Search for long-lived, multi-charged particles in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

A search for highly ionising, penetrating particles with electric charges from $|q| = 2e$ to $6e$ is performed using the ATLAS detector at the CERN Large Hadron Collider. Proton-proton collision data taken at $\sqrt{s} = 7$ TeV during the 2011 running period, corresponding to an integrated luminosity of 4.4 fb$^{-1}$, are analysed. No signal candidates are observed, and 95% confidence level cross-section upper limits are interpreted as mass-exclusion lower limits for a simplified Drell–Yan production model. In this model, masses are excluded from 50 GeV up to 430, 480, 490, 470 and 420 GeV for charges $2e, 3e, 4e, 5e$ and $6e$, respectively.
1. Introduction

Numerous theories of physics beyond the Standard Model (SM) predict long-lived, exotic objects producing anomalous ionisation. These include magnetic monopoles [1], dyons [2], long-lived micro black holes in models of low-scale gravity [3] and Q-balls [4], which are non-topological solitons predicted by minimal supersymmetric generalisations of the SM. No such particles have so far been observed in cosmic-ray and collider searches [1-5], including several recent searches at the Large Hadron Collider (LHC) [6-13]. The high centre-of-mass energy of the LHC makes a new energy regime accessible, and searching for multi-charged particles with electric charges $2\leq |q| \leq 6$ complements the searches for singly charged particles [10] and for particles with charges beyond $6e$ [8].

The existence of long-lived particles with an electric charge $|q| > e$ could have implications for the formation of composite dark matter [13]. Two extensions of the SM in which heavy stable multi-charged particles are predicted are the AC model [15] and the walking technicolour model [16-18]. The AC model is based on the approach of almost-commutative geometry [19] which extends the fermion content of the SM by two heavy particles with opposite electric charges, $\pm q$. The minimal walking technicolour model predicts the existence of three particle pairs, with electric charges given in general by $q + e$, q, and $q - e$, which would behave like leptons in the detector. In both of these models, $|q|$ may be larger than e.

This Letter describes a search for multi-charged particles in $\sqrt{s} = 7$ TeV pp collisions using data collected in 2011 by the ATLAS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 4.4 fb^{-1}. Multi-charged particles will be highly ionising, and thus leave an abnormally large specific ionisation signal, dE/dx. In this Letter, a search for such particles traversing the ATLAS detector leaving a track in the inner tracking detector, and producing a signal in the muon spectrometer, is reported. A SM-like coupling proportional to the electric charge is assumed as the production model of the multi-charged particles. Therefore, the main production mode is Drell–Yan (DY) with no weak coupling. Multi-charged particles can also be pair-produced from radiated photons resulting in a larger production cross section, and in some cases non-perturbative effects [20] can also enhance the production rate. In the derivation of limits, neither enhancement is included in the calculation resulting in conservative limits in these scenarios.

2. ATLAS detector

The ATLAS detector [21] covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector (pixel), a silicon microstrip detector (SCT) and a Transition Radiation Tracker (TRT). Apart from being a straw-based tracking detector, the TRT (covering $|\eta| < 2.0$) also provides particle identification via transition radiation and ionisation energy loss measurements [22]. The ID is surrounded by a thin superconducting solenoid providing a 2T axial magnetic field, and by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. An iron–scintillator tile calorimeter provides hadronic energy measurements in the central rapidity region. The endcap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic energy measurements. The calorimeter system is surrounded by a

1 The term long-lived in this paper refers to a particle that does not decay within the ATLAS detector.

2 The ATLAS coordinate system is right-handed with the pseudorapidity, η, defined as $\eta = -\ln(\tan(\theta/2))$, where the polar angle θ is measured with respect to the LHC beamline. The azimuthal angle, ϕ, is measured with respect to the x-axis, which points towards the centre of the LHC ring. The z-axis is parallel to the anti-clockwise beam viewed from above. Transverse momentum and energy are defined as $p_T = p \sin \theta$ and $E_T = E \sin \theta$, respectively.

Preprint submitted to Elsevier May 9, 2013
muon spectrometer (MS) incorporating three superconducting toroid magnet assemblies. The MS is a combination of several sub-detectors used to measure muons that traverse the ATLAS calorimeters. The Resistive Plate Chambers (RPC) in the barrel region (|\eta| < 1.05) and the Thin Gap Chambers (TGC) in the endcap region (1.05 < |\eta| < 2.4) provide signals for the trigger for charged particles reaching the MS. Monitored Drift Tube (MDT) chambers measure the momentum and track positions of muons with very high precision.

