A Caltech Library Service

Cavity-flow wall effects and correction rules

Wu, T. Yao-Tsu and Whitney, Arthur K. and Brennen, Christopher (1971) Cavity-flow wall effects and correction rules. Journal of Fluid Mechanics, 49 (2). pp. 223-256. ISSN 0022-1120.

[img] PDF
See Usage Policy.


Use this Persistent URL to link to this item:


This paper is intended to evaluate the wall effects in the pure-drag case of plane cavity flow past an arbitrary body held in a closed tunnel, and to establish an accurate correction rule. The three theoretical models in common use, namely, the open-wake, Riabouchinsky and re-entrant-jet models, are employed to provide solutions in the form of some functional equations. From these theoretical solutions several different rules for the correction of wall effects are derived for symmetric wedges. These simple correction rules are found to be accurate, as compared with their corresponding exact numerical solutions, for all wedge angles and for small to moderate 'tunnel-spacing ratio' (the ratio of body frontal width to tunnel spacing). According to these correction rules, conversion of a drag coefficient, measured experimentally in a closed tunnel, to the corresponding unbounded flow case requires only the data of the conventional cavitation number and the tunnel-spacing ratio if based on the open-wake model, though using the Riabouchinsky model it requires an additional measurement of the minimum pressure along the tunnel wall. The numerical results for symmetric wedges show that the wall effects invariably result in a lower drag coefficient than in an unbounded flow at the same cavitation number, and that this percentage drag reduction increases with decreasing wedge angle and/or with decreasing tunnel spacing relative to the body frontal width. This indicates that the wall effects are generally more significant for thinner bodies in cavity flows, and they become exceedingly small for sufficiently blunt bodies. Physical explanations for these remarkable features of cavity-flow wall effects are sought; they are supported by the present experimental investigation of the pressure distribution on the wetted body surface as the flow parameters are varied. It is also found that the theoretical drag coefficient based on the Riabouchinsky model is smaller than that predicted by the open-wake model, all the flow parameters being equal, except when the flow approaches the choked state (with the cavity becoming infinitely long in a closed tunnel), which is the limiting case common to all theoretical models. This difference between the two flow models becomes especially pronounced for smaller wedge angles, shorter cavities, and with tunnel walls farther apart. In order to gauge the degree of accuracy of these theoretical models in approximating the real flows, and to ascertain the validity of the correction rules, a series of definitive experiments was carefully designed to complement the theory, and then carried out in a high-speed water tunnel. The measurements on a series of fully cavitating wedges at zero incidence suggest that, of the theoretical models, that due to Riabouchinsky is superior throughout the range tested. The accuracy of the correction rule based on that model has also been firmly established. Although the experimental investigation has been limited to symmetric wedges only, this correction rule (equations (85), (86) of the text) is expected to possess a general validity, at least for symmetric bodies without too large curvatures, since the geometry of the body profile is only implicitly involved in the correction formula. This experimental study is perhaps one of a very few with the particular objective of scrutinizing various theoretical cavity-flow models.

Item Type:Article
Additional Information:"Reprinted with the permission of Cambridge University Press." Received 18 December 1970. The authors have pleasure in expressing their appreciation and gratitude to Professor Francis Clauser for invaluable encouragement and to the Division of Engineering and Applied Science of the California Institute of Technology for supporting entirely the experimental investigation using the High-speed Water Tunnel facility of the Hydrodynamics Laboratory. The early part of the main theoretical study was carried out under the support of the Naval Ship System Command General Hydrodynamics Research Program and Hydrofoil Advanced Development Program, administered by the Naval Ship Research and Development Center, and the latter part under the support of the Office of Naval Research.
Record Number:CaltechAUTHORS:WUTjfm71
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4
Deposited By: Theodore Yao-tsu Wu
Deposited On:27 Aug 2004
Last Modified:26 Dec 2012 08:38

Repository Staff Only: item control page