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S U M M A R Y
We derive both 3-D and 2-D Fréchet sensitivity kernels for surface-wave group-delay and
anelastic attenuation measurements. A finite-frequency group-delay exhibits 2-D off-ray sen-
sitivity either to the local phase-velocity perturbation δc/c or to its dispersion ω(∂/∂ω)(δc/c)
as well as to the local group-velocity perturbation δC/C . This dual dependence makes the ray-
theoretical inversion of measured group delays for 2-D maps of δC/C a dubious procedure,
unless the lateral variations in group velocity are extremely smooth.
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1 I N T RO D U C T I O N

Increasing theoretical attention has been paid in recent years to the limitations of JWKB ray theory as a basis for inverting surface-wave

dispersion measurements. Finite-frequency sensitivity kernels that account for the ability of a mantle Love or Rayleigh wave to ‘feel’ 3-D

structure off an unperturbed great-circle ray have been developed by a number of investigators (e.g. Snieder 1986; Snieder & Nolet 1987;

Yomogida & Aki 1987; Friederich et al. 1993; Friederich 1999; Spetzler et al. 2002; Ritzwoller et al. 2002; Yoshizawa & Kennett 2002).

The most complete finite-frequency surface-wave analysis to date is that of Zhou et al. (2004), hereinafter referred to as ZDN04. In that

paper we used the Born approximation to derive Fréchet kernels expressing the sensitivity of surface-wave phase-delay, arrival-angle and

amplitude measurements to 3-D variations in the fractional P-wave velocity δα/α, S-wave velocity δβ/β and density δρ/ρ. In this paper

we tie up two loose ends left hanging by ZDN04; specifically, we derive both 3-D and 2-D sensitivity kernels for group-delay as opposed to

phase-delay measurements (e.g. Levshin et al. 1992, 2001; Ritzwoller & Levshin 1998; Ritzwoller et al. 2002; Shapiro & Ritzwoller 2002;

Maceira et al. 2005) and for measurements of anelastic attenuation (e.g. Romanowicz 1990; Durek et al. 1993; Romanowicz 1994, 1995,

1998; Billien et al. 2000; Selby & Woodhouse 2000, 2002; Gung & Romanowicz 2004). This paper is not self-contained; in the interest of

brevity we shall adopt the notation of ZDN04 and make frequent references to equations and figures therein, generally without explanation or

comment.

2 N O TAT I O N A L R E V I E W

For simplicity we consider only single-frequency, fundamental-mode measurements made using untapered seismic recordings in the time

domain; the effect of applying either a single or multiple tapers in the measurement process can be easily accounted for using the procedures

described in Sections 4 and 9 of ZDN04. The perturbations in the frequency-dependent phase δφ(ω) and logarithmic amplitude δ ln A(ω) of

a surface wave are related to the 3-D velocity and density perturbations δα/α, δβ/β and δρ/ρ by eqs (3.8) of ZDN04:

δφ =
∫∫∫

⊕

[
K α

φ (δα/α) + K β

φ (δβ/β) + K ρ

φ (δρ/ρ)
]

d3x, (1)

δ ln A =
∫∫∫

⊕

[
K α

A(δα/α) + K β

A(δβ/β) + K ρ

A(δρ/ρ)
]

d3x. (2)

The 3-D phase and amplitude sensitivity kernels K α, β, ρ

φ (x, ω) and K α, β, ρ

A (x, ω) are given by ZDN04 eqs (3.9) and (3.10):

K α, β, ρ

φ = −Im

(
S ′	α, β, ρ R′′e−i[k(
′+
′′−
)−(n′+n′′−n)π/2+π/4]

SR√
8πk |sin 
′| |sin 
′′|/|sin 
|

)
, (3)

K α, β, ρ

A = Re

(
S ′	α, β, ρ R′′e−i[k(
′+
′′−
)−(n′+n′′−n)π/2+π/4]

SR√
8πk |sin 
′| |sin 
′′|/|sin 
|

)
, (4)