3. Simulated samples

Benchmark samples of simulated events with multi-charged particles are produced for masses of 50, 100, 200, 300, 400, 500 and 600 GeV, with charges 2e, 3e, 4e, 5e and 6e. Pairs of long-lived multi-charged particles are simulated using MADGRAPH5 [23] via the DY process to model the kinematic distributions. The DY production model also determines the cross section used for limit setting. Typical values for the cross sections of simulated multi-charge pair production range from tens of pb for a mass of 50 GeV down to a few fb at a mass of 600 GeV. Events are generated using the CTEQ6L1 [24] parton distribution functions, and PYTHIA version 6.425 [25] is used for hadronisation and underlying-event generation. A GEANT4 simulation [26, 27] is used to model the response of the ATLAS detector, and the samples are reconstructed and analysed in the same way as the data. The production cross sections are estimated using MadGraph5 and are cross-checked with CalcHEP 3.4 [28]. Each simulated event is overlaid with additional collision events (“pile-up”) in order to reproduce the observed distribution of the number of proton–proton collisions per bunch crossing. In 2011 data the average number of interactions per bunch crossing was typically between 5 and 20. These samples are used to determine the detection efficiency, the resolution on the quantities used in the event selection and the associated systematic uncertainties for multi-charged particles. While the background estimation is data-driven, muons from Z \rightarrow \mu\mu simulated samples are used to calibrate the selection variables. These samples are generated in PYTHIA and passed through the GEANT4 simulation of the ATLAS detector.

4. Ionisation estimators

The specific energy loss, dE/dx, is described by the Bethe–Bloch formula [29]. The energy loss depends quadratically on the particle charge, q, so that particles with higher charges have a significantly higher energy loss.

4.1. MDT dE/dx

Each drift tube of the MDT system provides a signal proportional to the charge from ionisation, which is used to estimate dE/dx. A truncated mean of dE/dx, where the maximum value is removed, is used as the overall MDT dE/dx estimator. As each track crosses more than 20 drift tubes, the MDT dE/dx provides a good estimate of ionisation losses.

4.2. TRT dE/dx

Energy deposits in a TRT straw greater than 200 eV (low-threshold hits) are used for tracking, while those that exceed 6 keV (high-threshold hits) occur due to the passage of highly ionising particles or due to transition radiation emitted by highly relativistic electrons when they cross radiator material between the straws. The estimated dE/dx value for each hit is derived from the time the signal remains above the low threshold. The TRT dE/dx is the truncated mean of the dE/dx estimates, where the highest estimate is removed. On average, a track in the TRT contains 32 hits. Additionally, the ratio of the number of high-threshold (HT) hits to the total number of TRT hits on a given track f_{HT} provides a second estimator of high ionisation.

4.3. Pixel dE/dx

The pixel detector measures the charge from ionisation in each pixel. The dE/dx from the pixel detector is calculated from the truncated mean of measurements from several clusters of pixels [30]. Particles with charges higher than 2e deposit energies which easily exceed the dynamic range of the pixel detector readout. Therefore, the electronic signal is saturated and pixel information will not be read out leading to an unreliable dE/dx measurement for such particles.

4.4. dE/dx significance

The significance of each dE/dx variable is defined as the difference between the observed dE/dx of the track and that expected for muons, measured in units of the uncertainty of the measurement:

\[S (dE/dx) = \frac{dE/dx_{\text{track}} - \langle dE/dx_{\mu}\rangle}{\sigma(dE/dx_{\mu})}. \]

Here dE/dx_{\text{track}} represents the estimated dE/dx of the track, and \langle dE/dx_{\mu}\rangle and \sigma(dE/dx_{\mu}), respectively, are the mean and the width of the dE/dx distribution for muons in data.

