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The nonlinear diocotron mode, discussed by Fine, Driscoll, and Malmfdrgs. Rev. Lett63,
2232(1989] is characterized by two equations, one describing the frequency of orbiting, the other
giving the quadrupole moment, as functions of size and offset. A new analysis, based on the method
of moments, which yields equations more general in their content, is presented here. For example,
the new equations describe columns whose shapes are not elliptical and whose densities are not
constant. ©1996 American Institute of Physid$$1070-664X96)01409-7

I. INTRODUCTION sure of the offset versus the radius of the cylindgy,a
(normalized quadrupole moment, a measure of the deforma-

This article is presented in the spirit of “if anything is tion of shape, and, a measure of the cross-sectional area of

worth doing it is worth doing to excess.” The particular the column(see Fig. 1L We defer more precise definition

activity we are concerned with here is the analysis of a serieantil later—in any case our notation will be slightly differ-

of experiments on rotating columns of pure electron plasmant. We shall find that this equation is quite general and

which formed a large part of the 1988 doctoral reseamth  comes easily, once we assume that offsets are modest.

Kevin Fine at the University of California, San Diego. The The second equation, which we call the “quadrupole

experimental results were published by Fine, Driscoll, ancequation” relates the deformation to offset and to afsee

Malmberg (henceforth FDM in Physics Review Lettefs Fig. 2). It is (deceptively simple

They were analyzed by Fine several years fiteterms of a

simple model based on an analogy with fluid dynamics. o2

Then, Chuet al, in an articlé devoted to pure electron plas- Qz‘:;pz g2 2)

mas in asymmetric traps, showed that the principal results of (1- rp)2 ’

Ref. 3 followed from the Hamiltonian dynamics of an ellip-

tical plasma model which is a dynamical system with twopyt turns out to be not so well founded as the first equation.
degrees of freedom. Our point is that these elegant experipf course, the singularity at,=1 is spurious, the equation
ments present a clear challenge to “theory.” The modelsyging valid only for small areas. And, the simple dependence
used in Refs. 3 and 4 are quite simgéasma columns with  ypon offset is surprising. We shall find that reaching this
zero temperature, constant density, elliptical cross seotion%quaﬂon requires heavier approximation.

yet surprisingly successful, though in the experiment the  Finally, before we begin the detailed calculations which
temperature is not zero, the density far from uniform, and th?)roduce the equations, we should repeat that they are ob-
cross sections not precisely elliptical. It is not at all clear how;gjned by Fine through transcription and reinterpretation of a
these particular models used may be extended, to account fgsyt in the fluid mechanics of vortex patches, a result based
these effects. And it is certainly not cleahy these simple 4 g picture of the column as elliptical in shape and having
models are so successful. In this article, we derive the pringniform electron densityvorticity). We will be able to relax
cipal results of Refs. 3 and 4 through approximations im+those requirements somewhat, and to consider versions of
posed upon a familiar and systematic treatment of the fluighe o equations which are generalized, somewhat. How-
equations for the electron plasma—through consideration Qfyer, if one attempts to deal with a markedly different situ-

moments. The merits of our treatment afg:we produce  ation one has to abandon the notion that the experiments can
useful expressions which are generalizations of those olye described by two, simple equations.

tained in Refs. 3 and 4 an@) thinking about the approxi-
mations needed to reach this end gives us insight into the
conditions under which the simple formulas are successful.
Let us be more specific. The simple theory produces twdl- ANALYSIS

important results. The first is an equation relating the fre- We contemplate a cold fluid of electrons not in the labo-

quency at which the column rotates about the center axis qjatory frame, but in a reference frame rotating with constant

the cylinder, with the “offset"—the radius of the orbit angular frequency) about the central, az axis of our sys-
traced by the center of the column—and the shape of thfFem We shall need the equation of continuity

cross section of the column—the degree to which it has been

deformed from a circular shape. We call this the “frequency
ion.” Iti an

equation.” It is SHVAW)=0, n=n(r,t), u=u(r ), @3

w=op(1+d*=30,r3), ()

with wp the “diocotron frequency,”wS/Zw, d=R/aamea- andthe momentum equation
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Du

B +(2Q+ w) Xu=. %5+ (Q’+ Q- w)r, (6)

—

where w now denotes thdconstankt cyclotron frequency,
(a/mc)By. This is the equation we will study. We shall find
that the frequency equation follows easily upon consider-
ation of the motion of the center of mass of the column,
while the quadrupole equation is obtained from moments of
the equation of continuity.

(0-wo) / wo 42

|
—

A. Center-of-mass motion

FIG. 1. This is Fig. 3 of Ref. 3, captioned “Measured fractional frequency If we reca_” that the position and velocity of the center of
shift overd? vs column radius... . The solid curve is the simple formula, Mmass are defined by

our Eq.(2).
f drn(r,t)r=NR(t)
Du and
D—t+20xu+ﬂx(ﬂxr) d
—fdrn(r,t)r=NV(t),
q 1 dt
= |ELDF S [uxBD]| =2~ (exu). 4 we deduce from Eq6) that
We deal with a regime in which ‘¢/c)? terms” are ne- dv

1
glected and with flows which lie in a plane perpendicular to g T (2Q+ @) XV=y J' drn(r,t). 2,

the z axis. The functions 4 (henceforth, “the field’), and
o, the cyclotron frequency, are taken to be independeat of +(Q*+Q-o)R. )
In our regime, the electric and magnetic fields in the rotating ;e specialize further by limiting ourselves to columns
and laboratory frames are related by which rotate rigidly and uniformly about theaxis (no wob-
1 1 bling!) and whose internal flows are steady; the centers are at
E=Eo+ S [(Q2X1)XBo], B=Bo— - [(£xr)XEo]. rest in our rotating frame. Setting=0 leads at once to the
(5) quite general “dispersion-equation”

(The subscript 0 denotes the laboratory frame; the compo-
nents ofr andr, are related by the usual equations for rotat-
ing coordinates. We consider experiments in which the
magnetic field is uniform and parallel to tlzeaxis, and the
fluid is confined by a circular, conducting cylinder, of radius
a. In these circumstances, the momentum equation (&g.
becomes

1
(Q%Q-w)z—w f drn(r)[R-. #o(r,R)]. (8)

It is useful to regard the electric field as composed of two
components, 7= Zo+.7). The self field is due to the
charges which constitute the column, while/* denotes the
contribution of the image or “wall” charges. Since the inte-
gral in Eqg.(8) is proportional to the total force experienced
by the column, the contribution of the self part of the electric
field must integrate to zero in the equation; only the wall
contribution remains(Henceforth, we drop the zero sub-
script)

An easy application of Eq:8) now yields an important
result. If we view our column as an assembly of line charges,
the field due to the images of the assembipall) is known
1 to be

10

ol R+E((g+(g) TERIE 9)
=5 wp| Rt 2 Rkl :

In this equation the plasma frequenegé, is based upon the
mean charge density present in the systexg/¢ra®L), not
P the mean density of charge in the column. We shall use the

relation Ng?/mL=jw5a® frequently. The  matrix

_ _ l 2 . . .

FIG. 2. This is Fig. 2 of Ref. 3, captioned “Measured quadrupole distortion(QR)'f'_ (ReRy ) 20uR"), while Qy is a traceless matrix of
overd? vs column radius... .” The solid curve is the simple formula, our Eq. cer_taln normahze_d quadrupole mqments of the assembly,
2). which we shall discuss latefThe first two terms of this
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multipole expansion make a good approximation if the asTheir study is the central part of this article. The set will turn
sembly is neither too large nor too irregu)adpon substi- out to contain but a single, independent equation. That equa-

tuting Eq.(9) into Eq. (8) we obtain tion will be the second of the key equations used in the
1 R2 2 analysis of the experiments.
2 -2 ole e | = To obtain concrete results, we require a flow-fialat).
Q +Q-w+2 wp 1+a7+W(QQR)+ =0. a ( )

We shall use an approximate solution to Ef) which is
(10 obtained, traditionally, via two slightly different routes.

Equation(10) will become the frequency equation, the first (i) One declares, simply, that “inertial effects are negli-
of the two key equations used in the analysis of the experigible.” This is the “geostrophic approximation” dear to me-

ments. It appears here under quite general circumstances, i@orologists. The terrdu/Dt, the acceleration of an element

no way connected with flat distributions, or elliptical shapes.of mass, is set equal to zero. Or,

It also has nothing to do with the nature of the flow. We may (i) one examines the inertial term in some detail, writing
simplify by placing the center of mass—which is at rest—

upon thex axis, so that %: a_u+v(%u2)+;;,xu,
Dt ot
R R2 1 0
(QR)k|=QRUk|=7 o, Where gy = 0 -1l to display explicitly the kinetic energy and the vorticity of

. the flow, ®=V xu. Then, Eq.(6) becomes
For many systems of simple shape, we will h&4g= Qo .

