Autoregulatory Feedback Controls Sequential Action of cis-Regulatory Modules at the brinker Locus

Leslie Dunipace,1 Abbie Saunders,2 Hilary L. Ashe,2 and Angelike Stathopoulos1,*

1Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
2Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
*Correspondence: angelike@caltech.edu

http://dx.doi.org/10.1016/j.devcel.2013.08.010
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SUMMARY
cis-regulatory modules (CRMs) act sequentially to regulate temporal expression of genes, but how the switch from one to the next is accomplished is not well understood. To provide insight, here we investigate the cis-regulatory system controlling brinker (brk) expression in the Drosophila embryo. Two distally located CRMs support expression at different times, while a promoter-proximal element (PPE) is required to support their action. In the absence of Brk protein itself or upon mutagenesis of Brk binding sites within the PPE, the late-acting CRM, specifically, is delayed. This block to late-acting CRM function appears to be removed when the early-acting CRM is also deleted. These results demonstrate that autoregulatory feedback is necessary for the early-acting CRM to disengage from the promoter so that the late-acting CRM may act. Autoregulation may be a commonly used mechanism to control sequential CRM action necessary for dynamic gene expression throughout the course of development.

INTRODUCTION
Many genes are pervasively expressed throughout development by the sequential action of cis-regulatory modules (CRMs). Studies of sequentially acting CRMs have been most clearly characterized through deletions made in the context of large reporter transgenes, encompassing the majority, if not the entirety, of a gene’s cis-regulatory information (Lee et al., 2007; Pfeffer et al., 2002). However, little is known regarding how the handoff from one CRM to the next is accomplished or whether this process is regulated. To provide insight, here we have investigated the cis-regulatory system controlling dynamic embryonic expression of the gene brinker (brk) in Drosophila melanogaster.

The brk gene is continuously expressed during development, and its product plays an important role in cell patterning (Jazwińska et al., 1999a). brk encodes a transcriptional repressor and acts, at least in part, to refine gene expression downstream of BMP signaling. Several previous studies have focused on the identification and initial characterization of CRMs that act to control brk gene expression (Müller et al., 2003; Yao et al., 2008). Five distinct CRMs were identified upstream of the brk gene that support expression in the wing disc (Yao et al., 2008). It was suggested that this set of CRMs works coordinately to control brk expression, in that their combined output is thought to support the brk pattern in the wing disc. Conversely, just two CRMs have been identified that support brk early embryonic expression along the dorsal-ventral axis: one present ~10 kb upstream of the gene and the other present ~8 kb downstream (Hong et al., 2008; Markstein et al., 2004; Ozdemir et al., 2011). These CRMs acting in the embryo were also found to support similar expression within lateral stripes along the dorsal-ventral axis of the embryo. Based on their similarity of expression, it was suggested that they provide evolutionary robustness (Hong et al., 2008). However, no previous study has examined the function of individual brk gene-associated CRMs in the context of the gene locus or examined their temporal expression profiles.

In this study, we have focused on dissecting the role of individual CRMs associated with the brk locus in the early embryo with the goal of providing understanding of the regulation of gene expression in general. Our results demonstrate that the embryonic CRMs acting at the brk locus support temporally distinct patterns. In addition, our data show that autoregulatory feedback is the mechanism used in the early embryo to switch from the early-acting CRM to the late-acting CRM at this locus. Specifically, we found that Brk binding to the promoter-proximal sequence is important for managing this exchange. These results suggest that autoregulation may be a commonly used mechanism to support dynamic and continuous gene expression by controlling the timing of association of sequentially acting CRMs with the promoter.

RESULTS AND DISCUSSION
Our previous ChIP-seq studies examined transcription factor occupancy in the genome, identifying three regions of occupancy for the bHLH transcription factor Twist at the brk locus: one region located promoter proximally and two regions located at a distance (Figure S1A available online) (Ozdemir et al., 2011).
The region near the promoter, the promoter-proximal element (PPE), failed to support gene expression by standard reporter gene assay (Figures S1E–S1E"). In contrast, the distally located regions (i.e., 5' and 3' CRMs) have been shown to support gene expression within lateral stripes along the dorsal-ventral axis (Hong et al., 2008; Markstein et al., 2004; Ozdemir et al., 2011). Previous studies have highlighted the similarity of the patterns supported also differ: the 3' CRM supports broad ectodermal expression throughout the trunk, whereas the 5' CRM supports only minimal expression at the anterior and posterior ends (Figures S1D' and S1C", respectively). Therefore, standard reporter assays suggest these two CRMs drive similar expression in the early embryo precellularization but different expression at later stages.