C© 2006 The Authors 545
Journal compilation C© 2006 RAS



546 F. A. Dahlen and Y. Zhou

where k(ω) is the wavenumber measured in radians per second on the unit sphere, 
 is the angular epicentral distance, n is the number of polar

passages, and we have ignored higher-mode coupling for the reasons articulated by ZDN04 and Zhou et al. (2005). The prime and double

prime identify quantities associated with the source-to-scatterer and scatterer-to-receiver great-circle paths, of angular arc lengths 
′ and 
′ ′

and having n′ and n′ ′ polar passages, respectively. The quantities S and S ′ account for the surface-wave radiation pattern at the source, whereas

R and R′′ account for the polarization of the receiver. The scattering factors 	α, β, ρ are a measure of the strength of the self-scattering off a

3-D elastic heterogeneity δα/α, δβ/β or δρ/ρ situated at the point x.

By neglecting the angular deflection η = arccos(k̂′ · k̂′′) of a surface wave upon scattering, we can reduce the 3-D dependence of δφ(ω)

and δ ln A(ω) in eqs (1) and (2) to a 2-D dependence upon the local fractional phase-velocity perturbation:

δφ =
∫∫

	

K c
φ(δc/c) d	, δ ln A =

∫∫
	

K c
A(δc/c) d	, (5)

where the integration is over the unit sphere 	 = {r̂ : r̂ · r̂ = 1}. The 2-D phase-velocity kernels K c
φ(r̂, ω) and K c

A(r̂, ω) are given by eqs (6.3)

and (6.4) of ZDN04:

K c
φ = −2k3/2 sin [k(
′ + 
′′ − 
) − (n′ + n′′ − n)π/2 + π/4]√

8π | sin 
′| |sin 
′′|/|sin 
| , (6)

K c
A = −2k3/2 cos [k(
′ + 
′′ − 
) − (n′ + n′′ − n)π/2 + π/4]√

8π |sin 
′| |sin 
′′|/|sin 
| , (7)

where we have made a forward-propagating (S ′ = S and R′′ = R) as well as a forward-scattering (η = 0) approximation for convenience in

what follows. As we shall see, the 3-D and 2-D sensitivities of group-delay and anelastic attenuation measurements can all be expressed in

terms of the phase-delay and geometrical attenuation kernels K α, β, ρ

φ (x, ω), K c
φ(r̂, ω) and K c

A(r̂, ω) given in eqs (3), (6) and (7).

3 3 - D G RO U P - D E L AY S E N S I T I V I T Y K E R N E L

The perturbation δt(ω) in the group delay of a surface wave is related to the perturbation δφ(ω) in the phase delay by

δt = d(δφ)

dω
. (8)

The phase delay δφ(ω) is measured in radians whereas the group delay δt(ω) is measured in seconds. Since the model perturbations δα/α,

δβ/β and δρ/ρ are independent of the angular frequency ω, differentiation of eq. (1) immediately yields the desired 3-D group-delay kernel:

δt =
∫∫∫

⊕

[
K α

t (δα/α) + K β
t (δβ/β) + K ρ

t (δρ/ρ)
]
d3x, (9)

where

K α, β, ρ
t = ∂K α, β, ρ

φ

∂ω
. (10)

We have made no attempt to evaluate the derivative in eq. (10) analytically; see Gilbert (1976) for a related but simpler problem. However,

we have found it straightforward to compute K α, β, ρ
t (x, ω) with sufficient accuracy for the purposes of inversion using a simple numerical

first-difference method. The lower half of Fig. 1 shows an illustrative example of a group-delay, shear-velocity kernel K β
t (x, ω) for a

10 mHz Love wave; the corresponding phase-delay kernel K β

φ(x, ω) is plotted above for comparison. The off-great-circle sidebands are more

pronounced for K β
t (x, ω) than for K β

φ(x, ω); this enhanced off-path sensitivity of δt(ω) is consistent with the analytical 2-D Gaussian beam

analysis of Nolet & Dahlen (2000). In addition, the group-delay sensitivity is slightly more compressed toward the Earth’s surface than the

phase-delay sensitivity; however, this is a minor effect compared to the higher sidebands and difficult to discern on the scale of the AB slice

views in Fig. 1.

4 2 - D G RO U P - D E L AY K E R N E L S

We can likewise determine the 2-D sensitivity of a group-delay measurement δt(ω) by differentiation of the first of eqs (5). In this case we

must be cognizant of the fact that both the 2-D phase-delay kernel K c
φ and the perturbation δc/c depend upon the angular frequency ω:

δt =
∫∫

	

[(
∂K c

φ/∂ω
)
(δc/c) + K c

φ

∂

∂ω
(δc/c)

]
d	. (11)

The derivative of the fractional phase-velocity perturbation δc/c is related to the fractional group-velocity perturbation δc/c by eq. (22) of

Spetzler et al. (2002):

∂

∂ω

(
δc

c

)
= 1

kC

(
δC

C
− δc

c

)
. (12)

The only frequency dependence of the kernel K c
φ(r̂, ω) is via the wavenumber k(ω), which appears in the phase multiplying the angular detour

distance 
′ + 
′ ′ − 
 and as a k3/2 pre-factor in eq. (6). Noting that dk/dω = C−1 and making use of the relation (12) we find—to our initial

C© 2006 The Authors, GJI, 165, 545–554

Journal compilation C© 2006 RAS



Surface-wave group-delay and attenuation kernels 547

Figure 1. Various views of the 3-D phase-delay kernel K β
φ (x, ω) (top three plots) and the 3-D group-delay kernel K β

t (x, ω) (bottom three plots) for a

10 mHz, fundamental-mode Love wave. (a) Map views plotted at 100 km depth. (b) Vertical slice views of cross-section AB, midway between the source

and receiver; dotted lines are plotted at 100 km depth. (c) Variation of the shear-velocity sensitivity along profile AB at 100 km depth. The seismic source is

a vertical strike-slip fault (green beachball) situated at a depth of 10 km, with maximum Love-wave radiation in the direction of propagation to the receiver

(green triangle). The sensitivity kernel is for a transverse-component measurement made on a cosine-tapered seismogram of 520 s duration, centred upon the

theoretical group arrival time in the reference spherical earth model 1066A (Gilbert & Dziewonski 1975).

consternation and in disagreement with eqs (23)–(24) of Spetzler et al. (2002)—that the group delay δt(ω) depends upon both the fractional

group- and phase-velocity perturbations:

δt =
∫∫

	

K C
t (δC/C) d	 +

∫∫
	

K c
t (δc/c) d	, (13)

where

K C
t =

(
1

kC

)
K c

φ, K c
t =

(
1

2kC

)
K c

φ +
(


′ + 
′′ − 


C

)
K c

A. (14)
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548 F. A. Dahlen and Y. Zhou

Figure 2. (a) Kernel K C
t (r̂, ω) expressing the sensitivity of a 10 mHz Love-wave group delay δt(ω) to 2-D variations in the local fractional group velocity

δC/C . (b) Corresponding 2-D kernel K c
t (r̂, ω) expressing the simultaneous sensitivity to the local phase velocity δc/c. Top plots show map views for the

same source–receiver path as in Fig. 1; bottom plots show variation along the perpendicular cross section AB, midway between the source and receiver. The

measurements are presumed to be made on a cosine-tapered seismogram of 520 s duration, centred upon the group arrival time in model 1066A (Gilbert &

Dziewonski 1975). The strong sideband sensitivity to short-scale phase-velocity variations δc/c is the most remarkable feature of the plots.

In retrospect, this dual dependence upon both δC/C and δc/c is not that surprising, inasmuch as δt(ω) is the perturbation in the arrival time of

a group of constructively and destructively interfering waves, each of which is propagating at its own local phase velocity c(r̂, ω) + δc(r̂, ω).

Fig. 2 shows an illustrative plot of the two kernels K C
t (r̂, ω) and K c

t (r̂, ω) for a 10 mHz Love wave. It is noteworthy that the sensitivity to

the fractional phase velocity δc/c actually exceeds the sensitivity to the group velocity δC/C , by as much as a factor of four in the sidebands

beyond the first Fresnel zone. It would obviously be unwise to use eqs (13)–(14) as a basis for finite-frequency inversion of measured group

delays δt(ω) to obtain 2-D maps of group velocity δC/C without simultaneous consideration of the even stronger dependence upon the phase

velocity δc/c.

5 R E F O R M U L AT I O N O F T H E D UA L D E P E N D E N C E

In an exemplary review of the originally submitted version of this paper, Mike Ritzwoller has pointed out to us that the strong 2-D dependence

of δt(ω) upon the phase velocity can be ameliorated by using eq. (12) to rewrite eqs (13)–(14) in the alternative form

δt =
∫∫

	

K̃ C
t (δC/C) d	 +

∫∫
	

K̃ c
t

[
ω

∂

∂ω
(δc/c)

]
d	, (15)

where

K̃ C
t = K C

t + K c
t =

(
3

2kC

)
K c

φ +
(


′ + 
′′ − 


C

)
K c

A, (16)

K̃ c
t = −

(
C

c

)
K c

t = −
(

1

2ω

)
K c

φ −
(


′ + 
′′ − 


c

)
K c

A. (17)
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Surface-wave group-delay and attenuation kernels 549

Figure 3. Same as Fig. 2, except for the reformulated 2-D kernels K̃ C
t (r̂, ω) and K̃ c

t (r̂, ω) expressing the sensitivity to δC/C and ω(∂/∂ω)(δc/c), respectively.

The two reformulated kernels have opposite signs within the first Fresnel zone, and we have plotted −K̃ c
t (r̂, ω) rather than K̃ c

t (r̂, ω) to facilitate comparison.

Both kernels are characterized by strong sidebands, arising from the multiplicative factor 
′ + 
′ ′ − 
 in eqs (16) and (17).

Eqs (15)–(17) express the dual dependence not directly upon the phase velocity δc/c but rather upon its dimensionless dispersionω(∂/∂ω)(δc/c).

This has the advantage that the sensitivity to δC/C is greater than that to ω(∂/∂ω)(δc/c), particularly in the central Fresenl zone, where the

amplitude of the reformulated kernel K̃ C
t (r̂, ω) exceeds that of −K̃ c

t (r̂, ω) by approximately a factor of three, as illustrated in Fig. 3. Because

of this, and because the amplitude of the group-velocity perturbation δC/C exceeds that of the phase-velocity dispersion ω(∂/∂ω)(δc/c)

by roughly the same factor in the current generation of smooth, upper-mantle 3-D models, Barmin et al. (2005) have suggested that it is

permissible simply to ignore the dependence upon the phase velocity and approximate the sensitivity of a measured group delay by the first

term in eq. (15). Such an approximation may not be unreasonable for the largest-scale lateral variations in the group velocity δC/C ; however,

any attempt to resolve small-scale structure in δC/C is likely to be plagued by the strong sidebands of the reformulated 2-D kernel K̃ C
t (r̂, ω).

We believe that it is preferable to eschew an intermediate 2-D inversion for δC/C , and instead to invert measured group delays δt(ω) directly

for 3-D structural variations in the S-wave velocity δβ/β, using eqs (9)–(10).

6 R E D U C T I O N T O R AY T H E O RY

If the lateral variations in δC/C , δc/c and ω(∂/∂ω)(δc/c) are sufficiently smooth across the great-circle ray path, these factors can be

extracted from the cross-path integrals in eqs (13) and (15). The remaining cross-path integrals of the Fréchet kernels K C
t (r̂, ω), K c

t (r̂, ω) and

K̃ C
t (r̂, ω), K̃ c

t (r̂, ω) can be performed analytically by making the paraxial approximation


′ + 
′′ − 
 ≈ 1

2

[
sin 


sin x sin(
 − x)

]
y2, (18)
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where x and y are the along-path and cross-path angular coordinates, and we have restricted attention to a minor-arc wave, as in Section 7 of

ZDN04, for simplicity. Upon making use of the Gaussian integral identities in eq. (7.13) of ZDN04 we find that∫ ∞

−∞
K C

t dy =
∫ ∞

−∞
K̃ C

t dy = −1/C,

∫ ∞

−∞
K c

t dy =
∫ ∞

−∞
K̃ c

t dy = 0, (19)

so that the dependencies upon the phase velocity δc/c or its dispersion ω(∂/∂ω)(δc/c) vanish, and we recover the 1-D, ray-theoretical

dependence upon the along-ray group-velocity variations,

δt ≈ −C−2

∫ 


0

δC dx, (20)

in this infinite-frequency limit, as expected. The Fermat path-integral relation (20) has been used as the basis for making 2-D maps of

δC/C in a number of regional group-velocity investigations. Because of the strong sidebands of the 2-D kernels K C
t (r̂, ω) and, especially,

K c
t (r̂, ω), K̃ C

t (r̂, ω) and K̃ c
t (r̂, ω), the cross-path variations of δC/C , δc/c and ω(∂/∂ω)(δc/c) need to be smooth out to a considerable distance

off the great-circle ray path for the ray-theoretical approximation (20) to be valid.

7 3 - D A N E L A S T I C AT T E N UAT I O N K E R N E L S

Starting with an unperturbed, perfectly elastic, spherical earth model with bulk and shear moduli κ and μ, we next consider a purely imaginary

3-D perturbation of the form

δκ

κ
= i Q−1

κ ,
δμ

μ
= i Q−1

μ ,
δρ

ρ
= 0, (21)

or, equivalently,

δα

α
= i

2

(
1 − 4

3

β2

α2

)
Q−1

κ + i

2

(
4

3

β2

α2

)
Q−1

μ ,
δβ

β
= i

2
Q−1

μ ,
δρ

ρ
= 0, (22)

where Q−1
κ and Q−1

μ are the spatially variable, inverse bulk and shear quality factors. Upon inserting eqs (22) into eq. (2) and rearranging

terms, we obtain the Fréchet derivative relationship expressing the 3-D sensitivity of a measured amplitude perturbation δ ln A(ω) to the

inverse quality factors:

δ ln A =
∫∫∫

⊕

[
K Qκ

A Q−1
κ + K

Qμ

A Q−1
μ

]
d3x, (23)

where

K Qκ

A = 1

2

(
1 − 4

3

β2

α2

)
K α

φ , K
Qμ

A = 1

2

(
K β

φ + 4

3

β2

α2
K α

φ

)
. (24)

It is noteworthy that the anelastic attenuation kernels K Qκ

A (x,ω) and K
Qμ

A (x,ω) are linear combinations of the elastic phase-delay kernels

K α
φ(x, ω) and K β

φ(x, ω) rather than the geometrical attenuation kernels K α
A(x, ω) and K β

A(x, ω).

The results in eq. (24) can be rewritten in a form analogous to eq. (3), namely

K
Qκ , Qμ

A = −Im

(
S ′	Qκ , Qμ R′′e−i[k(
′+
′′−
)−(n′+n′′−n)π/2+π/4]

SR√
8πk | sin 
′| | sin 
′′|/| sin 
|

)
, (25)

where

	Qκ =
{

0 Love waves

−κ(U̇ + 2r−1U − kr−1V )2 Rayleigh waves,
(26)

	Qμ =

⎧⎪⎨
⎪⎩

−μ
[
(Ẇ − r−1W )2 cos η + k2r−2W 2 cos 2η

]
Love waves

−μ
[

1
3
(2U̇ − 2r−1U + kr−1V )2

+ (V̇ − r−1V + kr−1U )2 cos η + k2r−2V 2 cos 2η
]

Rayleigh waves.

(27)

The anelastic self-scattering factors (26)–(27) are analogous to the corresponding elastic scattering factors 	α, β, ρ tabulated in Appendix A of

ZDN04; the quantities U , V and W are the Rayleigh and Love eigenfunctions, normalized in accordance with eqs (2.11)–(2.12) of ZDN04,

and a dot denotes differentiation with respect to radius r.

Love-wave attenuation is independent of the bulk anelasticity Q−1
κ whereas Rayleigh waves are attenuated by both Q−1

κ and Q−1
μ , but

much more strongly by the latter. To illustrate this we show examples of K
Qμ

A (x,ω) for a 10 mHz Love wave and of both K
Qμ

A (x,ω) and

K Qκ

A (x,ω) for a 10 mHz Rayleigh wave in Fig. 4. All three sensitivity kernels are negative within the first Fresnel zone, as expected if a

physically permissible inverse quality factor, Q−1
κ , Q−1

μ > 0, is to lead to a reduction in the wave amplitude. Roughly speaking, a 10 mHz

Rayleigh wave is an order of magnitude less sensitive to bulk anelasticity variations Q−1
κ than to shear anelasticity variations Q−1

μ .

Finally we note that the above results can be written more succinctly in terms of the inverse P-wave and S-wave quality factors, defined

by eqs (9.59)–(9.60) of Dahlen & Tromp (1998) and commonly used in body-wave seismology:

Q−1
α =

(
1 − 4

3

β2

α2

)
Q−1

κ +
(

4

3

β2

α2

)
Q−1

μ , Q−1
β = Q−1

μ . (28)
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Figure 4. Various views of the 3-D anelastic attenuation kernels for 10 mHz Love and Rayleigh waves. (a) Love-wave kernel K
Qμ

A (x,ω), expressing the

sensitivity of a measured amplitude perturbation δ ln A(ω) to 3-D variations in the inverse shear quality factor Q−1
μ . (b) Shear attenuation kernel K

Qμ

A (x,ω) for a
10 mHz Rayleigh wave. (c) Bulk attenuation kernel K Qκ

A (x,ω) for the same Rayleigh wave. Top three plots are map views plotted at 100 km depth; middle three

plots are vertical slices along cross-section AB with 100 km depth indicated by the dotted line; bottom three plots show variation of K Qκ μ
A (x,ω) along profile

AB at 100 km depth. Both the Love-wave and Rayleigh-wave sources are 10-km-deep, vertical strike slip-faults (green beachballs), with the latter rotated in

strike by π /4 with respect to the former, so that the maximum radiation is in both instances in the direction of propagation to the receiver (green triangle). The

Love-wave sensitivity kernel is for a transverse-component measurement and the Rayleigh-wave kernel is for a vertical-component measurement, both made

on cosine-tapered seismograms of 520 s duration, centred upon the group arrival time in the reference earth model 1066A (Gilbert & Dziewonski 1975).

In this notation the imaginary velocity perturbations in eq. (22) are simply δα/α = (i/2)Q−1
α , δβ/β = (i/2)Q−1

β so that the 3-D Fréchet kernel

relationship (23)–(24) reduces to

δ ln A =
∫∫∫

⊕

[
K Qα

A Q−1
α + K

Qβ

A Q−1
β

]
d3x where K

Qα, Qβ

A = 1

2
K α, β

φ . (29)

8 2 - D AT T E N UAT I O N K E R N E L

A 2-D anelastic sensitivity kernel can be derived by making a forward-scattering (η = 0) approximation in eqs (26)–(27) and evaluating the

resulting integral over depth; the anelastic analogue of eq. (6.2) of ZDN04 is∫ a

0

[
	

Qκ

η=0 Q−1
κ + 	

Qμ

η=0 Q−1
μ

]
r 2 dr = −k2

(
c

C Q

)
, (30)

where Q is the local quality factor of a Love or Rayleigh wave, given by eqs (16.148)–(16.153) of Dahlen & Tromp (1998). Alternatively, it

is possible to start with the 2-D amplitude kernel K c
A(r̂, ω) in the second of eqs (5) and note that anelasticity corresponds to an imaginary

perturbation in the local fractional phase velocity of the form

δc

c
= i

2

(
c

C Q

)
. (31)
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552 F. A. Dahlen and Y. Zhou

Figure 5. (a) Sensitivity kernel K Q
A (r̂, ω) expressing the sensitivity of δ ln A(ω) to 2-D variations in the inverse quality factor Q−1 of a 10 mHz Love wave. (b)

Same but for a 10 mHz Rayleigh wave. Top plots show map views and bottom plots show variation along the perpendicular cross section AB, midway between

the source and receiver; the amplitude measurements are presumed to be made on cosine-tapered seismograms of 520 s duration, as in Figs 1–4.

