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The nonlinear diocotron mode, discussed by Fine, Driscoll, and Malmberg@Phys. Rev. Lett.63,
2232~1989!# is characterized by two equations, one describing the frequency of orbiting, the other
giving the quadrupole moment, as functions of size and offset. A new analysis, based on the method
of moments, which yields equations more general in their content, is presented here. For example,
the new equations describe columns whose shapes are not elliptical and whose densities are not
constant. ©1996 American Institute of Physics.@S1070-664X~96!01409-7#

I. INTRODUCTION

This article is presented in the spirit of ‘‘if anything is
worth doing it is worth doing to excess.’’ The particular
activity we are concerned with here is the analysis of a series
of experiments on rotating columns of pure electron plasma
which formed a large part of the 1988 doctoral research1 of
Kevin Fine at the University of California, San Diego. The
experimental results were published by Fine, Driscoll, and
Malmberg ~henceforth FDM! in Physics Review Letters.2

They were analyzed by Fine several years later3 in terms of a
simple model based on an analogy with fluid dynamics.
Then, Chuet al., in an article4 devoted to pure electron plas-
mas in asymmetric traps, showed that the principal results of
Ref. 3 followed from the Hamiltonian dynamics of an ellip-
tical plasma model which is a dynamical system with two
degrees of freedom. Our point is that these elegant experi-
ments present a clear challenge to ‘‘theory.’’ The models
used in Refs. 3 and 4 are quite simple~plasma columns with
zero temperature, constant density, elliptical cross sections!
yet surprisingly successful, though in the experiment the
temperature is not zero, the density far from uniform, and the
cross sections not precisely elliptical. It is not at all clear how
these particular models used may be extended, to account for
these effects. And it is certainly not clearwhy these simple
models are so successful. In this article, we derive the prin-
cipal results of Refs. 3 and 4 through approximations im-
posed upon a familiar and systematic treatment of the fluid
equations for the electron plasma—through consideration of
moments. The merits of our treatment are:~i! we produce
useful expressions which are generalizations of those ob-
tained in Refs. 3 and 4 and~ii ! thinking about the approxi-
mations needed to reach this end gives us insight into the
conditions under which the simple formulas are successful.

Let us be more specific. The simple theory produces two
important results. The first is an equation relating the fre-
quency at which the column rotates about the center axis of
the cylinder, with the ‘‘offset’’—the radius of the orbit
traced by the center of the column—and the shape of the
cross section of the column—the degree to which it has been
deformed from a circular shape. We call this the ‘‘frequency
equation.’’ It is

v5vD~11d22 1
2q2r p

2!, ~1!

with vD the ‘‘diocotron frequency,’’vp
2/2v, d5R/a a mea-

sure of the offset versus the radius of the cylinder,q2 a
~normalized! quadrupole moment, a measure of the deforma-
tion of shape, andr p a measure of the cross-sectional area of
the column~see Fig. 1!. We defer more precise definition
until later—in any case our notation will be slightly differ-
ent. We shall find that this equation is quite general and
comes easily, once we assume that offsets are modest.

The second equation, which we call the ‘‘quadrupole
equation’’ relates the deformation to offset and to area~see
Fig. 2!. It is ~deceptively! simple

q25
2r p

2

~12r p
2!2

d2, ~2!

but turns out to be not so well founded as the first equation.
Of course, the singularity atr p51 is spurious, the equation
being valid only for small areas. And, the simple dependence
upon offset is surprising. We shall find that reaching this
equation requires heavier approximation.

Finally, before we begin the detailed calculations which
produce the equations, we should repeat that they are ob-
tained by Fine through transcription and reinterpretation of a
result in the fluid mechanics of vortex patches, a result based
on a picture of the column as elliptical in shape and having
uniform electron density~vorticity!. We will be able to relax
those requirements somewhat, and to consider versions of
the two equations which are generalized, somewhat. How-
ever, if one attempts to deal with a markedly different situ-
ation one has to abandon the notion that the experiments can
be described by two, simple equations.