To examine the function of these CRMs in native context, we constructed a large 32 kb brk-gfp rescue construct spanning the brk gene and associated flanking sequence and including both distally located early embryonic CRMs (Figure 1A). The gfp gene was inserted as an in-frame insertion to the Brk C terminus, thereby creating an ~32 kb “brk-gfp” transgene that supports the viability of brk mutants to adulthood (see Experimental Procedures). In a second construct, based on modification of the first, the coding sequence of brk was replaced with gfp generating a transgene encoding a nonfunctional (NF) brk (brkNFgfp), which allowed comparison of reporter expression versus that of endogenous brk (Figures 1B and 1C). These large reporter constructs facilitate CRM dissection in the context of the genomic locus: the brk promoter is retained and enhancer sequences are located in their native positions relative to the promoter and each other.

Recombineering was used to delete the three putative cis-regulatory sequences from the brkNFgfp large transgene (see Experimental Procedures). When the 3' CRM sequence was deleted (brkNFgfp Δ3'), expression of the reporter was normal early at precellularization (Figure 1D) but lost later at cellularization and gastrulation (Figures 1D' and 1D", respectively). In contrast, the opposite trends were observed when the 5' CRM sequence was deleted (brkNFgfp Δ5'); expression was lost at the early time point (Figure 1E) but appeared normal (i.e., matching endogenous brk) at later stages (Figures 1E' and 1E"). When both CRMs were deleted, most embryonic expression during these stages was lost except for weak staining at the anterior in gastrulating embryos (Figures 1F–F"), suggesting that these CRMs are required to support the majority of brk expression.

Figure 1. Large Reporter Constructs Show Distinct Roles for Three Early CRMs
(A) We created a 32 kb reporter construct, which encompassed the three identified early CRMs and surrounding sequence (extent shown by blue lines in A) and was able to rescue the mutant phenotype. All but the first 66 amino acids of the brk coding sequence was replaced by gfp, creating a non-functional reporter construct used for cis-regulatory analysis. Deletions of each of the CRMs were made where indicated by breaks in the blue line. (B–G) In situ hybridization was performed using riboprobes to detect either brk transcript in wild-type embryos (B) or gfp transcript in transgenic embryos (C–G). The reporter construct expression patterns were compared to the endogenous brk pattern at three stages of development: precellularization (B–G), cellularization (B–G), and gastrulation (B'–G'). In this and subsequent figures, embryos are oriented with anterior to the left, dorsal up, and are ventrolateral surface views. See also Figure S1.
in the early embryo and that other sequences cannot compensate in their absence.

Deletion of the 2 kb fragment encompassing the promoter-proximal region (i.e., PPE) from our large reporter construct \((\text{brkNFgfp} \Delta 2kb \text{ PPE})\) exhibited a strong phenotype: no expression of the \(\text{gfp}\) reporter was supported at any of these examined stages (Figures 1G–1G0). However, expression of \(\text{gfp}\) within late embryos and in the wing disc, which is driven by different CRMs (Yao et al., 2008), was detected (Figures 2B and 2C).

To further investigate the role of the PPE in the early embryo, smaller deletions of this 2 kb segment were made in the context of the \(\text{brkNFgfp}\) large reporter construct and assayed (Figure 2A). In all deletions examined, expression was once again supported, suggesting that some degree of functional redundancy is encoded by this stretch of DNA (Figure 2D). The 2 kb PPE deletion removes a few base pairs (25 bp) of what is defined as the minimal promoter by modENCODE (http://www.modencode.org), but the promoter is not likely affected because the \(\text{PPE} \Delta C\), which removes the most promoter-proximal sequence including these 25 bp, supports expression (Figure 2D). Collectively, these results demonstrate that (1) the 5' and 3' CRMs act to support gene expression in a temporal series; (2) the PPE is required to support the activity of 5' and 3' CRMs; and (3) the role of the PPE is distinct from that of the minimal promoter.

