Measurement of the branching fraction $B_s^0 \rightarrow \mu^+\mu^-$ and search for $B^0 \rightarrow \mu^+\mu^-$ with the CMS experiment

—Supplemental Material—

The CMS Collaboration

Submitted to Physical Review Letters
1 Additional plots of mass fits
The plots are the data, the solid line is the result of the fit, the shaded areas are the two signal, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds. The points are the data, the solid line is the result of the fit, and the shaded areas are the two signals, and the different dotted lines are the backgrounds.
Figure 2: Results of the fit to the dimuon invariant mass distributions with the 1D-BDT method for the barrel (left) and endcap (right) from the 7 TeV (top) and 8 TeV (bottom) data samples. The points are the data, the solid line is the result of the fit, the shaded areas are the two B signals, and the different dotted lines are the backgrounds.