Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials
Chenguang Fu, Yintu Liu, Hanhui Xie, Xiaohua Liu, Xinbing Zhao, G. Jeffrey Snyder, Jian Xie, and Tiejun Zhu

Citation: Journal of Applied Physics 114, 134905 (2013); doi: 10.1063/1.4823859
View online: http://dx.doi.org/10.1063/1.4823859
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/114/13?ver=pdfcov
Published by the AIP Publishing
Electron and phonon transport in Co-doped FeV$_{0.6}$Nb$_{0.4}$Sb half-Heusler thermoelectric materials

Chenguang Fu,¹ Yintu Liu,¹ Hanhui Xie,¹ Xiaohua Liu,¹ Xining Zhao,¹,² G. Jeffrey Snyder,³ Jian Xie,¹,² and Tiejun Zhu¹,²,a)
¹State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
²Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
³Materials Science, California Institute of Technology, Pasadena, California 91125, USA

(Received 4 July 2013; accepted 16 September 2013; published online 4 October 2013)

The electron and phonon transport characteristics of n-type Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb half-Heusler thermoelectric compounds is analyzed. The acoustic phonon scattering is dominant in the carrier transport. The deformation potential of $E_{def} = 14.1$ eV and the density of state effective mass $m^* \approx 2.0m_e$ are derived under a single parabolic band assumption. The band gap is calculated to be ~ 0.3 eV. Electron and phonon mean free paths are estimated based on the low and high temperature measurements. The electron mean free path is higher than the phonon one above room temperature, which is consistent with the experimental result that the electron mobility decreases more than the lattice thermal conductivity by grain refinement to enhance boundary scattering. A maximum ZT value of ~ 0.33 is obtained at 650 K for $x = 0.015$, an increase by $\sim 60\%$ compared with FeVSb. The optimal doping level is found to be $\sim 3.0 \times 10^{20} \text{cm}^{-3}$ at 600 K. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823859]

I. INTRODUCTION

Half-Heusler phases are an attractive class of intermetallic compounds with the cubic MgAgAs crystal structure (space group F4 3 m).¹ These compounds cover various promising candidates as half-metallic magnetic semiconductors,²–⁴ shape memory alloys,⁵ piezoelectric materials,⁶ and topological insulators.⁷,⁸ In recent years, the half-Heusler compounds with valence electron count $VEC = 18$ have been identified as potential high temperature thermoelectric (TE) materials for power generation.⁹–¹³ The performance of a TE material is represented by the dimensionless figure of merit $ZT = S^2T/(r \kappa + \kappa_L)$, where S, r, T, κ_e, and κ_L are, respectively, the Seebeck coefficient, the electrical conductivity, the absolute temperature, and the electrical and lattice components of total thermal conductivity κ.¹⁴ It is difficult to optimize these variables independently to increase ZT because the quantities S, r, T, κ_e, and κ_L are interrelated via carrier concentration. The compromise between a large Seebeck coefficient and a high electrical conductivity for promoting thermoelectric materials with high ZT requires an optimal carrier concentration between 10^{19} and 10^{21} carriers per cm3, which is usually found in heavily doped semiconductors.¹⁵ The κ_L is independent of the electrical properties, which should be minimized as much as possible. Therefore, there are usually two approaches to optimize the performance of a TE material: One is to reduce the lattice thermal conductivity by alloying or nanostructuring to induce point defects,¹⁶,¹⁷ or interfaces,¹⁸–²⁰ and the other is to optimize the power factor $PF = S^2 \tau \sigma$ by band engineering, such as modification of electron states via resonant levels,²¹,²² convergence of energy bands,²³–²⁵ or weakening the scattering of carriers.²⁶,²⁷