II. ANALYSIS

We contemplate a cold fluid of electrons not in the labo-
ratory frame, but in a reference frame rotating with constant
angular frequencyV about the central, orz axis of our sys-
tem. We shall need the equation of continuity

]n

]t
1“–~nu!50, n5n~r ,t !, u5u~r ,t !, ~3!

and the momentum equation
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q

m FE~r ,t !1
1

c
@u3B~r ,t !#G5A2~v3u!. ~4!

We deal with a regime in which ‘‘(v/c)2 terms’’ are ne-
glected and with flows which lie in a plane perpendicular to
the z axis. The functionsA ~henceforth, ‘‘the field’’!, and
v, the cyclotron frequency, are taken to be independent ofz.
In our regime, the electric and magnetic fields in the rotating
and laboratory frames are related by

E5E01
1

c
@~V3r !3B0#, B5B02

1

c
@~V3r !3E0#.

~5!

~The subscript 0 denotes the laboratory frame; the compo-
nents ofr andr0 are related by the usual equations for rotat-
ing coordinates.! We consider experiments in which the
magnetic field is uniform and parallel to thez axis, and the
fluid is confined by a circular, conducting cylinder, of radius
a. In these circumstances, the momentum equation, Eq.~4!,
becomes

Du

Dt
1~2V1v!3u5A01~V21V–v!r , ~6!

wherev now denotes the~constant! cyclotron frequency,
(q/mc)B0. This is the equation we will study. We shall find
that the frequency equation follows easily upon consider-
ation of the motion of the center of mass of the column,
while the quadrupole equation is obtained from moments of
the equation of continuity.

A. Center-of-mass motion

If we recall that the position and velocity of the center of
mass are defined by

E drn~r ,t !r5NR~ t !

and

d

dt E drn~r ,t !r5NV~ t !,

we deduce from Eq.~6! that

dV

dt
1~2V1v!3V5

1

N E drn~r ,t !A0

1~V21V–v!R. ~7!

We specialize further by limiting ourselves to columns
which rotate rigidly and uniformly about thez axis ~no wob-
bling!! and whose internal flows are steady; the centers are at
rest in our rotating frame. SettingV50 leads at once to the
quite general ‘‘dispersion-equation’’

~V21V–v!52
1

NR2 E drn~r !@R–A0~r ,R!#. ~8!

It is useful to regard the electric field as composed of two
components,Ak5Ak

S1Ak
W. The self field is due to the

charges which constitute the column, while ‘‘w’’ denotes the
contribution of the image or ‘‘wall’’ charges. Since the inte-
gral in Eq.~8! is proportional to the total force experienced
by the column, the contribution of the self part of the electric
field must integrate to zero in the equation; only the wall
contribution remains.~Henceforth, we drop the zero sub-
script.!

An easy application of Eq.~8! now yields an important
result. If we view our column as an assembly of line charges,
the field due to the images of the assembly~wall! is known
to be

Ak
W5

1

2
vp
2SRk1

2

a2
~Q̂1Q̂R!klr l1••• D . ~9!

In this equation the plasma frequency,vp
2, is based upon the

mean charge density present in the system, (Nq/pa2L), not
the mean density of charge in the column. We shall use the
relation Nq2/mL5 1

4vp
2a2 frequently. The matrix

(Q̂R)kl5(RkRl2
1
2dklR

2), while Q̂kl is a traceless matrix of
certain normalized quadrupole moments of the assembly,
which we shall discuss later.~The first two terms of this

FIG. 1. This is Fig. 3 of Ref. 3, captioned ‘‘Measured fractional frequency
shift overd2 vs column radius... .’’ The solid curve is the simple formula,
our Eq.~1!.