To obtain expected dE/dx values and their resolution for the different detector components (MDT, TRT, Pixel), the dE/dx variables are calibrated with muons from Z \rightarrow \mu\mu events in data and simulation. Muons for this calibration are selected by requiring a track reconstructed in the MS matched to an oppositely charged pair with dimuon mass between 81 GeV and 101 GeV. Fig. 2 shows the comparison between these muons in data and simulation for the MDT and TRT dE/dx significance. While the TRT distribution shows good agreement except in the tails, a discrepancy between simulation and data is observed for the MDT significance. This discrepancy has a small effect on the limit setting, and the effect is included in the systematic uncertainties. Fig. 3 shows the distributions of the MDT and TRT dE/dx significance for simulated muons from Z \rightarrow \mu\mu production compared to those of multi-charged particles for different charges (2e, 4e and 6e) and for a mass of 200 GeV. For the multi-charge particle...
search, the $S(MDT \, dE/dx)$ and $S(TRT \, dE/dx)$ variables are required to exceed threshold values. These thresholds are established from the separation of the dE/dx significance distributions between muons and $|q| = 2e$ signal particles. The dE/dx significance distributions for higher charge values, $|q| > 2e$, are further separated from muons, as seen for simulated events in Fig. 2. The detailed response for these higher charge particles may not be perfectly modelled by the simulation due to saturation effects. However, their dE/dx response will certainly be higher than that of $|q| = 2e$ particles, and thus their detailed response has no significance for the analysis. The separation power of the pixel dE/dx significance is shown in Fig. 3 for a $2e$ charge at $m = 200$, 400 and 600 GeV. The behaviour of the dE/dx significance distributions is found to be as expected with respect to p_T, η, and ϕ. For simulated multi-charged particles the dE/dx significances strongly depend on the particle’s charge and weakly on the particle’s mass.

5. Event and candidate selection

Multi-charged candidates are sought for among those particles traversing the entire ATLAS detector, thus being initially selected as muons. Candidates are selected by analysing the specific ionisation losses in the different detectors. The search is based on a cut-and-count method, described in Section 6, where the signal region is defined by high dE/dx significances of the track measured by the TRT and MDT detectors.

Track reconstruction assumes particles with charge $\pm e$, whereas particles with higher charges bend more in the magnetic field. Therefore, the effective cut on the momentum of the multi-charged particle imposed by the trigger and selection is a factor of $|q|/e$ higher than the cut on the muon candidate. In the following, we will refer to p_T as the reconstructed transverse momentum assuming charge $|q| = 1e$.

5.1. Trigger and event selection

Events collected with a single-muon trigger \cite {31} with a transverse momentum threshold of $p_T = 18$ GeV are considered. In simulated events the trigger efficiency from the RPC is corrected as a function of a particle’s η and β, where β is the ratio of the particle’s velocity to the speed of light. Events are further required \cite {31} to contain either at least one muon with $p_T > 75$ GeV.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Comparison of normalised distributions of the $S(MDT \, dE/dx)$ (top) and $S(TRT \, dE/dx)$ (bottom) for muons from \(Z \rightarrow \mu \mu\) events in data and simulation.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Normalised distributions of $S(MDT \, dE/dx)$ (top) and $S(TRT \, dE/dx)$ (bottom) for simulated muons and multi-charged particles. Distributions are shown for the signal samples for $|q| = 2e$, $4e$ and $6e$, for a mass of 200 GeV.}
\end{figure}
or at least two muons with \(p_T > 15 \text{ GeV} \).

5.2. Candidate selection

Candidate particles are tracks reconstructed in the MS which are required to be matched to the object passing the muon trigger, and to originate within tolerances from the primary interaction point. They must also be within the acceptance region \(|\eta| < 2.0\), have a \(p_T > 20 \text{ GeV} \), and leave a high-quality track in the ID. However, because of potential pixel readout saturation, there is no requirement that a candidate particle has pixel information. The \(p_T \) measured by the muon system is smaller than the \(p_T \) measured in the ID due to energy loss in the calorimeters, and the \(p_T \) in the ID is used for candidate selection. In the track candidate selection, the measurement of the ionisation energy loss in the calorimeter system was not used. However, the calorimeter energy loss was validated for use as an independent cross-check in case of an observation of candidates above the expected background.

An initial preselection of highly ionising candidates is based on the pixel \(dE/dx \) significance and the TRT high-threshold fraction \(f_{HT} \). As seen in Fig. 3, the pixel \(dE/dx \) significance is a powerful discriminator for particles with a significance greater than 10. For higher values of \(|q|\), the pixel readout saturates and the \(dE/dx \) signal is no longer reliable. Therefore, to search for particles with \(|q| > 2e\), the TRT \(f_{HT} \) is used as a discriminating variable instead. The signal region is defined by requiring the \(f_{HT} \) to be above 0.4. This preselection using the pixel \(dE/dx \) or the \(f_{HT} \) reduces the background contribution by almost three orders of magnitude for both \(|q| = 2e\) and \(|q| > 2e\).