MnInSn (M = Ti, Zr, Hf)²⁹,¹⁶,¹⁷,²⁸–³⁰ and MoCoSb³¹,³² compounds are most widely investigated half-Heusler TE materials due to their high Seebeck coefficients and moderate electrical conductivities. And the state-of-the-art ZT values of close to unity have been obtained at high temperatures.³³,³⁴ Another half-Heusler compound, FeVSb, usually exhibits the maximum ZT value in medium temperature range (550–750 K). Despite of its high power factor, $\sim 4 \times 10^{-3}$ W m$^{-1}$ K$^{-2}$ at 300 K, the relatively high thermal conductivity ($\kappa \approx 10$ W m$^{-1}$ K$^{-1}$) makes this system less promising for TE application at present.³⁵ In our previous study, the enhanced point defect scattering for phonons has been introduced by the isoelectronic substitution of Nb on the V sites. A significantly reduced thermal conductivity of 5.5 W m$^{-1}$ K$^{-1}$ for the FeV$_{0.6}$Nb$_{0.4}$Sb was obtained at 300 K. However, the simultaneous decrease in electrical conductivity leads to deteriorated power factor and ZT.³⁶ The optimal TE figure of merit $ZT \propto \mu \kappa^2/\kappa_L$ is related to the carriers mobility μ, the density-of-states effective mass m^*, and the lattice thermal conductivity κ_L. The knowledge of electron and phonon transport mechanisms would provide important guidelines for the improvement of the TE performance of this system.

In this work, we study the electron and phonon transport characteristics of n-type Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x = 0$–0.02) compounds. The Co doping on the Fe site can increase the electron concentration and improve conductivity. Since previous energy band calculation shows that the FeVSb and FeNbSb have single conduction bands,¹²,³⁷ the single parabolic band (SPB) model, which is combined with the solution to the Boltzmann transport equation within the relaxation
time approximation is employed to analyze the electrical transport properties of the compounds. Moreover, the electron mean free path (EMFP) of Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb and phonon mean free path (PMFP) are evaluated. Both the calculated and experimental results indicate that the ratio μ/κ is not improved by enhancing boundary scattering in this system.

II. EXPERIMENTAL PROCEDURES

Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x=0, 0.005, 0.01, 0.015, 0.02$) ingots were prepared by levitation melting. More details can be found elsewhere. The ingots were pulverized and sifted through a 200 mesh sieve. Two samples with $x=0.01$ and $x=0.015$ were further pulverized by ball milling (BM) for 10 h to obtain fine-grained powders for comparison. The powders were compacted by spark plasma sintering (SPS-1050, Sumitomo Coal Mining Co.) at 1073 K for 10 min under 65 MPa. The obtained sample pellets were annealed at 1023 K for 2 days. The relative density of all samples was found to be \sim95%.

Phase structure of the samples was investigated by X-ray diffraction (XRD) on a RigakuD/MAX-2550PC diffractometer. The XRD analysis, as shown in Fig. 1, indicates that no impurity phases exist in the samples. No obvious change in lattice parameter was observed since the Co has similar radius with Fe. Compositional homogeneity of all samples was examined by electron probe microanalysis (EPMA, JEOL JXA-8100). The sample pellets of 12.7 mm in diameter were used to measure the thermal conductivity and then cut into the rectangular bars for the electrical property measurements. The Seebeck coefficient and electrical conductivity from 300–800 K were measured on a commercial Linseis LSR-3 system using a differential voltage/temperature technique and DC four-probe method, respectively. The thermal conductivity κ was calculated from $\kappa=D\rho C_p$, where ρ is the sample density estimated by the Archimedes method. The thermal diffusivity D and specific heat C_p were measured by a laser flash method on Netzsch LFA457 instrument with a Pyroceram standard. The low temperature Hall coefficients R_H and thermal conductivity of the samples were measured using a physical property measurement system (PPMS-9T, Quantum Design Inc., USA). The carrier concentration n_H was calculated by $n_H=1/eR_H$, where e is the unit charge. The carriers mobility μ_H was calculated by $\mu_H=\sigma R_H$.