FIG. 2. This is Fig. 2 of Ref. 3, captioned ‘‘Measured quadrupole distortion
overd2 vs column radius... .’’ The solid curve is the simple formula, our Eq.
~2!.
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multipole expansion make a good approximation if the as-
sembly is neither too large nor too irregular.! Upon substi-
tuting Eq.~9! into Eq. ~8! we obtain

V21V–v1
1

2
vp
2S 11

R2

a2
1

2

a2R2 ~Q̂Q̂R!1••• D50.

~10!

Equation~10! will become the frequency equation, the first
of the two key equations used in the analysis of the experi-
ments. It appears here under quite general circumstances, in
no way connected with flat distributions, or elliptical shapes.
It also has nothing to do with the nature of the flow. We may
simplify by placing the center of mass—which is at rest—
upon thex axis, so that

~Q̂R!kl5QRskl5
R2

2
skl , where skl5F1 0

0 21G .
For many systems of simple shape, we will haveQ̂kl5Qskl .
Then the frequency equation, Eq.~10! becomes

V21V–v1
1

2
vp
2S 11

2

a2
~Q1QR!1••• D50,

Q5
1

2 E d2xn̂~x!~x1
22x2

2! ~11!

‘‘in the quadrupole approximation.’’ If we assume that the
cyclotron frequency is considerably larger than all other fre-
quencies, and we recall the definition of the diocotron fre-
quencyvD51

2~vp
2/v!, we see that Eq.~11! is identical with

Eq. ~1!. ~For details of notation, see ahead.!

B. Moments of the density

We turn, now, to the moments of the stationary distribu-
tion of charge. Since we are dealing, in fact, with a flow in
two dimensions, it is convenient to switch from a three-
dimensional density of charge,n~r ! whose integral isN, to a
two-dimensional density,n̂~x!,whose integral over the cross
section of the cylinder is unity. Further, we writer5R1x,
coordinatesxk being referred to the center of mass. Consider,
first, moments of the equation of continuity for a stationary
flow, viewed in the rotating frame. We have

E d2x~1,xi ,xixj ,...!“–@ n̂~x!u~x!#50.

The ‘‘zeroth’’ moment is trivially zero if the density falls to
zero within the container, while the vanishing of the set of
first moments reflects the fact that we measure relative to the
center of mass. It is the set of second moments that interests
us. The set yields a~232! matrix of equations

SymM i j[
1

2 E d2xn̂~x!~xiuj1xjui !50,

with

M i j[E d2xn̂~x!xiuj . ~12!

Their study is the central part of this article. The set will turn
out to contain but a single, independent equation. That equa-
tion will be the second of the key equations used in the
analysis of the experiments.

To obtain concrete results, we require a flow-fieldu~x!.
We shall use an approximate solution to Eq.~6! which is
obtained, traditionally, via two slightly different routes.

~i! One declares, simply, that ‘‘inertial effects are negli-
gible.’’ This is the ‘‘geostrophic approximation’’ dear to me-
teorologists. The termDu/Dt, the acceleration of an element
of mass, is set equal to zero. Or,

~ii ! one examines the inertial term in some detail, writing

Du

Dt
5

]u

]t
1“~ 1

2u
2!1ṽ3u,

to display explicitly the kinetic energy and the vorticity of
the flow, ṽ5“3u. Then, Eq.~6! becomes

]u

]t
1~2V1v1ṽ!3u52“@F2~ 1

2u
21 1

2~V21V–v!r2!#,

with F the electrostatic-potential energy per unit mass. Since
the flow is stationary, the geostrophic result follows upon the
assumptions that the vorticity is small compared with the
cyclotron frequency,v, and that the kinetic energy is small
compared with both the potential energy and the portion of
the centrifugal potential that is proportional tov. In this
limit of large magnetic field, the equation for the flow be-
comes

v3u52¹@F2 1
2~V–v!r2#.

