Surface-wave group-delay and attenuation kernels

F. A. Dahlen and Ying Zhou

1Department of Geosciences, Princeton University, Princeton, NJ 08544, USA. E-mail: fad@princeton.edu
2Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

Accepted 2005 December 23. Received 2005 October 26; in original form 2005 August 8

SUMMARY
We derive both 3-D and 2-D Fréchet sensitivity kernels for surface-wave group-delay and anelastic attenuation measurements. A finite-frequency group-delay exhibits 2-D off-ray sensitivity either to the local phase-velocity perturbation $\delta c/c$ or to its dispersion $\omega(\partial/\partial\omega)(\delta c/c)$ as well as to the local group-velocity perturbation $\delta C/C$. This dual dependence makes the ray-theoretical inversion of measured group delays for 2-D maps of $\delta C/C$ a dubious procedure, unless the lateral variations in group velocity are extremely smooth.

Key words: attenuation, Fréchet derivatives, global seismology, Q, sensitivity, surface waves.

1 INTRODUCTION
Increasing theoretical attention has been paid in recent years to the limitations of JWKB ray theory as a basis for inverting surface-wave dispersion measurements. Finite-frequency sensitivity kernels that account for the ability of a mantle Love or Rayleigh wave to ‘feel’ 3-D structure off an unperturbed great-circle ray have been developed by a number of investigators (e.g. Snieder 1986; Snieder & Nolet 1987; Yomogida & Aki 1987; Friederich et al. 1993; Friederich 1999; Spetzler et al. 2000; Selby & Woodhouse 2000, 2002; Gung & Romanowicz 2004). This paper is not self-contained; in the interest of brevity we shall adopt the notation of ZDN04 and make frequent references to equations and figures therein, generally without explanation or comment.

2 NOTATIONAL REVIEW
For simplicity we consider only single-frequency, fundamental-mode measurements made using untapered seismic recordings in the time domain; the effect of applying either a single or multiple tapers in the measurement process can be easily accounted for using the procedures described in Sections 4 and 9 of ZDN04. The perturbations in the frequency-dependent phase $\delta \phi(\omega)$ and logarithmic amplitude $\delta \ln A(\omega)$ of a surface wave are related to the 3-D velocity and density perturbations $\delta a/a$, $\delta \beta/\beta$ and $\delta \rho/\rho$ by eqs (3.8) of ZDN04:

$$\delta \phi = \iint \left[K^\phi_\alpha(\delta a/a) + K^\phi_\beta(\delta \beta/\beta) + K^\phi_\rho(\delta \rho/\rho) \right] d^3 x,$$

(1)

$$\delta \ln A = \iint \left[K^\ln A_\alpha(\delta a/a) + K^\ln A_\beta(\delta \beta/\beta) + K^\ln A_\rho(\delta \rho/\rho) \right] d^3 x.$$

(2)

The 3-D phase and amplitude sensitivity kernels $K^\alpha_{\phi, \beta, \rho}(x, \omega)$ and $K^{\ln A}_{\phi, \beta, \rho}(x, \omega)$ are given by ZDN04 eqs (3.9) and (3.10):

$$K^\alpha_{\phi, \beta, \rho} = -\Im \left(\frac{S R \Omega^{\alpha, \beta, \rho} \mathcal{R}^{\alpha} e^{-i[k(\Delta' + \Delta') - (n' + n')/2\pi]} \mathcal{S} \mathcal{R} \sin \Delta}{i \sin \Delta} \right),$$

(3)

$$K^{\ln A}_{\phi, \beta, \rho} = \Re \left(\frac{S R \Omega^{\alpha, \beta, \rho} \mathcal{R}^{\alpha} e^{-i[k(\Delta' + \Delta') - (n' + n')/2\pi]} \mathcal{S} \mathcal{R} \sin \Delta}{i \sin \Delta} \right).$$

(4)
where \(k(\omega) \) is the wavenumber measured in radians per second on the unit sphere, \(\Delta \) is the angular epicentral distance, \(n \) is the number of polar passages, and we have ignored higher-mode coupling for the reasons articulated by ZDN04 and Zhou et al. (2005). The prime and double prime identify quantities associated with the source-to-scatterer and scatterer-to-receiver great-circle paths, of angular arc lengths \(\Delta' \) and \(\Delta'' \) and having \(n' \) and \(n'' \) polar passages, respectively. The quantities \(S \) and \(S' \) account for the surface-wave radiation pattern at the source, whereas \(R \) and \(R' \) account for the polarization of the receiver. The scattering factors \(\Omega_{\alpha, \beta, \rho} \) are a measure of the strength of the self-scattering off a 3-D elastic heterogeneity \(\delta a/\alpha, \delta \beta/\beta \) or \(\delta \rho/\rho \) situated at the point \(x \).

By neglecting the angular deflection \(\eta = \arccos(\hat{k}' \cdot \hat{k}) \) of a surface wave upon scattering, we can reduce the 3-D dependence of \(\delta \phi(\omega) \) and \(\delta \ln A(\omega) \) in eqs (1) and (2) to a 2-D dependence upon the local fractional phase-velocity perturbation:

\[
\delta \phi = \int \int \int K^c_{b}(\delta c/c) d\Omega, \quad \delta \ln A = \int \int \int K^c_{a}(\delta c/c) d\Omega, \tag{5}
\]

where the integration is over the unit sphere \(\Omega = \{ \hat{r} : \hat{r} \cdot \hat{r} = 1 \} \). The 2-D phase-velocity kernels \(K^c_{b}(\hat{r}, \omega) \) and \(K^c_{a}(\hat{r}, \omega) \) are given by eqs (6.3) and (6.4) of ZDN04:

\[
K^c_{b} = -\frac{2k^{3/2} \sin[k(\Delta' + \Delta'') - (n' + n'')\pi/2 + \pi/4]}{\sqrt{8\pi} |\sin \Delta'| |\sin \Delta''| / |\sin \Delta'|}, \tag{6}
\]

\[
K^c_{a} = -\frac{2k^{3/2} \cos[k(\Delta' + \Delta'') - (n' + n'')\pi/2 + \pi/4]}{\sqrt{8\pi} |\sin \Delta'| |\sin \Delta''| / |\sin \Delta'|}, \tag{7}
\]

where we have made a forward-propagating \((S' = S \text{ and } R'' = R)\) as well as a forward-scattering \((\eta = 0)\) approximation for convenience in what follows. As we shall see, the 3-D and 2-D sensitivities of group-delay and anelastic attenuation measurements can all be expressed in terms of the phase-delay and geometrical attenuation kernels \(k^{a, b, \rho}_{\phi}(x, \omega), K^{a}_{\phi}(\hat{r}, \omega) \) and \(K^{b}_{b}(\hat{r}, \omega) \) given in eqs (3), (6) and (7).

3 3-D GROUP-DELAY SENSITIVITY KERNEL

The perturbation \(\delta t(\omega) \) in the group delay of a surface wave is related to the perturbation \(\delta \phi(\omega) \) in the phase delay by

\[
\delta t = \frac{d(\delta \phi)}{d \omega}. \tag{8}
\]

The phase delay \(\delta \phi(\omega) \) is measured in radians whereas the group delay \(\delta t(\omega) \) is measured in seconds. Since the model perturbations \(\delta a/\alpha, \delta \beta/\beta \) and \(\delta \rho/\rho \) are independent of the angular frequency \(\omega \), differentiation of eq. (1) immediately yields the desired 3-D group-delay kernel:

\[
\delta t = \int \int \int [K^r_{a}(\delta a/\alpha) + K^r_{b}(\delta \beta/\beta) + K^r_{\phi}(\delta \rho/\rho)] d^3x, \tag{9}
\]

where

\[
K^a_{a, b, \rho} = \frac{\partial K^{a, b, \rho}_{\phi}}{\partial \omega}. \tag{10}
\]

We have made no attempt to evaluate the derivative in eq. (10) analytically; see Gilbert (1976) for a related but simpler problem. However, we have found it straightforward to compute \(K^a_{a, b, \rho}(x, \omega) \) with sufficient accuracy for the purposes of inversion using a simple numerical first-difference method. The lower half of Fig. 1 shows an illustrative example of a group-delay, shear-velocity kernel \(K^a_{\phi}(x, \omega) \) for a 10 mHz Love wave; the corresponding phase-delay kernel \(K^b_{\phi}(x, \omega) \) is plotted above for comparison. The off-great-circle sidebands are more pronounced for \(K^a_{a}(x, \omega) \) than for \(K^b_{b}(x, \omega) \); this enhanced off-path sensitivity of \(\delta t(\omega) \) is consistent with the analytical 2-D Gaussian beam analysis of Nolet & Dahlen (2000). In addition, the group-delay sensitivity is slightly more compressed toward the Earth’s surface than the phase-delay sensitivity; however, this is a minor effect compared to the higher sidebands and difficult to discern on the scale of the AB slice views in Fig. 1.

4 2-D GROUP-DELAY KERNELS

We can likewise determine the 2-D sensitivity of a group-delay measurement \(\delta t(\omega) \) by differentiation of the first of eqs (5). In this case we must be cognizant of the fact that both the 2-D phase-delay kernel \(K^b_{\phi} \) and the perturbation \(\delta c/c \) depend upon the angular frequency \(\omega \):

\[
\delta t = \int \int \int \left[\frac{\partial K^b_{\phi}}{\partial \omega}(\delta c/c) + K^b_{\phi} \frac{\partial}{\partial \omega}(\delta c/c) \right] d\Omega. \tag{11}
\]

The derivative of the fractional phase-velocity perturbation \(\delta c/c \) is related to the fractional group-velocity perturbation \(\delta c/c \) by eq. (22) of Spetzler et al. (2002):

\[
\frac{\partial}{\partial \omega} \left(\frac{\delta c}{c} \right) = \frac{1}{kC} \left(\frac{\delta C}{C} - \frac{\delta c}{c} \right). \tag{12}
\]

The only frequency dependence of the kernel \(K^b_{\phi}(\hat{r}, \omega) \) is via the wavenumber \(k(\omega) \), which appears in the phase multiplying the angular detour distance \(\Delta' + \Delta'' - \Delta \) and as a \(k^{3/2} \) pre-factor in eq. (6). Noting that \(dk/d\omega = C^{-1} \) and making use of the relation (12) we find—to our initial
consternation and in disagreement with eqs (23)–(24) of Spetzler et al. (2002)—that the group delay $\delta t(\omega)$ depends upon both the fractional group- and phase-velocity perturbations:

$$\delta t = \int_\Omega K^C_x (\delta C / C) d\Omega + \int_\Omega K^C_y (\delta c / c) d\Omega,$$

where

$$K^C_x = \left(\frac{1}{kC} \right) K^C_\phi, \quad K^C_y = \left(\frac{1}{2kC} \right) K^C_\phi + \left(\frac{\Delta^\prime + \Delta^\prime\prime - \Delta}{C} \right) K^C_\phi. \quad (14)$$

© 2006 The Authors, GJI, 165, 545–554
Journal compilation © 2006 RAS
5 REFORMULATION OF THE DUAL DEPENDENCE

In an exemplary review of the originally submitted version of this paper, Mike Ritzwoller has pointed out to us that the strong 2-D dependence of $\delta t(\omega)$ upon the phase velocity can be ameliorated by using eq. (12) to rewrite eqs (13)–(14) in the alternative form

$$\delta t = \int \int K_C^t(\delta C/C) d\Omega + \int \int K_c^t \left[\frac{\partial}{\partial \omega} (\delta c/c) \right] d\Omega,$$

(15)

where

$$K_C^t = K_C^{e} + K_C^{r} = \left(\frac{3}{2kC} \right) K_\phi + \left(\frac{\Delta' + \Delta'' - \Delta}{C} \right) K_4,$$

(16)

$$K_c^t = -\left(\frac{C}{\omega} \right) K_c^{e} = \left(\frac{1}{2\omega} \right) K_\phi - \left(\frac{\Delta' + \Delta'' - \Delta}{c} \right) K_4.$$

(17)
Eqs (15)–(17) express the dual dependence not directly upon the phase velocity \(\delta c/c \) but rather upon its dimensionless dispersion \(\omega (\partial / \partial \omega) (\delta c/c) \). This has the advantage that the sensitivity to \(\delta C/C \) is greater than that to \(\omega (\partial / \partial \omega) (\delta c/c) \), particularly in the central Fresnel zone, where the amplitude of the reformulated kernel \(\tilde{K}^C_{Ct}(\hat{r}, \omega) \) exceeds that of \(-\tilde{K}^c_{Ct}(\hat{r}, \omega) \) by approximately a factor of three, as illustrated in Fig. 3. Because of this, and because the amplitude of the group-velocity perturbation \(\delta C/C \) exceeds that of the phase-velocity dispersion \(\omega (\partial / \partial \omega) (\delta c/c) \) by roughly the same factor in the current generation of smooth, upper-mantle 3-D models, Barmin et al. (2005) have suggested that it is permissible simply to ignore the dependence upon the phase velocity and approximate the sensitivity of a measured group delay by the first term in eq. (15). Such an approximation may not be unreasonable for the largest-scale lateral variations in the group velocity \(\delta C/C \); however, any attempt to resolve small-scale structure in \(\delta C/C \) is likely to be plagued by the strong sidebands of the reformulated 2-D kernel \(\tilde{K}^C_{Ct}(\hat{r}, \omega) \). We believe that it is preferable to eschew an intermediate 2-D inversion for \(\delta C/C \), and instead to invert measured group delays \(\delta t(\omega) \) directly for 3-D structural variations in the \(S \)-wave velocity \(\delta \beta/\beta \), using eqs (9)–(10).

6 REDUCTION TO RAY THEORY

If the lateral variations in \(\delta C/C \), \(\delta c/c \) and \(\omega (\partial / \partial \omega) (\delta c/c) \) are sufficiently smooth across the great-circle ray path, these factors can be extracted from the cross-path integrals in eqs (13) and (15). The remaining cross-path integrals of the Fréchet kernels \(K^C_{Ct}(\hat{r}, \omega) \), \(K^c_{Ct}(\hat{r}, \omega) \) and \(\tilde{K}^C_{Ct}(\hat{r}, \omega), \tilde{K}^c_{Ct}(\hat{r}, \omega) \) can be performed analytically by making the paraxial approximation

\[
\Delta' + \Delta'' - \Delta \approx \frac{1}{2} \left[\frac{\sin \Delta}{\sin \Delta \sin(\Delta - x)} \right] y^2,
\]

(18)
where x and y are the along-path and cross-path angular coordinates, and we have restricted attention to a minor-arc wave, as in Section 7 of ZDN04, for simplicity. Upon making use of the Gaussian integral identities in eq. (7.13) of ZDN04 we find that

$$\int_{-\infty}^{\infty} K_c^i \, dy = \int_{-\infty}^{\infty} \tilde{K}_c^i \, dy = -1/C, \quad \int_{-\infty}^{\infty} K_r^i \, dy = \int_{-\infty}^{\infty} \tilde{K}_r^i \, dy = 0,$$

so that the dependencies upon the phase velocity $\delta c/c$ or its dispersion $\omega(\partial/\partial \omega)(\delta c/c)$ vanish, and we recover the 1-D, ray-theoretical dependence upon the along-ray group-velocity variations,

$$\delta t \approx -C^{-2} \int_{0}^{\Delta} \delta c \, dx,$$

in this infinite-frequency limit, as expected. The Fermat path-integral relation (20) has been used as the basis for making 2-D maps of $\delta c/C$ in a number of regional group-velocity investigations. Because of the strong sidebands of the 2-D kernels $K_c^i(\hat{r}, \omega)$ and, especially, $K_r^i(\hat{r}, \omega)$ and $\tilde{K}_r^i(\hat{r}, \omega)$, the cross-path variations of $\delta c/C, \delta c/c$ and $\omega(\partial/\partial \omega)(\delta c/c)$ need to be smooth out to a considerable distance off the great-circle ray path for the ray-theoretical approximation (20) to be valid.

7 3-D ANELASTIC ATTENUATION KERNELS

Starting with an unperturbed, perfectly elastic, spherical earth model with bulk and shear moduli κ and μ, we next consider a purely imaginary 3-D perturbation of the form

$$\frac{\delta x}{\kappa} = i Q^{-1}_\kappa, \quad \frac{\delta \mu}{\mu} = i Q^{-1}_\mu, \quad \frac{\delta \rho}{\rho} = 0,$$

or, equivalently,

$$\frac{\delta \alpha}{\alpha} = \frac{i}{2} \left(1 - \frac{4 \beta^2}{3 \alpha^2} \right) Q^{-1}_\alpha + \frac{i}{2} \left(\frac{4 \beta^2}{3 \alpha^2} \right) Q^{-1}_\beta, \quad \frac{\delta \beta}{\beta} = \frac{i}{2} Q^{-1}_\beta, \quad \frac{\delta \rho}{\rho} = 0,$$

where Q^{-1}_α and Q^{-1}_β are the spatially variable, inverse bulk and shear quality factors. Upon inserting eqs (22) into eq. (2) and rearranging terms, we obtain the Fréchet derivative relationship expressing the 3-D sensitivity of a measured amplitude perturbation $\delta \ln A(\omega)$ to the inverse quality factors:

$$\delta \ln A = \iint_{\Omega} \left[K^{Q_\kappa}_d Q^{-1}_\kappa + K^{Q_\mu}_d Q^{-1}_\mu \right] d^3 x,$$

where

$$K^{Q_\kappa}_d = \frac{1}{2} \left(1 - \frac{4 \beta^2}{3 \alpha^2} \right) K^\kappa, \quad K^{Q_\beta}_d = \frac{1}{2} \left(K^\beta + \frac{4 \beta^2}{3 \alpha^2} K^\rho \right).$$

It is noteworthy that the anelastic attenuation kernels $K^{Q_\kappa}_d(x, \omega)$ and $K^{Q_\beta}_d(x, \omega)$ are linear combinations of the elastic phase-delay kernels $K^\kappa_d(x, \omega)$ and $K^\beta_d(x, \omega)$ rather than the geometrical attenuation kernels $K^\kappa_d(x, \omega)$ and $K^\beta_d(x, \omega)$.

The results in eq. (24) can be rewritten in a form analogous to eq. (3), namely

$$K^{Q_\kappa}_d(\omega) = -\text{Im} \left\{ \frac{\mathcal{S} \mathcal{M} Q_\kappa \mathcal{R} e^{-i[\mathcal{S} \mathcal{M} + \Delta \kappa - \delta \kappa + \kappa U + kr^{-1} W]} - \kappa(U + 2r^{-1} U - kr^{-1} V)^2 \text{ Love waves} \right\}$$

$$K^{Q_\beta}_d(\omega) = -\text{Im} \left\{ \frac{-\mu \left[(W - r^{-1} W) \cos \eta + k^2 r^{-2} W^2 \cos 2\eta \right]}{\sqrt{3\kappa \rho}} \text{ Love waves} \right\}$$

The anelastic self-scattering factors (26)–(27) are analogous to the corresponding elastic scattering factors $\Omega^{\alpha, \beta, \rho}$ tabulated in Appendix A of ZDN04; the quantities U, V and W are the Rayleigh and Love eigenfunctions, normalized in accordance with eqs (2.11)–(2.12) of ZDN04, and a dot denotes differentiation with respect to radius r.

Love-wave attenuation is independent of the bulk anelasticity Q^{-1}_κ whereas Rayleigh waves are attenuated by both Q^{-1}_κ and Q^{-1}_β, but much more strongly by the latter. To illustrate this we show examples of $K^{Q_\kappa}_d(x, \omega)$ for a 10 mHz Love wave and of both $K^{Q_\kappa}_d(x, \omega)$ and $K^{Q_\beta}_d(x, \omega)$ for a 10 mHz Rayleigh wave in Fig. 4. All three sensitivity kernels are negative within the first Fresnel zone, as expected if a physically permissible inverse quality factor, $Q^{-1}_\kappa, Q^{-1}_\beta > 0$, is to lead to a reduction in the wave amplitude. Roughly speaking, a 10 mHz Rayleigh wave is an order of magnitude less sensitive to bulk anelasticity variations Q^{-1}_κ than to shear anelasticity variations Q^{-1}_β.

Finally we note that the above results can be written more succinctly in terms of the inverse P-wave and S-wave quality factors, defined by eqs (9.59)–(9.60) of Dahlen & Tromp (1998) and commonly used in body-wave seismology:

$$Q^{-1}_u = 1 - \frac{4 \beta^2}{3 \alpha^2} Q^{-1}_\kappa + \frac{4 \beta^2}{3 \alpha^2} Q^{-1}_\beta, \quad Q^{-1}_p = Q^{-1}_\mu.$$

© 2006 The Authors, GJI, 165, 545–554

Journal compilation © 2006 RAS
Figure 4. Various views of the 3-D anelastic attenuation kernels for 10 mHz Love and Rayleigh waves. (a) Love-wave kernel $K_A^{Q_α}(x,ω)$, expressing the sensitivity of a measured amplitude perturbation $δ\ln A(ω)$ to 3-D variations in the inverse shear quality factor $Q_α^{-1}$. (b) Shear attenuation kernel $K_A^{Q_μ}(x,ω)$ for a 10 mHz Rayleigh wave. (c) Bulk attenuation kernel $K_A^{Q_κ}(x,ω)$ for the same Rayleigh wave. Top three plots are map views plotted at 100 km depth; middle three plots are vertical slices along cross-section AB with 100 km depth indicated by the dotted line; bottom three plots show variation of $K_A^{Q_{α,μ}}(x,ω)$ along profile AB at 100 km depth. Both the Love-wave and Rayleigh-wave sources are 10-km-deep, vertical strike-slip faults (green beachballs), with the latter rotated in strike by $π/4$ with respect to the former, so that the maximum radiation is in both instances in the direction of propagation to the receiver (green triangle). The Love-wave sensitivity kernel is for a transverse-component measurement and the Rayleigh-wave kernel is for a vertical-component measurement, both made on cosine-tapered seismograms of 520 s duration, centred upon the group arrival time in the reference earth model 1066A (Gilbert & Dziewonski 1975).

In this notation the imaginary velocity perturbations in eq. (22) are simply $δα/α = (i/2)Q_α^{-1}$, $δβ/β = (i/2)Q_β^{-1}$ so that the 3-D Fréchet kernel relationship (23)–(24) reduces to

$$δ\ln A = \int\int\int_{Ω} \left[K_A^{Q_α} Q_α^{-1} + K_A^{Q_μ} Q_μ^{-1} \right] d^3x \quad \text{where} \quad K_A^{Q_{α,μ}} = \frac{1}{2} K_φ^{α,μ}. \tag{29}$$

8 2-D ATTENUATION KERNEL

A 2-D anelastic sensitivity kernel can be derived by making a forward-scattering ($η = 0$) approximation in eqs (26)–(27) and evaluating the resulting integral over depth; the anelastic analogue of eq. (6.2) of ZDN04 is

$$\int_{0}^{a} \left[Ω_{n=0}^{Q_α} Q_α^{-1} + Ω_{n=0}^{Q_μ} Q_μ^{-1} \right] r^2 dr = -k^2 \left(\frac{c}{CQ} \right), \tag{30}$$

where Q is the local quality factor of a Love or Rayleigh wave, given by eqs (16.148)–(16.153) of Dahlen & Tromp (1998). Alternatively, it is possible to start with the 2-D amplitude kernel $K_A^φ(\hat{r},ω)$ in the second of eqs (5) and note that anelasticity corresponds to an imaginary perturbation in the local fractional phase velocity of the form

$$\frac{δc}{c} = \frac{i}{2} \left(\frac{c}{CQ} \right). \tag{31}$$
F. A. Dahlen and Y. Zhou

2-D attenuation kernels \(K^Q_A \)

(a) Love-wave kernel \(K^Q_A(\hat{r}, \omega) \) expressing the sensitivity of \(\delta \ln A(\omega) \) to 2-D variations in the inverse quality factor \(Q^{-1} \) of a 10 mHz Love wave. (b) Same but for a 10 mHz Rayleigh wave. Top plots show map views and bottom plots show variation along the perpendicular cross section AB, midway between the source and receiver; the amplitude measurements are presumed to be made on cosine-tapered seismograms of 520 s duration, as in Figs 1–4.

Either method yields the same 2-D sensitivity to the inverse surface-wave quality factor \(Q^{-1} \), namely

\[
\delta \ln A = \int \int_{\Omega} K^Q_A Q^{-1} d\Omega \quad \text{where} \quad K^Q_A = \left(\frac{c}{2C} \right) K^\phi.
\]

Just as the 3-D kernels \(K^{Q, \kappa}(x, \omega) \) and \(K^{Q, \mu}(x, \omega) \) are linear combinations of \(K^{\alpha, \beta}(x, \omega) \), the 2-D kernel \(K^Q_A(\hat{r}, \omega) \) is simply a frequency-dependent constant \(c/(2C) \) times the 2-D phase-delay kernel \(K^\phi(\hat{r}, \omega) \). In Fig. 5 we show illustrative examples of the 2-D anelastic attenuation kernels \(K^Q_A(\hat{r}, \omega) \) along the same source–receiver path as in Figs 1–4. The 2-D sensitivity of a 10 mHz Rayleigh wave is slightly higher than that of a 10 mHz Love wave because it has a slightly larger wavenumber: \((k_R/k_L)^{3/2} \approx 1.3 \).

9 REDUCTION TO RAY THEORY REDUX

In the limit of infinite frequency, \(\omega \to \infty \), the local inverse quality factor \(Q^{-1} \) can be extracted from the cross-path integral in eq. (32), and the remaining cross-path integral over the 2-D kernel \(K^Q_A(\hat{r}, \omega) \) can be evaluated by making the paraxial approximation (18), with the result

\[
\int_{-\infty}^{\infty} K^Q_A d\gamma = -\frac{\omega}{2C}.
\]

In this limit we recover the anelastic ray-theoretical result,

\[
\delta \ln A \approx -\frac{\omega}{2C} \int_{\Omega} \frac{dx}{Q},
\]

as required for the finite-frequency theory to be consistent. A factor of \(C \) rather than \(c \) appears in the denominators of eqs (31) and (34) because the energy of a dispersive wave propagates with the group velocity.
10 GEOMETRICAL PLUS ANELASTIC ATTENUATION

On a realistic earth model with 3-D variations in $\delta \alpha /\alpha$, $\delta \beta /\beta$ and $\delta \rho /\rho$ as well as Q^{-1}_s and Q^{-1}_μ, the amplitude of a surface wave will be perturbed by elastic focusing and defocusing effects as well as by anelastic attenuation. The total first-order amplitude perturbation is the sum of both effects:

$$\delta \ln A = \delta \ln A_\alpha + \delta \ln A_\beta + \delta \ln A_\rho + \delta \ln A_{Q^{-1}_s} + \delta \ln A_{Q^{-1}_\mu},$$

where $\delta \ln A_\alpha(\omega)$ is given by eqs (2) and (4), whereas $\delta \ln A_\beta(\omega)$ is given by eqs (23)–(27). In the 2-D, forward-scattering, forward-propagating approximation, the amplitude depends only upon the local surface-wave phase-velocity and inverse quality factor:

$$\delta \ln A = \int_0^\Delta K_\alpha^0(\delta c/c) \, d\Omega + \int_0^\Delta K_\beta^0(\delta c/c) \, d\Omega.$$

Finally, in the ray-theoretical limit, $\omega \to \infty$, the amplitude is the sum of two 1-D integrals along the unperturbed great-circle ray path:

$$\delta \ln A = -\frac{1}{2c \sin \Delta} \int_0^\Delta \sin x \sin(\Delta - x) \delta c \, dx - \frac{\omega}{2C} \int_0^\Delta \frac{dx}{Q}.$$

The spherical-earth, elastic focusing-defocusing term, eq. (7.12) of ZDN04, was first derived using a strictly ray-theoretical argument by Woodhouse & Wong (1986).

11 CONCLUSION

In this paper we have derived Fréchet kernels expressing the linearized sensitivity of a surface-wave group-delay measurement $\delta t(\omega)$ to 3-D elastic velocity and density variations $\delta \alpha /\alpha$, $\delta \beta /\beta$ and $\delta \rho /\rho$ and the sensitivity of an amplitude measurement $\delta \ln A(\omega)$ to 3-D bulk and shear anelasticity variations Q^{-1}_s and Q^{-1}_μ. By making a forward-scattering ($t = 0$) and a forward-propagating ($S' = S$ and $R' = R$) approximation and evaluating the resulting integrals over depth, we have implemented a reduction from 3-D to 2-D, obtaining kernels that express the sensitivity of $\delta t(\omega)$ to the local fractional group-velocity and phase-velocity perturbations $\delta C/C, \delta c/c$ and $\omega(\delta t/\delta x)(\delta c/c)$, and the sensitivity of $\delta \ln A(\omega)$ to the local surface-wave inverse quality factor Q^{-1}. In the ray-theoretical limit, $\omega \to \infty$, these 2-D relationships reduce in turn to the expected 1-D, along-ray integrations. The strong sensitivity of a measured group delay $\delta t(\omega)$ to short-scale, off-path variations in the phase velocity $\delta c/c$ could potentially give rise to serious artefacts in 2-D maps of $\delta C/C$ as derived by ray-theoretical, group-delay inversion. In our opinion it is strongly preferable to invert both group-delay measurements $\delta t(\omega)$ and anelastic attenuation measurements $\delta \ln A(\omega)$ using the full 3-D, finite-frequency sensitivity kernels $K_\alpha^0(\omega, t)(x, \omega)$ and $K_\beta^0(\omega, t)(x, \omega)$.

ACKNOWLEDGMENTS

This work was motivated by enquiries from Guy Masters regarding group-delay kernels and from Colleen Dalton and Karen Fischer regarding anelastic attenuation kernels. If Geophysical Journal International gave an award for excellence in reviewing, we would enthusiastically nominate Mike Ritzwoller. Financial support has been provided by the US National Science Foundation under Grants EAR-0105387 and EAR-0113050. This is contribution No. 9122 of the Division of Geological and Planetary Sciences, California Institute of Technology.

REFERENCES

© 2006 The Authors, GJI, 165, 545–554
Journal compilation © 2006 RAS