Then the frequency equation, E§.0) becomes _u+(29+ w0+ &) xu=—V[®— (2?+ 0%+ Q- w)r?)]
ot '

(12+Q-w+1 w 1+E (Q+QRr)+---
a2 R

2 3 =0, with @ the electrostatic-potential energy per unit mass. Since
the flow is stationary, the geostrophic result follows upon the
1 5 s o assumptions that the vorticity is small compared with the
Q=3 f d™xn(x)(x1—x3) (1D cyclotron frequencye, and that the kinetic energy is small
compared with both the potential energy and the portion of
“in the quadrupole approximation.” If we assume that the the centrifugal potential that is proportional t. In this

cyclotron frequency is considerably larger than all other fre4imit of large magnetic field, the equation for the flow be-
quencies, and we recall the definition of the diocotron fre-comes

quencwazé(wS/w), we see that Eq(1l) is identical with
Eq. (1). (For details of notation, see ahepd. wxu=—-V[d-{Q w)r?].

Thus, the flow in the rotating frame isE’X B,” corrected by
Qxr. (Note that it is easy to begin to take effects of tem-
B. Moments of the density perature into account by adding ank T’ term to the quan-
We turn, now, to the moments of the stationary distriby-tities in square brackejsln terms of components, we have
tion of charge. Since we are dealing, in fact, with a flow in _
two dimensions, it is convenient to switch from a three- U= el Act o Qnd, (13
dimensional density of charge(r) whose integral iN, toa  where
two-dimensional densityj(x),whose integral over the cross

section of the cylinder is unity. Further, we write=R+X, 0 1 0 1
coordinates being referred to the center of mass. Consider,  €ik~| _1 | 7kT[1 of
first, moments of the equation of continuity for a stationary
flow, viewed in the rotating frame. We have We have introduced, a third 22 matrix. The matrices;, e,
andr, along with the unit matrix, form a convenient basis for
J d2X(1%; XX ,..)V-[AO)U(X)]=0. representing real 22 matrices.(Of course, they are related
! trivially to Pauli’'s matrices. Note that o?=7"=—é€=1,

or=¢€, oge=7, and er=0. If we use Eq.(13), the moment

The “zeroth” moment is trivially zero if the density falls to :
fequations, Eq(12), become

zero within the container, while the vanishing of the set o
first moments reflects the fact that we measure relative to the
center of mass. It is the set of second moments that interests
us. The set yields &x2) matrix of equations

Sym.7;;=Sym EjkMiOkzo'

1 M?k=f d2XA(X) X[ A+ - Qry]. (14)
Sym. Zij=5 j d?xA(X) (X;u;+X;u;) =0, . .
Our task is to extract from them, finally, the second of the
with key equations which fit the experiments so well. Here, we
beg the reader’s patience as we proceed through some rather

, A dry manipulations. With “Sym” denoting the symmetric
/. = 2 U : - ) .
i f d™xn(x)xiu; (12 part of the matrix which lies to the right, we note that adding
3326 Phys. Plasmas, Vol. 3, No. 9, September 1996 Noel R. Corngold

Downloaded-14-Dec-2005-t0-131.215.225.9.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



a multiple of the unit matrix tV° does not alter the equa- W
tions. Thus, after writing =R+ X, , we introduce the ma- Ay -2

trix M;,, and obtain the important equation ~ o
we have 0%),=(1/a )(Q+Q_R)k| .
Sym €My =0, Mik:f A0 At - QO For the column, the self-field is

N g R
@9 e J d2yA(y) (x—y)i/ (X—Y)2

2 -~ -
w5 Rt 22 (Q+Qrln -+ |, (16)

with

1 J
n 2,2 2R _
Oy= J XA XX — 26,0C]. Sw5a f dyi(y) - loglx—yl. (17

As promised earlier, the traceless quadrupole mefyihas Then, we write
been defined. For the systems we consi@gt= Qo , and //,E(x)— 73 2(0)—w a TkIXI
Q<O0.

[The traces of both the matricesZz and M, have
simple, physical meaning#,,, the trace of 7, is seen to . 1
be proportional to—2z- fd?xn(x)(xX. 2), itself proportional Tka d?xn(x) & [XiXi — 584X
to the torque exerted by the electric field upon the column.

The expression for “self-torque” may be seen to vanish, by =
symmetry, and the torque exerted by the image charges van- =73 j d™n(x) -
ishes, too. 7 is tracelessM,,, the trace ofM, does not

vanish; it is proportional to the virial of the system of TheT matrix is not traceles&V-E+0). It may be written as
charges. That quantity is particularly simple for an assembly

of line charges; the wall virial is also easy to compute, inthe Ty=Toy— ﬁ(O) Sl »

guadrupole approximatioh.

The next step is mandated by the requirement that the 1 R
analysis of experiments involves no moments higher than T=3 J d*XA00) (X=X G +x5)%.
qguadrupole. In view of Eq(15), then, we must assume that
linear variation of the electric field makes a good approxi-With the introduction off, Eq. (15) or Eq. (150 becomes
mation, that we may neglect quadratic and higher te(#s. (x2)

a consequence, Poisson’s equation demands that the charg# (x?)T— 7n(0)Q]— =z (Q+QRr)
density not show great variation, eithefhus, we are led to
the approximation

where

&2
o, log|x]. (18

(19

2
| " +Q 1+ 2 (Q+QR)|=
AX) = A(0) + 05U X+, (158 a
which produces or
oA A . 2
Mik=w§Uk|(Qu+%5i|<X2>)+w~QQik- (15b  y*A(Q+Qr—a'T)+Qma®n(0)-Q 1+§2 (Q+QR)}:O

Note that we have encountered the approximation already, in (20
the description of the wall contribution, E(9). Generally, ith y2=(x?)/a?. If we compare these equations with Eq.
the matrixU is symmetric, and its trace is given by Poisson’s (15¢ we find

equation. We shall see that it is diagonal, too. Thus, we may

write 1 .
Uo=1z (Q+ Qr)—a%T, U;=3mn(0)a?

Mik= w5(Uoo+U180)(Qai +58(x%)) + 0- QQuriy

and the evaluation of Sy, My leads to the simple scalar C. Closure

equation, Equation (20), while promising and true, is somewhat
2,1 different from the successful quadrupole equation—it con-

wp(i<X2>U0+QU1)+“"QQ:0’ (159 tains too many unknown gquantities. We need to eliminate

or wa?n(0) andT—that is, express them in terms©@fand(x?).

We begin with a simple argument, which is quite successful.

Consider fairly flat distributions of near-elliptical shape, and

cross -sectional ared, thenn(0)~1/A, A~2m(x?), lead to
mn(0)(x?)~1. With the latter, Eq(20) becomes

2
(X*)Uo+2QU;~Q| 1+ 5 (Q+Qgr) | =0 (150

These equations are, in fact, the quadrupole equation albelt
in abstract form. The discussion which follows fills in de-

tails. y'(Q-a'T-y?Q 1+gz (Q+Qr) +§Q=—y4QR.
We breakU into two parts,US andU"Y; since (21
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Next, we argue that the expression fbrsuggests a closure 4 o cos ¥
relation(x?)2T~\Q, where\ is a pure number. In the case QZ(Wal/Z/f’//)JO dééu(é) 1=
of an elliptical figure of uniform density—the choice bf

and of CW—where, incidentally, the quadrupole moment PR %
and the eccentricity are related throu@h- 2%(x?), the clo- =—(maj/41")eNs(e) Jo dééu(8), (28)
sure with =1 is a very good approximatiofsee aheal.
Thereupon—the term 2+ Qg) being considered small T=— (/21" u(0)(cos X log[ 1— €?p(6)])
compared witha®>—Eq. (21) collapses into the simple—and "
surprisingly accurate— =— (w81 ) e N4(€) u(0). (29
1 (x2)\2 The angular brackets denote angle averages. We have a nice
Q=- W 2z Qr, (22)  factoring into two components, one connected with the shape
s—({X)/a

of the level curves, the other with the density profile. We

which will be recognized as the quadrupole equation, outnfer, easily,
second goal. 1. hg
We shall now make the reasoning more precise, hoping Q= —Zez " (€)(x?)
to discover why the simple estimate appears to be so accu- 2
rate. We evaluateQ, T, and 27n(0)(x?) for a class of and
shapes and densities, to see how accurate the simple esti-

A N 1
mates are. = ((x3)?T=2m(0)(x*)Q, (30
AoNg 4
the second of these being quite suggestive, in the light of the
1. Generalization simple arguments made earlier.
Also,

We consider distributions more realistic than the “flat,
elliptical” or “waterbag.” Let Aol € 0
2m(0)(x2) = 2 22 O
N(e)  ug

n(X)=f dtu(t)o[t—Ff(x)]=u[f(X)] (23 _
0 with
be an un-normalized distribution whose level curves are

= |

“dedu(s). (31)

0

those of the functiorf(x). As an example we might choose

2
f(x)= % (X34 x3)— % X5=£(1— €2 sir? ) (24)  Note that as—0 all quantities\, areO(1). The terms\,(0)

1 1 and\,(0) are precisely unity, whila(0) and\4(0) are unity
producing level curves which are ellipses of fixed eccentricin the particular case of elliptical level curves. In that case
ity, defined througha3—a2=a3e?. If we use conventional
polar coordinates, wit§=(1/a%) (x3+ x3), we obtain the sec-
ond expression fof(x). In fact, the analysis we shall present
goes through easily for a more general class of level curves,

1- %62

)\1(6):”_—_62 , )\2(6)2(1?27372,

namely, _ _
y_ , B )\3(6)_m’1 )\4(6)—m-
f(x)=B(&)[1-€°p(0)], p(O+2m)=p(6). (25) 32)
(Of course, only those level curves which have the symme- i €)= 1 [1+V1-€? =1+0(e%
tries assumed earlier will be usefulf we compute the quan- Aahy 2 1-1e ’
tities (x?), Q, T, andn(0) for the level curves described by
Egs.(23) and(25), with—for example—B(£€)=¢, we find Ay 1-— 3¢
. F(E):mzl-i-O(E“).
.///"Ef d2xn(x)=wafJ' df#(§)<f> l
0 1-€°p(0) What do these results say? The first of E2D) simply con-
w nects quadrupole moment, second moment, and eccentricity
=7-rai)\1(e)f déu(é) (26)  for the shapes we consider. The second equation provides
0 one of the two relations of closure needed to reduce(Ha).
andfi(0)= w(0)/./ " to Eq.(22). The key quantity(\s/\,\4)(€), is seen to deviate

from unity by termsO(e*)—in the case of elliptical shapes.

2\ _ a o~ Setting it equal to unity, as we did in the previous discussion,
OC)=(mayl )fo d§§,u,(§)< [1- ezp(e)]2> appears to be a very good approximation. The second closure
relation, Eq.(31), displays a factor(\,/A3), which also dif-
=(Wa‘i'/-/f’”))\z(e)fxdgg,u(g), 27) fers from unity_ byO(e*)—a remarkable result. We begin to
0 see why the simple quadrupole formula works so well.
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Let us exploit the weak dependence upon eccentricity by Quadrupole Moment vs Column Radius
ignoring it. Then, the general closure relations may be writ- "

Constant Density
ten

270(0)(x*)=6, (x*)*T=6:Q
with 3

#(0) uq

0=2 >
Mo

(33

Moment
[\

The crucial quantity©, depends upon the density profile.
Now, reduction of the key equation, E@O), yields

2 1 ? 1 2 2 4
Ql[y*=5] +3(0-1~ 2 (Q+Qr)y?|=~y*Qx,
(34

which should be compared with E(8). Calculation shows
that if the density profile is

Flat“Water bag”) then ©=1,

0 0.2 0.4 0.6 0.8

Radius

Gaussian iné¢ O =4/,

Exponential in§ ©=2. FIG. 3. Graph of the “full” quadrupole equation, E434), for constant
density and elliptical boundary. “Radius” is, while “moment” is q,/2d?.

A remarkable aspect of the ratif, is its “independence of
scale;” should the density assume the fouté/ o), the ratio
is seen to be independent of

Before turning to Fine’s experiments, we wish to discuss } 2
another aspect of our analysis, the behavior of our equations 29
as R—0. Then the column is centered on the axis of the ) ) .
cylinder, and we expect the motion with frequengy to In_ the sptzaual1 c?se of uniform density, and a column of ra-
become one of the low-frequency modes familiar from thedius P, (x%)=32b%, ©=1, and
linear analysis of the dynamics of the columiihus, if we
consider the case of constant density we expect to connect
with the equation

oA 1
ralrns

+(w-Q)=0. (36)

Quadrupole Moment vs Column Radius

2m

Q,(m)=wfm-1+

Gaussian Density

a
describing the temporal variation of fields. Here the dio- *°
cotron frequency is based on the density in the column,
not—as we have chosen above—the mean density in the
cylinder. 27 .