Thus, the flow in the rotating frame is ‘‘E3B,’’ corrected by
V3r . ~Note that it is easy to begin to take effects of tem-
perature into account by adding an ‘‘nkT’’ term to the quan-
tities in square brackets.! In terms of components, we have

vuj5e jk@Ak1v•Vr k#, ~13!

where

e jk5F 0 1

21 0G , t jk5F0 1

1 0G .
We have introducedt, a third 232 matrix. The matricess, e,
andt, along with the unit matrix, form a convenient basis for
representing real 232 matrices.~Of course, they are related
trivially to Pauli’s matrices.! Note that s25t252e251,
st5e, se5t, and et5s. If we use Eq.~13!, the moment
equations, Eq.~12!, become

SymM i j5Sym e jkM ik
0 50,

Mik
0 5E d2xn̂~x!xi@Ak1v•Vr k#. ~14!

Our task is to extract from them, finally, the second of the
key equations which fit the experiments so well. Here, we
beg the reader’s patience as we proceed through some rather
dry manipulations. With ‘‘Sym’’ denoting the symmetric
part of the matrix which lies to the right, we note that adding
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a multiple of the unit matrix toM0 does not alter the equa-
tions. Thus, after writingr k5Rk1xk , we introduce the ma-
trix Mik , and obtain the important equation

Sym e jkM ik50, Mik5E d2xn̂~x!xiAk1v•VQ̂ik ,

~15!

with

Q̂ik5E d2xn̂~x!@xixk2
1
2d ikx

2#.

As promised earlier, the traceless quadrupole matrixQ̂ has
been defined. For the systems we consider,Q̂ik5Qs ik , and
Q,0.

@The traces of both the matrices,M and M , have
simple, physical meaning.Mkk , the trace ofM, is seen to
be proportional to2ẑ•*d2xn̂~x!~x3A!, itself proportional
to the torque exerted by the electric field upon the column.
The expression for ‘‘self-torque’’ may be seen to vanish, by
symmetry, and the torque exerted by the image charges van-
ishes, too.M is traceless.Mkk , the trace ofM , does not
vanish; it is proportional to the virial of the system of
charges. That quantity is particularly simple for an assembly
of line charges; the wall virial is also easy to compute, in the
quadrupole approximation.#

The next step is mandated by the requirement that the
analysis of experiments involves no moments higher than
quadrupole. In view of Eq.~15!, then, we must assume that
linear variation of the electric field makes a good approxi-
mation, that we may neglect quadratic and higher terms.~As
a consequence, Poisson’s equation demands that the charge
density not show great variation, either.! Thus, we are led to
the approximation

Ak~x!5Ak~0!1vp
2Ûklxl1•••, ~15a!

which produces

Mik5vp
2Ûkl~Q̂il1

1
2d i l ^x

2&!1v•VQ̂ik . ~15b!

Note that we have encountered the approximation already, in
the description of the wall contribution, Eq.~9!. Generally,
the matrixÛ is symmetric, and its trace is given by Poisson’s
equation. We shall see that it is diagonal, too. Thus, we may
write

Mik5vp
2~U0skl1U1dkl!~Qs i l1

1
2d i l ^x

2&!1v•VQs ik

and the evaluation of Syme jkM ik leads to the simple scalar
equation,

vp
2~ 1

2^x
2&U01QU1!1v•VQ50, ~15c!

or

^x2&U012QU12QF11
2

a2
~Q1QR!G50. ~15d!

These equations are, in fact, the quadrupole equation albeit
in abstract form. The discussion which follows fills in de-
tails.

We breakÛ into two parts,ÛS and ÛW; since

Ak
W5

1

2
vp
2SRk1

2

a2
~Q̂1Q̂R!klr l1••• D , ~16!

we have (ÛW)kl5(1/a2)(Q̂1Q̂R)kl .
For the column, the self-field is

Ak
S52

Nq2

mL E d2yn̂~y!~x2y!k /~x2y!2

5
1

2
vp
2a2E d2yn̂~y!