As the 5' and 3' CRMs are located at a distance from the \(\text{brk}\) promoter and the PPE is required to support their function, we hypothesized that the PPE might be required to support long-distance action of the CRMs. To test this idea, we assayed the requirement for the PPE in a standard reporter assay. When the CRMs are placed directly upstream of the minimal promoter, reporter expression is supported even in the absence of the PPE (Figure 2E; data not shown). Placing the CRMs in front of the most promoter-proximal 500 bp of the PPE does not support any expression, indicating that the PPE cannot act as a promoter (Figure 2F). However, when the CRMs are relocated downstream of \(\text{lacZ}\), which is ~2 kb in length, the CRMs support little to no activation through the minimal promoter alone (data not shown). Moreover, we found that inserting the Gypsy insulator sequence (Cai and Levine, 1995) in between the \(\text{lacZ}\) and the CRMs further dampens expression, such that none is detectable (Figure 2G; data not shown). However, when the PPE is added just upstream of the minimal promoter, as organized at the endogenous locus, then both CRMs are able to support gene expression despite disadvantaged positioning behind an insulator (Figures 2H and 2I). In contrast, when the PPE is added just downstream of the CRMs, only very weak expression is observed (Figure 2J).

Collectively, these results suggest that the PPE supports long-range action of the 5' and 3' CRMs and provides “anti-insulator” activity when positioned near the promoter.

Given the ability of the PPE to support long-range CRM action, we tested the idea that this element might also regulate the exchange from one CRM to the next. The goal was to prolong association of one CRM with the promoter, accomplished by...
moving the 5' CRM to the promoter-proximal position using recombineering (i.e., brkNFgfp 5' CRM to PPE; Figure 3A), and to assay how expression was altered relative to endogenous brk expression using multiplex in situ hybridization. Through comparison of endogenous brk and gfp reporter expression, we confirmed that the 5' CRM is required to support early expression (Figure 3C), whereas the 3' CRM is required to support late expression (Figure 3B). However, when the 5' CRM was moved closer to the promoter, placing it in a position where it presumably did not require the PPE for activation (as suggested by our small synthetic constructs; see Figure 2E), the expression of gfp associated with the reporter precellularization was normal but at cellularization was deficient relative to that of endogenous brk (Figure 3D). Reporter expression from this construct recovers later, at gastrulation, and is able to once again match that of endogenous brk (Figure S2C). It is possible that disruption of the PPE by the 1 kb of inserted sequence could lead to the observed loss of 3' CRM activity at cellularization, although we would argue that this is unlikely, as 3' CRM expression is seen later in gastrulating embryos (which is dependent on PPE activity; Figure 1G). We favor the view that by moving the 5' CRM to the promoter-proximal position, action

Figure 3. Chromosomal Location of CRMs Affects the Timing of Activation

(A) Schematics of the 5' CRM to PPE and the constructs that translocate the two CRMs are shown. Dotted lines indicate positions of deletions.

(B–G) Fluorescence in situ hybridization with riboprobes to gfp (white in single-channel images or green in two-color images) and brk (purple) was used to compare the expression patterns of these constructs to endogenous brk expression. Each construct is shown at two time points, precellularization (left two panels) and cellularization (right two panels).

See also Figure S2.
onward at gastrulation. Collectively, these results suggest that although chromosomal positioning does influence timing of CRM action, it is not sufficient to manage which CRM is active and that the CRM sequences themselves contribute.

To interrogate the normal mechanism of switching, namely how the 3' CRM takes over from the 5' CRM, we investigated further the idea that interactions of the CRMs and the promoter are regulated temporally using chromatin conformation capture (3C). In a recent study of brk locus DNA associations by Chopra et al. (2012), 3C was used to examine interactions of 5' and 3' CRMs at the brk locus with the promoter at a single time point but in different genetic backgrounds. We investigated whether temporal differences between DNA associations could be discerned using a similarly designed 3C assay conducted at three nonoverlapping time points: (1) 2–2.5 hr (precellularization); (2) 3–3.5 hr (cellularization); and (3) 4–5 hr (gastrulation) (Figures S3A and S3B). Associations between a DNA segment acting as anchor (i.e., the promoter, PPE, and coding sequence) and flanking DNA sequences, including but not limited to 5' and 3' CRM segments, were examined. At the early time point, association between the promoter vicinity and 5' CRM region was indicated, although weak; at the second time point, both 5' and 3' CRM sequences showed little deviation from wild-type brkNFgfp full-length reporter (*) but not significantly different from brkNFgfp Δ3' showed in red (significance was defined at p < 0.001 based on a two-tailed t test). (E–I) Expression of the gfp transgenes was assayed in wild-type (E and I) or brk NFgfp Δ3' mutant backgrounds (F–H), shown at precellularization (E–F), cellularization (E′–F′), and gastrulation (E′′–F′′). (J–L) Model for regulation of brk expression in early embryos. The 5' CRM is the primary acting module during early stage 5 (precellularization), driving expression in a defined narrow lateral band (J). During cellularization, the 5' and 3' CRMs compete for access to the promoter, and Brk protein acts to bias the association toward the 3' CRM (K); the PPE is also required for a properly timed switch to the later-acting enhancer. By late stage 5, at the completion of cellularization, the 3' CRM is the primary acting module driving expression of a broad lateral band (L). See also Figure S3.

Figure 4. Brk and the PPE Are Required for the Switch from 5' CRM- to 3' CRM-Mediated Activation at the brk Locus

(A–C) Expansion of the expression pattern of the transgenes, as detected by in situ hybridization using a gfp riboprobe, at cellularization was measured by counting the number of gfp-expressing cells in a specified region at the centre of the embryo (gray box; 40 μm enlargement of the boxed regions is shown to the right). (D) Graph shows the height, in average number of cells, of the gfp-expressing domain (see Experimental Procedures), with standard deviations shown with black bars. Those reporters found to be not significantly different from brkNFgfp are shown in blue. Those that were significantly different from the full-length reporter (*) but not significantly different from brkNFgfp Δ3' are shown in red (significance was defined at p < 0.001 based on a two-tailed t test). (E–I) Expression of the gfp transgenes was assayed in wild-type (E and I) or brk NFgfp Δ3' mutant backgrounds (F–H), shown at precellularization (E–F), cellularization (E′–F′), and gastrulation (E′′–F′′). (J–L) Model for regulation of brk expression in early embryos. The 5' CRM is the primary acting module during early stage 5 (precellularization), driving expression in a defined narrow lateral band (J). During cellularization, the 5' and 3' CRMs compete for access to the promoter, and Brk protein acts to bias the association toward the 3' CRM (K); the PPE is also required for a properly timed switch to the later-acting enhancer. By late stage 5, at the completion of cellularization, the 3' CRM is the primary acting module driving expression of a broad lateral band (L).
was deleted (PPE∆B), expression was supported in a narrow stripe that never broadened, even at cellularization (Figure 4D; image in Figure 4B). This expression is very similar to that supported by the brkNFgfp J3 construct, suggesting that in the absence of this 800 bp sequence the 3’ CRM is impaired. Furthermore, when the 5’ CRM is deleted together with the PPE∆B segment, the pattern broadens to where it is no longer significantly different from full-length expression (Figure 4D; image in Figure 4C). This suggests that in the context of PPE∆B deletion the 3’ CRM was inhibited from acting, but this block is removed upon deletion of the 5’ CRM.

To provide molecular insight into how the switch from one CRM to another is regulated, we dissected transcriptional inputs into the PPE. The modENCODE ChiP data and JASPAR database (Bryne et al., 2008) were used to define a test set of putative DNA-binding factors. Of the genes tested through mutant analysis, expression of brk was most affected in the brk mutant background itself. Brk has been shown to act as a repressor of this background itself. Brk has been shown to act as a repressor of the brk expression domain in the wing disc, but how this is accomplished at a molecular level is not understood (Moser and Campbell, 2005).