Consider two, different, limiting procedures. In the first
we conclude from Eq(22) that Q vanishes afQg. Using
that observation in the frequency equation, Etl), leads
us—with the neglect of term®(Q?—to the limiting behav-
ior

1.5}

Moment

2
-0, (1).

Q- wp=w?|—
D D a

It would appear that our equations describe a nonlinear ex-°°|
tension of them=1 mode. On the other hand, suppose we
ignore Eq.(22) and, in Eq.(20), setQr=0 and re-introduce

(w-Q). Equation(20) becomes Of; . . . .
0 0.2 0.4 0.6 0.8
1 2 <X2> 4 R 2 Radius
Ewp ?(Q—a T)+7n(0)a"Q | +(w-Q)Q=0 (35
_ ) . FIG. 4. Graph of the full quadrupole equation, E84), for Gaussian den-
and if we “close,” in the spirit of Eq.(33), we have sity and elliptical level curves. Radius iig while moment isg,/2d>.
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4 What can we contribute to the interpretation of the data?

=50%(2) (37)  The simple theory, displayed in Fig. 2, does well enough; the
more precise Eq(34) contains the term (2f)(Q+ Qr)y?

the frequency of rotation becoming half the linear frequencyyhich is neglected in the derivation of the simple equation,

of the Signal received by a detector. This is as it should beEq (22), and the paramet@, which characterizes the den-

for a rotating column whose surface is deformed asneds sty distribution. Inclusion of these produces two notable

will, when rotating at frequency, signal at a frequencsnf.  consequences. First, the spurious divergencg?at; is re-

Thus, our moment equations also describe, approximatelynoved. Second, the equation has the special solution

the nonlinear extension of the linear moaie=2. Q=—Qg=—3R? for columns havingy?=(x®)/a?=0/4.

But our equations describe nonuniform densities too, an¢\s a consequence, the reduced quadrupo|e moqﬂdf is
one might ask whether Eq36) is useful in predicting the not the universal function af,, independent of offset as Eq.
frequencies of stablen=2 modes in general. Here, one runs (22 suggests. Rather, one finds a family of functions
into the issue of “quasi-modes>"® for all modes possess a (graphs labeled by offsetsee Figs. 3 and)4 Further, the
damping caused by a species of “phase mixing.” Perhapsspecial solution constrains all graphs in the family to have
then, Eq.(36) will yield the real part of the complex mode. It the common poimgze/z, 0,/d?>=4/0, where they cross.
turns out that while the |Im|t|ng behavior of ECBG) is cor- When, instead, one p|ot$2 vs d for various fixed column
rect, its numerical accuracy is unimpressive. sizes,r,, using eccentricity rather thayy, the special solu-

Finally, I note another limit possessed by these equation predicts that one curve, labeleg=,0/2, will be a
tions. Let the plasma column have uniform density and e"straight line of slope/8/©, while those graphs labeled by
liptical cross-section and the containing cylinder have verysizes smaller, or larger than the critical value will be curved.
large radius. Let the column rotate above its central aXiSSomething like that appears in Fig. 4.3 of Ref. 1, but the
which coincides with the central axis of the Cylinder. Thenagreement is “suggestive” rather than quantitative. Though

1+

1 *
Q=505 3

Eq. (35 and Eq.(32) give the effect is small, it would—in principle—enable one to
2a,a, infer ©, and something about the density profile. Finally, a
Q:—wgm, (389)  more important question: how dod3 affect our results?

Though© has the peculiar property of being independent of
which is a simple transcription of a result in fluid dynamics scale, intrinsically “flatter” profiles yield smalle©®, and

obtained by Kirchhoff, more than a century ago. larger g,. In fact, as Figs. 3 and 4 indicat®=1, which
corresponds to a constant dengityater bag, gives the best
Ill. EXPERIMENTS fit with experiment, though it hardly corresponds to reality. It

About notation. FDM describe offset j?=R?a? and is merely an indication that other, significant effects remain

the size of the column bR, the distance from the center at to be included in the analysis.
which the density has fallen to one half of its central value;
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