]

]xk
logux2yu. ~17!

Then, we write

Ak
S~x!5Ak

S~0!2vp
2a2T̂klxl1••• ,

where

T̂kl5E d2xn̂~x!
1

x4
@xkxl2

1
2dklx

2#

52
1

2 E d2xn̂~x!
]2

]xk]xl
loguxu. ~18!

TheT matrix is not traceless~¹–EÞ0!. It may be written as

T̂kl5Tskl2
p

2
n̂~0!dkl ,

~19!

T5
1

2 E d2xn̂~x!~x1
22x2

2!/~x1
21x2

2!2.

With the introduction ofT̂kl , Eq. ~15! or Eq. ~15d! becomes

a2@^x2&T2pn̂~0!Q#2
^x2&
a2

~Q1QR!

1QF11
2

a2
~Q1QR!G50

or

y2~Q1QR2a4T!1Qpa2n̂~0!2QF11
2

a2
~Q1QR!G50

~20!

with y25^x2&/a2. If we compare these equations with Eq.
~15c! we find

U05
1

a2
~Q1QR!2a2T, U15

1
2pn̂~0!a2.

C. Closure

Equation ~20!, while promising and true, is somewhat
different from the successful quadrupole equation—it con-
tains too many unknown quantities. We need to eliminate
pa2n̂~0! andT—that is, express them in terms ofQ and^x2&.
We begin with a simple argument, which is quite successful.
Consider fairly flat distributions of near-elliptical shape, and
cross-sectional area,A, thenn̂(0)'1/A, A'2p^x2&, lead to
2pn̂(0)^x2&'1. With the latter, Eq.~20! becomes

y4~Q2a4T!2y2QF11
2

a2
~Q1QR!G1

1

2
Q52y4QR .

~21!
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Next, we argue that the expression forT suggests a closure
relation^x2&2T'lQ, wherel is a pure number. In the case
of an elliptical figure of uniform density—the choice ofF
and of CW—where, incidentally, the quadrupole moment
and the eccentricity are related throughQ' 1

4e
2^x2&, the clo-

sure with l5 1
4 is a very good approximation~see ahead.!

Thereupon—the term 2(Q1QR) being considered small
compared witha2—Eq. ~21! collapses into the simple—and
surprisingly accurate—

Q52
1

@ 1
22~^x2&/a2!#2

S ^x2&
a2 D 2QR , ~22!

which will be recognized as the quadrupole equation, our
second goal.

We shall now make the reasoning more precise, hoping
to discover why the simple estimate appears to be so accu-
rate. We evaluateQ, T, and 2pn̂(0)^x2& for a class of
shapes and densities, to see how accurate the simple esti-
mates are.

1. Generalization

We consider distributions more realistic than the ‘‘flat,
elliptical’’ or ‘‘waterbag.’’ Let

n~x!5E
0

`

dtm~ t !d@ t2 f ~x!#5m@ f ~x!# ~23!

be an un-normalized distribution whose level curves are
those of the functionf ~x!. As an example we might choose

f ~x!5
1

a1
2 ~x1

21x2
2!2

e2

a1
2 x2

25j~12e2 sin2 u! ~24!

producing level curves which are ellipses of fixed eccentric-
ity, defined througha2

22a1
25a2

2e2. If we use conventional
polar coordinates, withj5(1/a1

2)(x1
21x2

2), we obtain the sec-
ond expression forf ~x!. In fact, the analysis we shall present
goes through easily for a more general class of level curves,
namely,

f ~x!5B~j!@12e2p~u!#, p~u12p!5p~u!. ~25!

~Of course, only those level curves which have the symme-
tries assumed earlier will be useful.! If we compute the quan-
tities ^x2&, Q, T, and n̂~0! for the level curves described by
Eqs.~23! and ~25!, with—for example—B~j!5j, we find

N [E d2xn~x!5pa1
2E

0

`

djm~j!K 1

12e2p~u!L
5pa1

2l1~e!E
0

`

djm~j! ~26!

and n̂~0!5m~0!/N .

