compared to 540 ± 60 (Goles, 1971). The Cu/As ratios are similar in three types of meteorites analysed, indicating the same depletion factors for Cu and As in type 2 and 3 carbonaceous chondrites.

EVIDENCE OF 26Mg EXCESS IN HIBONITE FROM MURCHISON

D.A. Papanastassiou and G.J. Wasserburg, *The Lunatic Asylum, Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125*

We report Mg isotopic analyses on a hibonite inclusion from Murchison (CM), named the Blue Angel for its distinct color, and discovered by R.H. Becker. Petrographic, mineralogic, and chemical information is provided in a companion abstract (Armstrong et al., 1980). Hibonite is important as it has the highest estimated condensation temperature for major element oxides (Blander and Fuchs, 1975), may have a high Al/Mg ratio, and may be chemically resistant to alteration. The Mg measurements reported here extend to Murchison the application of high precision mass spectrometric analyses. We list in Table 1 analyses by direct loading of three ~ 50 μm crystals from the core of the inclusion and the results on a fourth crystal which was fused and the Mg chemically separated. The techniques were described (Lee et al., 1977a; Esat et al., 1979a). Two of the crystals were rinsed in 1N HCl to remove soluble phases (e.g., CaCO$_3$) possibly rich in Mg, so as to enhance effects from hibonite. All crystals yield a uniform, raw 25Mg/24Mg corresponding to unfractonated Mg isotopes relative to terrestrial Mg to within 1% per amu. All directly loaded crystals show a uniform, distinct excess δ^{26}Mg/24Mg = 13.6‰. This excess is resolved without the need to normalize for instrumental fractionation and demonstrates the presence of excess 26Mg in this inclusion. The fused sample yields a lower 26Mg excess due to contamination during fusion but which confirms the existence of the effect. If we assume that the observed excess is due to 26Al decay and with an average Al/Mg from Armstrong et al. (1980), and if we assume a normal initial 26Mg/24Mg, we obtain Δ^{26}Al/27Al = 5×10^{-6} at the time of formation of the Blue Angel. This ratio is similar to that for Allende inclusions BG2-6, WA, Egg-1, Egg-2, and Egg-3 (Lee et al., 1976; Lee et al., 1977b; Esat et al., 1979b), but contrasts with 26Al/27Al < 10^{-5} in the HAL hibonite from Allende (Lee et al., 1979) and with reports of 26Al/27Al ~ 10^{-5} in hibonite from Leoville using an ion-probe (Lorin and Christophe, 1978). Using an ion-probe, Macdougall and Phinney (1979) found for Murchison that the hibonite crystals (100-500 μm) they analyzed were normal within their lower precision of 5-10% except for a hint of excess 26Mg in one hibonite inclusion. They also observed highly fractionated Mg isotopes in another crystal. Tanaka et al. (1980) reported excess 26Mg in mellilite from Murchison, but the absence of 26Mg excess in hibonite. We conclude that there is now clear evidence for significant excess of 26Mg in hibonite in Murchison. The inferred 26Al/27Al for the Blue Angel hibonite (high temperature) does not differ significantly from that commonly found in the anorthite (lower temperature).

Table 1

Murchison: Blue Angel Hibonite

<table>
<thead>
<tr>
<th>Mean Crystal Dimension</th>
<th>Fractionation* δ^{25}Mg/24Mg</th>
<th>δ^{26}Mg*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 70 μm (blue)</td>
<td>-1 ± 1</td>
<td>13.6 ± 1.2</td>
</tr>
<tr>
<td>2. 50 μm (grey)</td>
<td>+0.5 ± 1</td>
<td>13.7 ± 0.8</td>
</tr>
<tr>
<td>3. 40 μm (blue)</td>
<td>-0.5 ± 1</td>
<td>13.6 ± 0.3</td>
</tr>
<tr>
<td>4. Fused hibonite</td>
<td>+1 ± 1</td>
<td>6.3 ± 2.0</td>
</tr>
</tbody>
</table>

With 27Al/24Mg = 42, Δ^{26}Al/27Al = 5×10^{-5}

*Fractional deviation of the raw measured ratio from 25Mg/24Mg = 0.12475 for normal Mg. δ^{25}Mg/24Mg is the Mg isotope fractionation.

*Excess 26Mg relative to normal (26Mg/24Mg) after correction for fractionation. Errors are 2σ_m.

© Meteoritical Society • Provided by the NASA Astrophysics Data System