III. ELECTRICAL TRANSPORT

Figure 2 shows the electrical properties of Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x=0 \sim 0.02$) compounds. The parent
sample FeV$_{0.6}$Nb$_{0.4}$Sb, without Co doping, possesses a high Seebeck coefficient of -280 μV/K and a small electrical conductivity of 0.8×10^4 Ω^{-1} m$^{-1}$ at room temperature. The temperature dependence of resistivity of FeV$_{0.6}$Nb$_{0.4}$Sb at high temperatures follows a simple exponential law $\rho = \rho_0 \exp(E_g/2k_BT)$, where E_g is the band gap and k_B is the Boltzmann constant (the inset of Fig. 2(a)). The determined value for E_g is \sim0.26 eV. Co acts as an effective donor and improves the electrical conductivity, as shown in Fig. 2(a). The electrical conductivity for all the Co doped samples decreases with increasing temperature, revealing a metal-like behavior. The σ of the Co doped samples follows a relationship $\sigma \sim T^{-1.0}$ below \sim500 K. The Hall carrier concentration of the samples below 300 K, shown in Fig. 2(b), keeps nearly constant. The Hall mobility follows a relationship $\mu_H \sim T^{-1.0}$ near room temperature, consistent with the temperature dependence of electrical conductivity, indicating that the acoustic phonon scattering of carriers may be dominant in degenerate Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x > 0.005$) compounds.39

The absolute Seebeck coefficient of all the samples decreases with increasing carrier concentration, in Fig. 2(c). The Seebeck coefficient of the Co doped samples increases linearly with increasing temperature before the intrinsic excitation. The temperature T_{max}, at which the maximum Seebeck coefficient occurs, increases with increasing Co content, implying that the intrinsic excitation occurs at higher temperatures. The band gap of all the samples can be estimated by the formula $S_{\text{max}} = E_g/2eT_{\text{max}},$ where T_{max} is the temperature at which the maximum Seebeck coefficient S_{max} occurs. The calculated E_g of \sim0.3 eV for all the samples is close to that for FeV$_{0.6}$Nb$_{0.4}$Sb (\sim0.26 eV), and is also similar to the band gap of ZrNiSn (\sim0.3 eV).28 Fig. 2(d) shows the power factor of all the Co doped samples is enhanced, especially near room temperature, increasing from 6.5×10^{-4} W m$^{-1}$ K$^{-2}$ for $x = 0$ to 29.3×10^{-4} W m$^{-1}$ K$^{-2}$ for sample $x = 0.01$.

Within the framework of a single parabolic band assumption, the Seebeck coefficient S and Hall carrier concentration n_H are given by

$$S = -\frac{k_B}{e} \left[\frac{(5/2 + \lambda)}{(3/2 + \lambda)}F_{2+1/2}(\eta) - \eta \right], \quad (1)$$

$$n_H = \frac{4\pi(2m^*k_BT)^{3/2}F_{1/2}(\eta)}{\hbar^3}, \quad (2)$$

$$r_H = \frac{3}{2}F_{1/2}(\eta) \left(\frac{(3/2 + 2\lambda)(\lambda)F_{2+1/2}(\eta)}{(3/2 + \lambda)^2F_F{2+1/2}(\eta)} \right), \quad (3)$$

$$F_i(\eta) = \int_{0}^{\infty} \frac{\xi^2 d\xi}{1 + \exp(\xi - \eta)}, \quad (4)$$

where $\eta = E_g/k_BT$ is the reduced Fermi level, λ the reduced carrier energy, $F_i(\eta)$ the Fermi-Dirac integral, r_H the Hall factor, m^* the density of states effective mass, \hbar the Planck constant, and the scattering factor λ relates to the energy dependence of the carrier relaxation time τ via $\tau = \tau_0 e^{-\lambda}$. The acoustic phonon scattering gives $\lambda = -1/2$. Based on the experimental Seebeck coefficients and carrier concentrations, an effective mass m^* \approx $2.0 m_e$ was derived for all Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x > 0$) samples using Eqs. (1)-(4). The calculated r_H changes from 1.14 for sample $x = 0$ to 1.04 for sample $x = 0.02$.