When the large reporter constructs were introduced into a brk mutant background and assayed, we obtained evidence that Brk protein is required to support the action of the 3’ CRM. When the full-length brkNFgfp construct is put into a brk mutant background, the expression at cellularization is narrow, similar to that associated with the brkNFgfp J3 construct (Figure 4F compared with Figure 4H; Figure 4D). In contrast, the brkNFgfp J5 construct supports normal expansion of the expression domain in the brk mutants (Figure 4G). This indicates that the two CRMs exhibit different relationships to Brk protein levels: the early-acting CRM located upstream of the promoter requires Brk protein to be present in order to “shut off,” whereas the late-acting CRM is precluded from acting in brk mutants if the early-acting CRM is present. In addition, this phenotype is very similar to that associated with deletion of the PPE proximal segment (i.e., PPE∆B; Figure 4D).

To provide further insight into the mechanism by which Brk supports the CRM switch, ChiP-seq was used to examine Brk occupancy at the brk locus at two time points, 2–2.5 hr and 3–3.5 hr, which roughly correspond to when the two CRMs are active (Figures S3C and S3D). Limited occupancy of Brk was detected by ChiP-seq at the PPE in 2–2.5 hr embryos, whereas significant Brk occupancy was detected at the PPE in older embryos (3–3.5 hr) (Figure S3D). Brk occupancy was also detected at the 3’ CRM at the later time point, whereas no binding was detected at the 5’ CRM at either of the time points examined (Figure S3C). The Brk 3’ CRM was recently defined as a highly occupied target (HOT) region, bound by many transcription factors (Kvon et al., 2012), whereas the PPE and 5’ CRM are not HOT regions. The majority of transcription factor binding to HOT enhancers is thought to be functionally neutral (Kvon et al., 2012); therefore, we reasoned it more likely that Brk acts through the PPE rather than the 3’ CRM.

Brk binding at the PPE and the loss of 3’ CRM activity in a Brk mutant led us to believe that Brk could be directly acting to mediate switch from 5’ to 3’ CRM activation. It order to directly test this hypothesis, four predicted Brk binding sites located in the vicinity of the PPE proximal half (segment B, two sites, and segment C, two sites; Figure S3E) were mutated in the context of the 32 kb brkNFgfp large reporter (i.e., brkNFgfp, PPEbrkmut). Expression from this transgene was assayed in a wild-type genetic background, yet the phenotype resembled that of intact wild-type reporter in the brk mutant background. Namely, the early pattern, precellularization, was normal, but at cellularization the pattern failed to become broad (Figures 4J and 4F; compare with Figures 4E and 4E; see also Figure 4D). These results were confirmed with double in situ hybridization comparing the reporter to endogenous brk (data not shown). This result is consistent with the view that Brk acts through the PPE, as mutagenesis of Brk sites in the PPE correlates closely with the brk mutant and the PPE∆B phenotypes.

Collectively, our results show that (1) two CRMs control spatially and temporally distinct patterns of brk expression; (2) the switch from one CRM to the next requires a promoter-proximal sequence; and (3) levels of Brk protein influence the switch from early enhancer to late-acting enhancer in the early embryo. Although the 5’ CRM is the primary acting module precellularization (Figure 4J), at the onset of cellularization (mid-stage 5) competition between the 5’ and 3’ CRMs for access to the promoter complex is likely (Figure 4K). This competition is affected by Brk protein and the PPE. In the presence of these two factors, the 3’ CRM is able to outcompete the 5’ CRM for access to the promoter (Figure 4L). In the absence of Brk protein, or when the PPE is not intact, the 5’ CRM remains active and blocks the activity of the 3’ CRM. The results of mutagenesis of Brk binding sites within the PPE provide strong evidence for a role for Brk at the PPE; however, the 3C experiments suggest that large-scale changes in chromatin conformation do not necessarily accompany the switch between 5’ CRM and 3’ CRM action. We favor a model in which Brk acts through the PPE to modulate the local 3D chromatin environment to bias 3’ versus 5’ CRM action and thereby catalyze the switch between CRMs.

