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Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine

the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration

results in an average softening of the phonon modes. Chemical ordering of the Ni0:72Fe0:28 alloy

results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly

change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states

with composition and chemical ordering are discussed and analyzed with a cluster expansion

method. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794354]

Ni-Fe alloys are technologically important as they ex-

hibit low coefficients of thermal expansion (Invar behavior)1

and are promising candidates for magnetocaloric applica-

tions.2 At elevated temperatures, these alloys are stable as

random solid solutions in the face-centered-cubic (fcc) crys-

tal structure over the entire composition range. Alloy compo-

sitions near 23 at. % Fe undergo a chemical ordering

transition at 517 �C, where a low-temperature, chemically or-

dered L12 phase (AuCu3 prototype) transforms to the high-

temperature, chemically disordered A1 phase (Cu proto-

type).3 Differences in vibrational entropy are thermodynami-

cally important for order-disorder transitions especially at

high temperatures.4 The vibrational entropy is calculated

from the phonon density of states (DOS). In what follows,

measurements of the DOS of fcc Ni-Fe alloys are described

and changes with alloying and ordering are parameterized

and discussed.

Alloys of Ni1�xFex with nominal compositions x¼ {0.05,

0.10, 0.28, 0.50, 0.60, 0.70} were prepared from foils of

99.9% purity Ni and 96.06% enriched 57Fe by arc-melting

under an argon atmosphere. Electron microprobe measure-

ments confirmed the compositions to be accurate to 0.4 at. %.

The ingots were cold rolled to thicknesses between 30 and

60 lm. To remove strains and ensure a random solid solution,

the foils were sealed in quartz tubes under a partial argon

atmosphere, annealed for 80 min at 1000�C, and quenched

into iced brine. To induce ordering in the Ni0:72Fe0:28 alloy,

the sample was allowed to slow cool from 1000 �C to 455 �C
over 40 h, then held at 455 �C for 4 weeks followed by air

cooling. The aging condition was in accordance with the

chemical ordering study of FeNi3 by Wakelin and Yates.5

Nuclear resonant inelastic x-ray scattering (NRIXS)6–8

was performed at beamline 16-ID-D at the Advanced Photon

Source, Argonne National Laboratory. The incident photon

energy was tuned to 14.413 keV, the nuclear resonance

energy of 57Fe. Data were collected in scans of incident pho-

ton energy from �80 to þ80 meV around the resonant

energy. The monochromator resolution function was meas-

ured in-situ using a single APD in the forward direction, and

was found to be 2.2 meV FWHM. The NRIXS data were

reduced with the software PHOENIX.9 The resulting 57Fe pho-

non partial DOS curves are shown in Figs. 1 and 2.

Inelastic neutron scattering (INS) measurements on

alloys of compositions x¼ {0, 0.28, 0.70} were performed

with the wide angular-range chopper spectrometer (ARCS)10

at the Spallation Neutron Source at the Oak Ridge National

Laboratory. These samples were prepared from natural Fe

(i.e., with no enrichment of 57Fe) and were cold rolled to a

thicknesses of 350 lm. The INS samples were given the

same heat treatments used for the NRIXS samples. The

measurements were performed with a monochromatic beam

of neutrons with an incident energy of 80 meV. The instru-

ment resolution was measured using a diamond powder with

the same incident energy. The FWHM in wave-vector space

was 0:06Å
�1

and in energy space was 2.5 meV. Integrating

the neutron scattering intensity around the elastic peak from

�5 to þ5 meV provides diffraction patterns (Fig. 3). The

breadth of the diffraction patterns in Fig. 3 is due to instru-

ment resolution. Details of the data reduction procedures are

described elsewhere,11–14 and the resulting neutron-weighted

phonon DOS curves are shown in Figs. 1 and 2. The results

are in agreement with the measurements of Hallman and

Brockhous.15

Despite Fe and Ni having similar coherent scattering

lengths of bFe ¼ 9:45� 10�15 m and bNi ¼ 10:3� 10�15 m,

the difference is enough to clearly generate superlattice

reflections in the annealed Ni0:72Fe0:28 sample (Fig. 3). An

order parameter L ¼ 0:37 was determined from the ratio of

the intensities of the (100) and (110) superlattice peak
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intensities to the (220) fundamental peak, following the

method of Ziller et al.16 The intensity of the superlattice

peaks for a perfectly ordered sample was calculated by set-

ting L ¼ 1 and solving for the ratio of the intensities (solid

diamonds in Fig. 3).

The vibrational entropy Sph is obtained from the normal-

ized phonon DOS, g(E)

SvibðTÞ ¼ 3kB

ð1
0

gðEÞ ð½1þ nðTÞ�ln½1þ nðTÞ�

�nðTÞlnnðTÞÞ dE; (1)

where nðTÞ ¼ ðexpðE=ðkBTÞÞ � 1Þ�1
is the Planck distribu-

tion for phonon occupancy.17 The partial vibrational

entropy of the Fe atoms from the NRIXS measurements

and the Ni atoms from a combination of the NRIXS and

INS measurements is plotted in Fig. 4. The total vibrational

entropy of the alloy is a concentration-weighted sum of

the Ni and Fe values. As a function of concentration, the

random solid solution has a nearly linear dependence,

where increasing the Fe concentration increases the

vibrational entropy. This indicates a general softening

(shift to lower energies) of the phonon modes with Fe

concentration in the fcc phase. Ordering has a large effect

on the vibrational entropy of the Ni0:72Fe0:28 alloy for the

Fe atoms, but a negligible effect on the Ni atoms. It is

generally expected that a reduction in the vibrational

entropy occurs with ordering, since systems that tend to

order have stronger bonds between unlike atoms. However,

an exception to this trend was recently observed for V-Fe

alloys.18

Chemical ordering from the disordered alloy to the

L12 phase results in a larger change for the local chemical

environment of the Fe atoms than for the Ni atoms. In a

FIG. 1. 57Fe partial DOS curves from NRIXS spectra (lines with error bars)

and INS DOS curves (solid circles) at 300 K for the random solid solutions.

Curves are offset by multiples of 0:03meV�1.

FIG. 2. 57Fe partial DOS curves from NRIXS spectra (top panel) and INS

DOS curves (bottom panel) at 300 K for the random solid solution and L12

ordered alloy (curves with no offset). For comparison (curves offset by

0:03 meV�1), the disordered Ni0:72Fe0:28 alloy is compared to the 57Fe DOS

of Ni0:95Fe0:05 (top panel) and the DOS of Ni from INS (bottom panel).

FIG. 3. Scattering as a function of momentum transfer Q from neutron scat-

tering for disordered (dashed line) and ordered (solid line) Ni0:72Fe0:28.

Superlattice reflections indicative of chemical ordering are denoted with an

“s.” The diamond shows the calculated intensity of the (100) and (110)

superlattice reflections for complete ordering.

FIG. 4. Phonon entropy at 300 K of NiFe alloys as a function of

composition.
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disordered alloy, the average number of Ni atoms in the

first-nearest-neighbor shell (1nn) of an Fe atom is

ð1� xÞ � 12, which is 8.64 for x¼ 0.28. Perfect chemical

ordering results in a complete 1nn shell of Ni atoms for the

Fe atom at Ni3Fe stoichiometry. Off-stoichiometry, and for

different degrees of short- and long-range chemical order-

ing, there is an increase in the number of Ni atoms in the

1nn shell of Fe with increasing chemical order. For the Ni

atoms, the number of Fe atoms in the 1nn shell does not

change as much with chemical ordering (from three 1nn Fe

atoms for the chemically disordered Ni0:75Fe0:25 to four

1nn Fe atoms for the L12 ordered Ni3Fe). Variations in

chemical composition, and variations in short- and long-

range order, alter the number of Ni atoms in the 1nn shell

of Fe atoms.

Chemical ordering results in a change in the number of

1nn Ni atoms for Fe atoms that is similar to a reduction in Fe

concentration. Figure 2 shows a comparison of the disor-

dered Ni0:72Fe0:28 with the ordered alloy and the disordered

Ni0:95Fe0:05. For the low-energy modes below 30 meV, the

effect on the DOS with ordering is similar to reducing the Fe

concentration. However, at higher energies, there is a shift to

higher frequencies with decreasing Fe concentration and no

change upon ordering.

A useful way to parameterize the effect of chemical

ordering on the DOS is to use the cluster expansion formal-

ism. Details of the methodology can be found elsewhere.19,20

Here, a least-squares inversion was performed using the

DOS of the random solid solutions from NRIXS using 3

terms in the expansion, giving the interaction DOS (IDOS)

curves of Fig. 5. The IDOS functions have physical meaning

from the type of cluster they represent. The n¼ 0 term corre-

sponds to the empty lattice and its IDOS is the Ni0:50Fe0:50

random solid solution. The n¼ 1 term corresponds to the

point cluster, and gives the concentration dependence of the

DOS. The n¼ 2 term corresponds to the pair cluster and

gives the pairwise dependence of the DOS. The interesting

aspect of the curves in Fig. 5 is that the pair term is similar

in shape but larger in magnitude than the point term. This

indicates that chemical ordering has a larger effect on the

DOS than changes in concentration, although the two affect

the DOS in similar ways. Figure 4 shows that the effects of

chemical ordering are comparable to those of composition,

even though the change in chemical order was relatively

small in our samples.

To summarize, phonon spectra were measured for fcc

Ni-Fe alloys using inelastic x-ray and neutron scattering

techniques. Chemical ordering was observed from the neu-

tron scattering measurements, which resulted in a decrease

in the vibrational entropy and a change in the phonon density

of states of the Fe atoms that was similar to the changes

induced by alloying. This chemical dependence of the Fe

atom DOS was confirmed using the cluster inversion

method, showing a relatively strong dependence on the state

of chemical order. In contrast, the Ni atom vibrations did not

show a large change with chemical ordering, which may be

attributed to the smaller change in the local chemical envi-

ronment as compared to the Fe atoms.
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