^x2&5~pa1
4/N !E

0

`

djjm~j!K 1

@12e2p~u!#2L
5~pa1

4/N !l2~e!E
0

`

djjm~j!, ~27!

Q5~pa1
4/2N !E

0

`

djjm~j!K cos 2u

@12e2p~u!#2L
52~pa1

4/4N !e2l3~e!E
0

`

djjm~j!, ~28!

T52~p/2N !m~0!^cos 2u log@12e2p~u!#&

52~p/8N !e2l4~e!m~0!. ~29!

The angular brackets denote angle averages. We have a nice
factoring into two components, one connected with the shape
of the level curves, the other with the density profile. We
infer, easily,

Q52
1

4
e2

l3

l2
~e!^x2&

and

l3

l2l4
~e!^x2&2T52pn̂~0!^x2&

1

4
Q, ~30!

the second of these being quite suggestive, in the light of the
simple arguments made earlier.

Also,

2pn̂~0!^x2&52
l2~e!

l1
2~e!

m~0!m1

m0
2 ,

with

mk5E
0

`

djjkm~j!. ~31!

Note that ase→0 all quantitieslk areO~1!. The termsl1~0!
andl2~0! are precisely unity, whilel3~0! andl4~0! are unity
in the particular case of elliptical level curves. In that case

l1~e!5
1

A12e2
, l2~e!5

12 1
2e

2

~12e2!3/2
,

l3~e!5
1

~12e2!3/2
, l4~e!5

4

@11A12e2#2
.

~32!
l3

l2l4
~e!5

1

2

@11A12e2#2

12 1
2e

2
511O~e4!,

l2

l1
2 ~e!5

12 1
2 e2

~12e2!1/2
511O~e4!.

What do these results say? The first of Eq.~30! simply con-
nects quadrupole moment, second moment, and eccentricity
for the shapes we consider. The second equation provides
one of the two relations of closure needed to reduce Eq.~20!
to Eq.~22!. The key quantity,~l3/l2l4!~e!, is seen to deviate
from unity by termsO~e4!—in the case of elliptical shapes.
Setting it equal to unity, as we did in the previous discussion,
appears to be a very good approximation. The second closure
relation, Eq.~31!, displays a factor,~l2/l1

2!, which also dif-
fers from unity byO~e4!—a remarkable result. We begin to
see why the simple quadrupole formula works so well.
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Let us exploit the weak dependence upon eccentricity by
ignoring it. Then, the general closure relations may be writ-
ten

2pn̂~0!^x2&5U, ^x2&2T5U 1
4Q

with

U[2
m~0!m1

m0
2 . ~33!

The crucial quantity,U, depends upon the density profile.
Now, reduction of the key equation, Eq.~20!, yields

QS S y221

2D
2

1
1

4
~U21!2

2

a2
~Q1QR!y2D52y4QR ,

~34!

which should be compared with Eq.~28!. Calculation shows
that if the density profile is

Flat~‘‘Water bag’’! then U51,

Gaussian inj U54/p,

Exponential in j U52.

A remarkable aspect of the ratio,U, is its ‘‘independence of
scale;’’ should the density assume the formm~j/s!, the ratio
is seen to be independent ofs.

Before turning to Fine’s experiments, we wish to discuss
another aspect of our analysis, the behavior of our equations
as R→0. Then the column is centered on the axis of the
cylinder, and we expect the motion with frequencyV to
become one of the low-frequency modes familiar from the
linear analysis of the dynamics of the column.5 Thus, if we
consider the case of constant density we expect to connect
with the equation

V* ~m!5vD* Fm211S baD
2mG

describing the temporal variation of fields. Here the dio-
cotron frequency is based on the density in the column,
not—as we have chosen above—the mean density in the
cylinder.