In the final step of the search, the MDT \(dE/dx \) significance, \(S(\text{MDT} \ dE/dx) \), and the TRT \(dE/dx \) significance, \(S(\text{TRT} \ dE/dx) \), are used as discriminating variables to separate the signal and background. These variables are shown for real data and simulated signal events in Fig. 4 for candidates preselected as \(|q| = 2e\) (\(|q| > 2e\)). Only the signal sample for a mass of 200 GeV is shown as there is very little change in the selection variables for different masses. As seen, the detector signatures are different for the two preselected samples, and thus the final signal regions are chosen differently. They are defined in Table 1. The selection was optimised using only simulated samples and data control samples without examining the signal region in the data.

![Figure 3: Normalised distribution of \(S(\text{pixel} \ dE/dx) \) for simulated muons and multi-charged particles. Distributions are shown for the signal sample for \(|q| = 2e\), 4e, and 6e for a mass of 200 GeV.](image)

![Figure 4: Normalised distribution of \(f_{HT} \) for simulated muons and multi-charged particles. Distributions are shown for the signal samples for \(|q| = 2e\), 4e, and 6e for a mass of 200 GeV.](image)

| \(|q| \) | \(S(\text{MDT} \ dE/dx)\) | \(S(\text{TRT} \ dE/dx)\) |
|---|---|---|
| \(2e\) | \(> 3\) | \(> 4\) |
| \(> 2e\) | \(> 4\) | \(> 5\) |

Table 1: The final signal regions for the two preselections.

6. Background estimation

The background contribution to the signal region is estimated using an ABCD method. In this method, the regions A, B, C and D are defined by dividing the plane of the uncorrelated TRT and MDT \(dE/dx \) significances using the final selection cuts, as seen in Figs. 5 and 6. The region D is defined as the signal region, with regions A, B and C as control regions for the background. The expected number of candidates from background in the region D, \(N_{D}^{A,B,C} \), is estimated from the numbers of observed data candidates in regions A, B and C (\(N_{\text{data}}^{A,B,C} \)):

\[
N_{D}^{A,B,C} = \frac{N_{\text{data}}^{B} \times N_{\text{data}}^{C}}{N_{\text{data}}^{A}}.
\]

Table 2 gives the number of candidates in A, B and C, as well as the observed number of candidates in the signal region D.

This information. The \(p_T \) requirements on muons given here are imposed for the preparation of this stream and are not optimised for the current analysis.
Table 2: The observed candidate yields in data for an integrated luminosity of 4.4 fb$^{-1}$. The last column shows the expected background in the signal region D with statistical uncertainty.

| $|q|$ | A | B | C | D | D_{\exp} |
|------|---|---|---|---|-----------|
| $|q| = 2e$ | 8543 | 92 | 38 | 0 | 0.41±0.08 |
| $|q| > 2e$ | 4940 | 754 | 9 | 0 | 1.37±0.46 |

number of all multi-charged particles that satisfy the selection criteria divided by the number of all simulated multi-charged particles.

The efficiency to find a multi-charged particle is given in Table 3 for each signal sample. Several factors contribute to the overall low efficiency and its dependencies on mass and charge. The $|q| < 2.0$ selection and the requirement to reach the MS with a β which fits the timing window for the trigger are the primary causes of the reduction in efficiency. For the simulated signal samples, this timing requirement generally implies a momentum requirement stricter than the explicit p_T selection. The implied selection can be as high as approximately $p_T/q > 120$ GeV. The charge dependence of the efficiency results from higher ionisation and the higher effective single muon p_T selection, which are augmented by the factors q^β and q respectively. The mass dependence has two competing factors: at low mass there are more candidates above $|q| = 2.0$, while at high mass the β spectrum is softer.

Table 3: The efficiencies to select a signal candidate (in %) for the DY production model.

| Mass [GeV] | $|q| = 2e$ | $|q| = 3e$ | $|q| = 4e$ | $|q| = 5e$ | $|q| = 6e$ |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 50 | 4.3 | 2.0 | 0.3 | 0.03 | 0.003 |
| 100 | 8.6 | 5.5 | 2.3 | 0.4 | 0.07 |
| 200 | 12.6 | 9.2 | 4.6 | 1.8 | 0.5 |
| 300 | 12.6 | 9.9 | 5.8 | 2.5 | 0.8 |
| 400 | 10.9 | 9.0 | 5.6 | 2.9 | 1.0 |
| 500 | 9.9 | 8.5 | 5.3 | 2.9 | 1.3 |
| 600 | 7.8 | 6.8 | 4.6 | 2.3 | 1.1 |

8. Systematic uncertainties

The systematic uncertainties on the background estimate and on the signal efficiency are determined by varying the selection cuts within the uncertainty on each selection variable.

