, \text{ms} \) window when the falling atoms arrive, subsequently increasing in a discontinuous “staircase” of steps. As indicated in Fig. 4, our interpretation is that there is a different level for \(\bar{m} \) associated with each value \(N \) of the number of trapped atoms (with the level decreasing for higher \(N \)), and that each step is due to the loss of an atom from the cavity mode. In addition, we observe a strong dependence both of the initial trapping...
probability and of the continuous observation time on the
detuning of the transverse beams, with an optimal value
\(\Delta_1 \approx 25 \text{ MHz} \) to the blue of the \(3 \rightarrow 3 \) transition, which
strongly suggests blue Sisyphus cooling [29].

We stress that observations as in Fig. 4 are made
possible by strong coupling in cavity QED, for which
individual intracavity atoms cause the displayed changes
in probe transmission. While \(\dot{m} \) in Fig. 4 is only \(\approx 0.01 \), it
represents an output flux \(\approx 5 \times 10^5 \) photons per second.

The probe is also critical to the cooling, although it is not
sensitive trapping suitable for strong coupling. Trapping
Besides, we have demonstrated a new set of ideas within the setting of cavity QED, including state-
insensitive trapping suitable for strong coupling. Trapping
of single atoms with \(g_0 \gg (\delta_0, \kappa, \gamma) \) has been achieved
with lifetimes \(\tau \approx 2 \text{–} 3 \) s. Since intrinsic heating in the
FORT is quite low (\(\sim 11 \mu \text{K}/\text{s} \) due to photon recoil),
we anticipate extensions to much longer lifetimes.

Continuous observations of multiple atoms in a cavity
have been reported, and involve an interplay of a strongly
coupled probe field for monitoring and a set of \(y \rightarrow z \) cooling beams. Our measurements represent the first
demonstration of cooling for trapped atoms strongly
coupled to a cavity. Beyond its critical role here, state-
insensitive trapping should allow the application of
diverse laser cooling schemes, leading to further advances
in quantum information science.

We gratefully acknowledge the contributions of
K. Birnbaum, A. Boca, T.W. Lynn, S. J. van Enk, D.W.
Vernooy, and J. Ye. This work was supported by the
Caltech MURI Center for Quantum Networks under

FIG. 4 (color online). Two traces of the continuous observation
of trapped atoms inside a cavity in a regime of strong
coupling. After an initial sharp reduction around \(t = 0 \) as
atoms are cooled into the cavity mode, the intracavity field
strength \(\dot{m} \) increases in a discontinuous fashion as trapped
atoms escape from the cavity mode one by one. rf detection
bandwidth \(= 1 \text{ kHz} \), \(\Delta \dot{c} = 0 = \Delta _v \), and \(\Delta _3 / 2 \pi = 25 \text{ MHz} \).

Trapping (Springer-Verlag, Berlin, 1999).
[14] C.J. Hood and C. Wood, as described by H.J. Kimble et al., in Laser Spectroscopy XIV, edited by (World
[19] Because of small stress-induced birefringence in the
cavity mirrors, we align the directions of linear polarization
along an axis that coincides with one of the cavity
eigenpolarizations [17], denoted by \(L \). For initial polarization
along \(L \), measurements of FORT [probe] polarization
along \(L \) for the cavity output power \(P \) give
\(P_p / P_+ < 0.02 \) [0.002] for the FORT [probe] beam.
[20] The (incoherent) sum of the four intensities is \(I_{4-5} \sim 60 \text{ mW/cm}^2 \) for the cooling and \(I_{3-3} \sim 40 \text{ mW/cm}^2 \)
for the repumping light, with uncertainties of roughly 2
times.
[22] Specific examples of single-atom detection events are
omitted here. For \(\Delta_p \neq -s_0 \), the increases in cavity
transmission are quite similar to those in Refs. [3,21],
while for \(\Delta_p = 0 \) the decreases are similar to those in
Refs. [2,18], albeit now in the presence of the FORT.
[23] \(\tilde{N} \) is estimated from the mean number of atom transit
events (of duration \(\approx 150 \mu \)s) during the interval \(t = 10 \text{ ms} \)
from the falling MOT atoms, in the absence of
trapping.
Gardiner et al., ibid. 61, 045801 (2000).
[25] The predicted \(\tau_{\text{opt}} > 10^4 \) s.
references therein.