Pisarenko plot of S versus n_H can be calculated from Eqs. (1) and (2) and is presented in Fig. 3, together with the experimental data. The SPB model is reasonable in a region where minority carrier transport is negligible. This is typically the case in heavily doped (degenerate) semiconductors before thermal excitation of electron-holes pairs influences transport at high temperatures.41 The measured Hall carrier concentration dependence of the Seebeck coefficient of the Co doped Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb samples matches the calculated lines well at 300, 400, and 500 K. The good agreement between experimental points and the calculated curves indicates that the effective mass m^* is almost independent of carrier concentration and temperature in the degenerate Co doped samples, and the single parabolic band model is applicable for analyzing the electrical transport in Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb compounds. The temperature dependence of Seebeck coefficient S was also calculated by the SPB model with the $m^* \approx 2.0 m_e$, given in Fig. 2(c). The results agree well with the experimental data before the intrinsic excitation. At higher temperatures, the experimental data have a large deviation from the calculated curves, due to the generation of electron-hole pairs from the thermal excitation, where the SPB model fails.

For a semiconductor with the single parabolic band and the acoustic phonon scattering, the Hall mobility can be expressed as

$$\mu_H = \frac{F_{-1/2}(\eta)}{2F_0(\eta)}, \quad (5)$$

The value of μ_0 is related to the relaxation time τ_0 via $\mu_0 = e\tau_0/m^*_i$, where m^*_i is the inertial effective mass. When the acoustic phonon scattering dominates the transport of charge carriers, μ_0 can be expressed as42

$$\mu_0 = \frac{e \pi h^4 v_l^2 d}{\sqrt{2(k_BT)^{3/2}E_{\text{det}}(m^*_i)^{5/2}}}, \quad (6)$$

where v_l is the velocity of longitudinal sound waves, d is the density, and E_{det} is the deformation potential that represents the degree to which the charge carriers interact with phonons in a material.27 m^*_i is expressed as $m^* = N_{\nu}^{-1/2} m^*_i$, where N_{ν} is
the number of degenerate carriers pockets. The conduction band extrema of n-type FeVSb locates at X point of the Brillouin zone and has three equivalent pockets (N_e = 3), which dominate the transport properties. The value ν_l of ~5970 m/s was calculated from our previous measurement of low temperature specific heat. Based on the acoustic phonon scattering using Eq. (6), the deformation potential \(E_{\text{def}} \) was calculated to be 14.1 eV by fitting the experimental carrier concentration dependence of mobility (in Fig. 4), which is in the reasonable range of 8 ~ 35 eV for a doped semiconductor. A low deformation potential is beneficial for a relatively high carrier mobility.

Good TE materials in principle need a large \(\mu_m \sqrt{m_e^*} \). For example, PbTe has a small \(m_e^* \) but a large \(\mu_m \) of several hundred \(\text{cm}^2/\text{V}\cdot\text{s} \) at room temperature. Ba_9Ga_{10}Ge_{30} and La_3Te_4 have relative low \(\mu_m \) (\(\sim 10 \text{ cm}^2/\text{V}\cdot\text{s} \)) but large \(m_e^* \) (1.8\(m_e \) for Ba_9Ga_{10}Ge_{30} and 2.8\(m_e \) for La_3Te_4) at room temperature. In Fe_{1-x}Co_{x}V_{0.6}Nb_{0.4}Sb half-Heusler compounds, the relatively large \(\mu_m \) (40~80 \(\text{cm}^2/\text{V}\cdot\text{s} \) at room temperature), together with the relatively large \(m_e^* \) (\(\sim 2 m_e \)) leads to a large \(\mu_m \sqrt{m_e^*} \), which may explain why this system has high power factors.

Note that at low \(n_H \) (1.5 \(\times 10^{20} \text{cm}^{-3} \)), the experimental data deviate from the calculated curves in Fig. 4. For sample \(x = 0 \), the carrier concentration nearly keeps a constant (Fig. 2(b)), but the mobility \(\mu_H \) increases with increasing temperature below 300 K (not shown here), not following the relationship \(\mu_H \sim T^{-1.0} \), which indicates that additional scattering mechanism may exist in FeV_{0.6}Nb_{0.4}Sb. Heng et al. recently reported that in PbS system the \(\mu_H \) increases with increasing \(n_H \) at low carrier concentrations due to the polar optical phonon scattering and decreases with increasing \(n_H \) at higher carrier concentrations owing to the dominant acoustic phonon scattering.

IV. THERMAL CONDUCTIVITY

Fig. 5(a) shows the thermal conductivity \(\kappa \) increases with increasing Co content and decreases with temperature. At high temperatures, thermal conductivity increases due to the bipolar conduction. The measured specific heat, as shown in Fig. 5(a), increases with increasing temperature and the room temperature specific heat is approximately equal to the Dulong-Petit value (~0.306 J/g/K). The thermal conductivity is typically described as a sum of electronic and lattice contributions: \(\kappa = \kappa_e + \kappa_L \). The Weidemann-Franz law permits an estimation of the electronic component: \(\kappa_e = \frac{L}{T} \). \(L \) is Lorenz number and can be calculated by the single parabolic band approximation

\[
L = \frac{k_B^2}{e^2} \frac{3F_0(\eta)F_2(\eta) - 4F_1(\eta)^2}{F_0(\eta)^2}.
\]

The calculated Lorenz constant for Fe_{1-x}Co_{x}V_{0.6}Nb_{0.4}Sb compounds is in the range of 1.6 \(\times 10^{-8} \text{ V}^2 \text{ K}^{-2} \sim 2.0 \times 10^{-8} \text{ V}^2 \text{ K}^{-2} \), lower than the metallic limit \(L_0 \) of 2.45 \(\times 10^{-8} \text{ V}^2 \text{ K}^{-2} \). The electron thermal conductivity \(\kappa_e \) for all the samples increases with increasing Co content and ranges from 0.1 W m\(^{-1}\) K\(^{-1}\) to 2.0 W m\(^{-1}\) K\(^{-1}\) at room temperature. At high temperatures, \(\kappa_e \) of the Co doped samples rapidly decreases and only contributes ~10% to the total thermal conductivity. Fig. 5(b) shows that the \(\kappa_L \) of Fe_{1-x}Co_{x}V_{0.6}Nb_{0.4}Sb compounds is largely reduced compared with FeVSb. The Co content dependence of \(\kappa_L \) decreases slightly with increasing Co content, as shown in the inset of Fig. 5(b), which should be due to the enhanced alloy scattering induced by the difference in mass and atom radius between Fe and Co. The minimum thermal conductivity \(\kappa_{\text{min}} \) was calculated by Cahill’s model. The \(\kappa_L \) of all the Fe_{1-x}Co_{x}V_{0.6}Nb_{0.4}Sb compounds is much higher than the minimum thermal conductivity \(\kappa_{\text{min}} \sim 1.0 \text{ W m}^{-1} \text{ K}^{-1} \), suggesting that \(\kappa_L \) has still a large space to be reduced.

V. EFFECT OF BOUNDARY ON ELECTRON AND PHONON TRANSPORT

The free path length for the phonons varies strongly with their vibration frequency. There are usually two approaches to reduce the lattice thermal conductivity in
half-Heusler compounds: one is to enhance the scattering of high frequency phonons by introducing point defects, and the other is to enhance the scattering of low frequency phonons by grain refinement. The point defect scattering has been introduced in FeVSb system by substituting Nb on the V sublattice and the lattice thermal conductivity was largely decreased. Suppressing the propagation of low frequency phonons may be another effective way to further reduce the lattice thermal conductivity.

In order to benefit from the boundary scattering in thermoelectric materials, the PMFP should be smaller than the EMFP. The estimation of PMFP and EMFP can give rough information on whether the grain refinement is effective in improving TE performance. When the acoustic phonon scattering of carriers is predominant in a large crystal, the mobility can be given by

$$\mu = \frac{4eI_c}{3(2\pi)^{1/2}k_BT^{1/2}}$$

where I_c is the electron mean free path. The phonon mean free path I_{ph} can be estimated from the lattice thermal conductivity using the equation

$$\kappa_L = \frac{1}{3}C_vv_sI_{ph},$$

where C_v is the specific heat per unit volume, and v_s the sound velocity. The lattice thermal conductivity κ_L of sample $x=0.1$ and $x=0.015$ from 5–600 K is shown in Fig. 6(a). The slight increase in κ_L for sample $x=0.01$ between ~200 K and 300 K is due to the radiation loss. The PMFP and EMFP of samples $x=0.01$ and $x=0.015$ were roughly estimated and shown in Fig. 6(b). The PMFP decreases with increasing temperature in the investigated temperature range. And the EMFP increases with increasing temperature and is ~5 nm above 100 K. At low temperatures, the PMFP is much larger than the EMFP, suggesting that boundary scattering may be effective in reducing lattice thermal conductivity while less affecting carrier mobility and electrical conductivity. However, above ~100 K, the EMFP is larger than PMFP, implying that grain refinement may reduce the carrier mobility more than the lattice thermal conductivity.

In order to validate the above analysis, two fine-grained samples Fe$_{0.985}$Co$_{0.015}$V$_{0.6}$Nb$_{0.4}$Sb ($x=0.01$BM) and Fe$_{0.985}$Co$_{0.015}$V$_{0.6}$Nb$_{0.4}$Sb ($x=0.015$BM) were prepared by BM followed by SPS. The typical SEM images of the samples $x=0.01$ and $x=0.015$ are shown in Fig. 7. Sample $x=0.01$, without ball milling, has larger particles of ~2.5 μm, while the ball milled sample $x=0.01$BM possesses relatively smaller particles ranging from ~300 nm to 1 μm.

As shown in Fig. 8(a), the lattice thermal conductivity κ_L of the BMed samples has a distinct decrease compared to the coarse-grained counterparts. Especially at room temperature, a decrease of ~30% was obtained for the two BMed samples. Above the room temperature, the boundary scattering of phonons weakens with increasing temperature due to the reduced low frequency phonons. As a result, the decrease in high temperature κ_L is not as obvious as room temperature κ_L. However, the Hall mobility of the BMed samples also distinctly decreases. The ratio μ_H/κ_L of the BMed samples, as shown in Fig. 8(b), is reduced compared with that of the

FIG. 6. Temperature dependences of lattice thermal conductivity (a) and EMFP and PMFP (b) for samples $x=0.01$ and $x=0.015$.

FIG. 7. SEM images of the fractured surface of samples $x=0.01$(a) and $x=0.01$BM (b).
obtained at 650 K for sample $x = 0.015$, an increase by ~60% compared with FeVSb. The ZT of the BMed samples $x = 0.015$ and $x = 0.015$ decreases, compared with the non-BMed counterparts, mainly due to the largely reduced mobility. The carrier concentration dependence of the ZT calculated by SPB model is shown in Fig. 9(b), together with the experimental data. The optimal Hall carrier concentration $n_{H, opt}$, at which the maximum ZT value occurs, is estimated to be $\sim 3.0 \times 10^{20} \text{cm}^{-3}$ at 600 K.

VI. CONCLUSIONS

The electron and phonon transport of n-type Fe$_{1-x}$Co$_x$V$_{0.6}$Nb$_{0.4}$Sb ($x = 0.02$) half-Heusler thermoelectric compounds was analyzed. The state density effective mass was determined to be $\sim 2.0 m_e$. The deformation potential $E_{def} = 14.1$ eV was derived by a SPB model. And the band gap E_g is ~ 0.3 eV. The EMFP is several times larger than the PMFP above room temperature, suggesting that grain refinement is not an effective way in improving ZT of this system because the ratio of mobility to lattice thermal conductivity will decrease by enhancing boundary scattering. The subsequent experimental results corroborate the supposition. A maximum ZT value of ~0.33 was obtained at 650 K for sample $x = 0.015$ due to the carrier concentration optimization, ~60% increase compared with FeVSb. The optimal doping level was estimated to be $\sim 3.0 \times 10^{20} \text{cm}^{-3}$ at 600 K.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research Program of China (2013CB632503), the Nature Science Foundation of China (Grant Nos. 51171171, 51271165, and 51101139), and the Program for New Century Excellent Talents in University (NCET-12-0495).

15G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).