8.1. Background estimation uncertainty

The background estimate in the signal region, D, relies on the fact that the $S(\text{TRT }dE/dx)$ and the $S(\text{MDT }dE/dx)$ are uncorrelated. To estimate potential influences of signal contamination close to the region boundaries and remaining correlations in the tails of the distributions, the ABCD regions are varied. For this estimate, the signal region D is maintained, but regions A, B and C are redefined by excluding the region

7. Signal selection efficiency

The signal cross section is given by

$$\sigma = \frac{N_{\text{rec}}^\text{data}}{2 \times \mathcal{L} \times \epsilon},$$

where \mathcal{L} is the integrated luminosity of the analysed data, $N_{\text{rec}}^\text{data}$ the number of candidate particles in data above the expected background and the factor of 2 is the number of particles per event in the DY model. The efficiency ϵ includes trigger, reconstruction and selection efficiencies. The efficiency is the

Figure 5: The plane of TRT and MDT dE/dx significances after the $|q| = 2e$ selection. The distributions of the 2011 data and the signal sample (here for a mass of 200 GeV) are shown. The regions labelled A, B and C are control regions used to estimate the background expected in the signal region D.

Figure 6: The plane of TRT and MDT dE/dx significances after the $|q| > 2e$ selection. The distributions of the 2011 data and the signal sample (here for a mass of 200 GeV) are shown. The regions labelled A, B and C are control regions used to estimate the background expected in the signal region D.

after the final selection. These results are compared to the expected number of background candidates of 0.41 ± 0.08 for the $|q| = 2e$ selection and 1.37 ± 0.46 for the $|q| > 2e$ selection. The uncertainties are statistical. The systematic uncertainty on the background estimation is discussed in Section 8.1.
close to the default cut from the background estimation. This ensures a higher background purity. This test is performed for many different definitions of the control regions and leads to an uncertainty of 5% on the estimated background contribution in the signal region.

8.2. Trigger efficiency uncertainty

The uncertainty on the trigger efficiency has two sources: the standard uncertainty on the trigger efficiency of 1% as determined by ATLAS muon performance studies [31] and a β-dependent trigger uncertainty. The size of the β-dependent part is dominated by the uncertainty on the timing correction of the RPC trigger efficiency (trigger for \(|q| < 1.05\)). This correction is varied by ±50% to account for the large dependence of the efficiency on the trigger timing. The relative difference of the trigger efficiencies between the nominal and the varied correction depends on the mass and charge of the benchmark samples, and ranges from less than 1% for \(|q| = 6e, m = 50\) GeV to 24% for \(|q| = 5e, m = 600\) GeV. The timing in the TGC (trigger for \(|q| ≥ 1.05\)) for data and simulation is in good agreement, and the systematic uncertainty for the TGC timing correction is negligible. The systematic uncertainty on whether a candidate particle would reach the MS in the timing window for the trigger selection also depends on the simulation of energy losses in the calorimeters and the material description of the detector. In a study using muons from \(Z \rightarrow \mu\mu\) events in data and simulation, the energy losses were shown to be in excellent agreement. The energy-loss difference between data and simulation is less than 5%. A cross-check that varies the amount of material by ±10% has a negligible effect on the total systematic uncertainty.

8.3. Uncertainties due to selection

The uncertainties on the selection efficiency arise from the uncertainties on each selection variable used. The following variations of the nominal cuts are studied: \(p_T\) by ±3%, \(S(\text{pixel } dE/dx)\) by ±5%, TRT HT fraction by ±20%, \((\text{TRT } dE/dx)\) by ±5% and \((\text{MDT } dE/dx)\) by −5% and +50%. For the \(p_T\) cut this corresponds to the resolution of the track \(p_T\) measurements. The variation of 20% of the TRT HT fraction arises from the pile-up dependence of this variable. For the pixel and the TRT \(dE/dx\) significances, 5% corresponds to the observed agreement of the mean and width of these distributions in the \(Z \rightarrow \mu\mu\) events in data and simulation. This is also applied to the lower variation of \((\text{MDT } dE/dx)\). Here, a relative shift between simulation and data is observed. The magnitude and direction of this shift suggest a variation of \((\text{MDT } dE/dx)\) by 50% in the positive direction. While this would have been important for a potential signal interpretation, it has only a small effect on the limit setting. For all other variables the variations have no observable effect in any of the signal samples. The total systematic uncertainties on the efficiency arising from these cut variations range up to 2.1%.