The general implication of this study is that autoregulatory feedback may afford one CRM a positive advantage in competition with other CRMs for engagement with the promoter. Whether CRM competition is acting to control temporal expression of other genes remains to be determined, but we suggest it is likely. The current view is that important developmental regulators that control large numbers of genes will be autoregulated, because their levels of expression must be tightly controlled (Crews and Pearson, 2009). Autoregulatory control may therefore be a common and effective mechanism used to control temporal gene expression through regulation of sequential activation of CRMs. Once the amounts of a factor rise to a particular level that supports autoregulation, then the timing may be right to switch to a subsequently acting CRM. What better cue to support timing of CRM switch than the factor itself.

EXPERIMENTAL PROCEDURES

Fly Stocks

Drosophila melanogaster flies of the background yw were used as wild-type. The 86Fb attP [M(vas-int.Dm)ZH-2A,M(3xP3-RFP.attP)ZH-86Fb] and D(1) ED6906, w1118P{3;RSS+3.3}ED6906/FM7h fly stocks were obtained from the Bloomington *Drosophila* Stock Center. brkmedFM7eve-lacZ was obtained from Christine Rushlow (New York University). (Jazwierska et al., 2013)
Viability of the brk-gfp construct was tested by introducing this transgene into the heterozygous brk mutant background using standard genetic crosses.

Cloning and Generation of lacZ Constructs

Sequences for the 5' and 3' CRMs and the PPE were amplified from BAC DNA and cloned into the NotI site of the evepromoter-lacZ-attB vector (Liberman and Stathopoulos, 2009). For the in situ bypass assay, the attB vector (Bischof et al., 2007) was modified as stated in the Supplemental Experimental Procedures.

The 86Fb fly stock with attP landing site was injected with reporter constructs in house using standard techniques to generate transgenic lines.

Generation of 32 kb brk-gfp Constructs

The 32 kb brk [Pacman] construct was generated using recombineering-mediated gap repair as in Venken et al. (2006). The BAC encompassing the brk gene (BACR35J16) was obtained from the BacPac Resource Center. Insertion of gfp just before the stop codon of brk was performed using a gfp-sv40-frt-kan-frt plasmid, and the kanamycin (kan) cassette was removed after insertion as in Lee et al. (2001). Deletions and rearrangements of the CRM regions were done using the galk system (Warming et al., 2005). Mutation of the four Brk binding sites was accomplished through a series of fusion PCR reactions using primers PPEmut A–D (Supplemental Experimental Procedures; mutated base pairs are capitalized) and integrated into the large reporter using the galk system. Large reporter constructs were grown and isolated as in Dunipace et al. (2011) and injected into 86Fb flies.

All primers used for gap repair and recombineering are listed in the Supplemental Experimental Procedures.

In Situ Hybridization

Embryos were fixed and stained following standard protocols. Antisense RNA probes labeled with digoxigenin or FITC-UTP were used to detect reporter or in vivo gene expression as described previously (Jiang and Levine, 1993; Kosman et al., 2004).

Quantification of Reporter Expression Width

Lateral images of alkaline phosphatase-stained embryos were taken using a 40× objective on an Axiosplan microscope. Five to seven embryos of each genotype were then analyzed for expression patterns. A box of 20 μm width was drawn in the center of the anterior-posterior axis, from the ventral border of the brk expression domain to the visible dorsal edge of the embryo. All cells expressing the reporter that were partially or completely within this box were counted. This total number was then divided by the width of the box, in number of cells, giving an average height of expression domain. Significance was tested using a Student’s two-tailed t test to compare all reporter domains to that of the full reporter construct (brkN FGfp), and separately to compare all constructs to brkNF gfp Δ3’. Significance was designated by a p value of <0.001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and three figures and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2013.08.010.

ACKNOWLEDGMENTS

We thank members of the Stathopoulos laboratory for helpful discussions. In particular, we are grateful to A. Ozdemir for initial testing of Twist ChIP-seq peaks at the brk locus and to V. Stepanik for comments on the manuscript. This study was supported by NIH grant R01GM077668 to A.S. and Wellcome Trust grant 092005/Z/10/Z to H.L.A.

Received: January 18, 2013
Revised: July 17, 2013
Accepted: August 14, 2013
Published: September 16, 2013

REFERENCES