Either method yields the same 2-D sensitivity to the inverse surface-wave quality factor Q−1, namely

δ ln A =
∫∫

	

K Q
A Q−1 d	 where K Q

A =
(

c

2C

)
K c

φ. (32)

Just as the 3-D kernels K
Qκ , Qμ

A (x,ω) and K
Qα, Qβ

A (x,ω) are linear combinations of K α, β

φ (x, ω), the 2-D kernel K Q
A (r̂, ω) is simply a frequency-

dependent constant c/(2C) times the 2-D phase-delay kernel K c
φ(r̂, ω). In Fig. 5 we show illustrative examples of the 2-D anelastic attenuation

kernels K Q
A (r̂, ω) along the same source–receiver path as in Figs 1–4. The 2-D sensitivity of a 10 mHz Rayleigh wave is slightly higher than

that of a 10 mHz Love wave because it has a slightly larger wavenumber: (k R/k L)3/2 ≈ 1.3.

9 R E D U C T I O N T O R AY T H E O RY R E D U X

In the limit of infinite frequency, ω → ∞, the local inverse quality factor Q−1 can be extracted from the cross-path integral in eq. (32), and

the remaining cross-path integral over the 2-D kernel K Q
A (r̂, ω) can be evaluated by making the paraxial approximation (18), with the result∫ ∞

−∞
K Q

A dy = − ω

2C
. (33)

In this limit we recover the anelastic ray-theoretical result,

δ ln A ≈ − ω

2C

∫ 


0

dx

Q
, (34)

as required for the finite-frequency theory to be consistent. A factor of C rather than c appears in the denominators of eqs (31) and (34)

because the energy of a dispersive wave propagates with the group velocity.
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1 0 G E O M E T R I C A L P L U S A N E L A S T I C AT T E N UAT I O N

On a realistic earth model with 3-D variations in δα/α, δβ/β and δρ/ρ as well as Q−1
κ and Q−1

μ , the amplitude of a surface wave will be

perturbed by elastic focusing and defocusing effects as well as by anelastic attenuation. The total first-order amplitude perturbation is the sum

of both effects:

δ ln A = δ ln Ael + δ ln Aan, (35)

where δ ln Ael(ω) is given by eqs (2) and (4), whereas δ ln Aan(ω) is given by eqs (23)–(27). In the 2-D, forward-scattering, forward-propagating

approximation, the amplitude depends only upon the local surface-wave phase-velocity and inverse quality factor:

δ ln A =
∫∫

	

K c
A(δc/c) d	 +

∫∫
	

K Q
A Q−1 d	. (36)

Finally, in the ray-theoretical limit, ω → ∞, the amplitude is the sum of two 1-D integrals along the unperturbed great-circle ray path:

δ ln A = − 1

2c sin 


∫ 


0

sin x sin(
 − x) ∂2
y δc dx − ω

2C

∫ 


0

dx

Q
. (37)

The spherical-earth, elastic focusing-defocusing term, eq. (7.12) of ZDN04, was first derived using a strictly ray-theoretical argument by

Woodhouse & Wong (1986).

1 1 C O N C L U S I O N

In this paper we have derived Fréchet kernels expressing the linearized sensitivity of a surface-wave group-delay measurement δt(ω) to 3-D

elastic velocity and density variations δα/α, δβ/β and δρ/ρ and the sensitivity of an amplitude measurement δ ln A(ω) to 3-D bulk and

shear anelasticity variations Q−1
κ and Q−1

μ . By making a forward-scattering (η = 0) and a forward-propagating (S ′ = S and R′′ = R)

approximation and evaluating the resulting integrals over depth, we have implemented a reduction from 3-D to 2-D, obtaining kernels that

express the sensitivity of δt(ω) to the local fractional group-velocity and phase-velocity perturbations δC/C , δc/c and ω(∂/∂ω)(δc/c), and the

sensitivity of δ ln A(ω) to the local surface-wave inverse quality factor Q−1. In the ray-theoretical limit, ω → ∞, these 2-D relationships reduce

in turn to the expected 1-D, along-ray integrations. The strong sensitivity of a measured group delay δt(ω) to short-scale, off-path variations in

the phase velocity δc/c could potentially give rise to serious artefacts in 2-D maps of δC/C obtained by ray-theoretical, group-delay inversion.

In our opinion it is strongly preferable to invert both group-delay measurements δt(ω) and anelastic attenuation measurements δ ln A(ω) using

the full 3-D, finite-frequency sensitivity kernels K α, β, ρ
t (x, ω) and K A

Qκ , Qμ (x,ω).
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