8.4. Summary of systematic uncertainties

In Table 4 the quadratic sums of all the systematic uncertainties considered above are summarised for the different signal samples. The two main uncertainties are the uncertainty on the trigger efficiency and the uncertainty due to the small number of Monte Carlo events. The latter makes a significant contribution for some of the high-charge and low-mass samples. The 50 GeV samples were produced with a selection at the generator level requiring \(p_T/q > 15\) GeV in order to decrease the statistical uncertainty. The systematic uncertainties vary between 6% and 28% in total.

| Mass [GeV] | \(|q| = 2e\) | \(|q| = 3e\) | \(|q| = 4e\) | \(|q| = 5e\) | \(|q| = 6e\) |
|-----------|--------|--------|--------|--------|--------|
| 50 | 8 | 6 | 6 | 10 | 19 |
| 100 | 10 | 9 | 7 | 12 | 28 |
| 200 | 13 | 12 | 10 | 9 | 12 |
| 300 | 14 | 15 | 15 | 12 | 11 |
| 400 | 17 | 17 | 18 | 18 | 13 |
| 500 | 18 | 18 | 19 | 21 | 18 |
| 600 | 22 | 22 | 23 | 25 | 24 |

The uncertainty on the integrated luminosity is estimated to be 3.9% from Van der Meer scans [32, 33] and is not included in Table 4.

9. Results

No signal candidates are found for either the \(|q| = 2e\) or the \(|q| > 2e\) selected sample. The results are consistent with the expectation of 0.4±0.08±0.02 and 1.37±0.46±0.07 background candidates, respectively. From these numbers the expected and observed limits are computed using pseudo-experiments. For the total cross-section limit, the systematic uncertainties on efficiency and the luminosity are taken into account in the pseudo-experiments. For every benchmark point, 100,000 pseudo-experiments are used. The measurement excludes DY model pair-production over wide ranges of tested masses. Fig. 7 shows the observed 95% confidence level cross-section limits as a function of mass for the five different charges. Due to the low number of expected events, the dominant uncertainty arises from Poisson statistics as reflected in the asymmetric uncertainty bands. The limits range from around 10^{-2} fb for the lower charges to 10^{-1} fb for \(|q| = 6e\). In addition to the expected and observed limits the predicted cross section is shown for the simplified Drell–Yan model. For the given model the cross-section limits can be transformed into mass exclusion lower limits from 50 GeV to 430, 480, 490, 470 and 420 GeV for charges \(|q| = 2e, 3e, 4e, 5e\) and \(6e\), respectively. Fig. 8 summarises the observed limits.

10. Summary

A search for long-lived, multi-charged particles has been performed using an integrated luminosity of 4.4 fb^{-1} of pp colli-
Figure 7: Upper limits on the production cross section of multi-charged highly ionising particles from pair-production as a function of particle mass. The dotted line shows the expected limit with the ±1σ and ±2σ uncertainty bands. The observed limit is compared with the predicted rapidly falling cross section from the DY model. The plots are shown separately for charges from |q| = 2e to |q| = 6e. In the |q| = 2e case, the observed limit lies on top of the expected limit.

Figure 8: Observed 95% CL cross-section upper limits and theoretical cross sections as functions of the multi-charged particle mass.

sions recorded by the ATLAS detector at the LHC. No candidates are found in the 2011 data set, consistent with the background expectation. The results presented here are the first mass limits from ATLAS for charges of 2e to 6e, filling the missing range of charges between the searches for slow singly charged long-lived particles [10] and searches for particles with charges from 6e to 17e [8].

11. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINEVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARS and MVGT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of
State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma I, Dipartimento di Fisica, Università La Sapienza, Roma, Italy

INFN Sezione di Roma Tor Vergata, Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;
Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat;
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;
Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava;
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg;
School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University;
The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

TRIUMF, Vancouver BC;
Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine;
ICTP, Trieste;
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany