CaltechAUTHORS
  A Caltech Library Service

A Mechanical Model for Elastic Fiber Microbuckling

Waas, A. M. and Babcock, C. D., Jr. and Knauss, W. G. (1990) A Mechanical Model for Elastic Fiber Microbuckling. Journal of Applied Mechanics, 57 (1). pp. 138-147. ISSN 0021-8936. http://resolver.caltech.edu/CaltechAUTHORS:WAAjam90

[img] PDF
See Usage Policy.

1471Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:WAAjam90

Abstract

A two-dimensional mechanical model is presented to predict the compressive strength of unidirectional fiber composites using technical beam theory and classical elasticity. First, a single fiber resting on a matrix half-plane is considered. Next, a more elaborate analysis of a uniformly laminated, unidirectional fiber composite half-plane is presented. The model configuration incorporates a free edge which introduces a buckling mode that originates at the free edge and decays into the interior of the half-plane. It is demonstrated that for composites of low volume fraction (<0.3), this decay mode furnishes values of buckling strain that are below the values predicted by the Rosen (1965) model. At a higher volume fraction the buckling mode corresponds to a half wavelength that is in violation of the usual assumptions of beam theory. Causes for deviations of the model prediction from existing experimental results are discussed.


Item Type:Article
Additional Information:Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, September 12, 1988; final revision, June 6, 1989. This work was supported by NASA Grant No. NSG-1483. The authors are appreciative of this support. The interest and encouragement of Dr. J. H. Starnes, Jr. of NASA-Langley is gratefully acknowledged.
Record Number:CaltechAUTHORS:WAAjam90
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:WAAjam90
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:420
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:16 Jun 2005
Last Modified:26 Dec 2012 08:40

Repository Staff Only: item control page