Consider two, different, limiting procedures. In the first
we conclude from Eq.~22! that Q vanishes asQR . Using
that observation in the frequency equation, Eq.~11!, leads
us—with the neglect of termsO~V2!—to the limiting behav-
ior

V→vD5vD* S baD
2

5V* ~1!.

It would appear that our equations describe a nonlinear ex-
tension of them51 mode. On the other hand, suppose we
ignore Eq.~22! and, in Eq.~20!, setQR50 and re-introduce
~v•V!. Equation~20! becomes

1

2
vp
2S ^x2&

a2
~Q2a4T!1pn̂~0!a2QD1~v•V!Q50 ~35!

and if we ‘‘close,’’ in the spirit of Eq.~33!, we have

1

2
vp
2S F ^x2&a2 G211

4
U D1~v•V!50. ~36!

In the special case of uniform density, and a column of ra-
diusb, ^x2&5 1

2b
2, U51, and

FIG. 3. Graph of the ‘‘full’’ quadrupole equation, Eq.~34!, for constant
density and elliptical boundary. ‘‘Radius’’ isr p while ‘‘moment’’ is q2/2d

2.

FIG. 4. Graph of the full quadrupole equation, Eq.~34!, for Gaussian den-
sity and elliptical level curves. Radius isr p while moment isq2/2d

2.
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uVu→
1

2
vD* F11S baD

4G5
1

2
V* ~2! ~37!

the frequency of rotation becoming half the linear frequency
of the signal received by a detector. This is as it should be,
for a rotating column whose surface is deformed as cosmu
will, when rotating at frequencyf , signal at a frequencymf.
Thus, our moment equations also describe, approximately,
the nonlinear extension of the linear modem52.

But our equations describe nonuniform densities too, and
one might ask whether Eq.~36! is useful in predicting the
frequencies of stable,m52 modes in general. Here, one runs
into the issue of ‘‘quasi-modes,’’5,6 for all modes possess a
damping caused by a species of ‘‘phase mixing.’’ Perhaps,
then, Eq.~36! will yield the real part of the complex mode. It
turns out that while the limiting behavior of Eq.~36! is cor-
rect, its numerical accuracy is unimpressive.

Finally, I note another limit possessed by these equa-
tions. Let the plasma column have uniform density and el-
liptical cross-section and the containing cylinder have very
large radius. Let the column rotate above its central axis,
which coincides with the central axis of the cylinder. Then
Eq. ~35! and Eq.~32! give

V52vD*
2a1a2

~a11a2!
2, ~38!

which is a simple transcription of a result in fluid dynamics
obtained by Kirchhoff,7 more than a century ago.

III. EXPERIMENTS

About notation. FDM describe offset byd25R2/a2 and
the size of the column byRp , the distance from the center at
which the density has fallen to one half of its central value;
Rp
2/a25r p

2. We describe the size bŷx2&. Thus the relation
betweenRp

2 and ^x2& depends upon the distribution of elec-
tron density. For example, given an ellipse of constant den-
sity, takingRp

2 as the averaged~square! distance from center
to edge giveŝ x2&5 1

2Rp
2; if the density were Gaussian, we

would have the slightly different̂x2&50.48Rp
2. We shall use

the former relation throughout. The quadrupole moments are
related by22Q/a25 1

2r p
2q2 , q2 being the quadrupole mo-

ment scaled, roughly, by the cross-sectional area of the col-
umn. Finally, Ref. 1 describes the deformation of cross sec-
tion in terms of eccentricitye, wheree2522Q/^x2&

2. One
can show thate252q2f, with f independent of density pro-
file ~m! for densities of the sort described above. In fact,
f511O~e2! and may be set equal to unity unless the defor-
mations are very large.

What can we contribute to the interpretation of the data?
The simple theory, displayed in Fig. 2, does well enough; the
more precise Eq.~34! contains the term (2/a2)(Q1QR)y

2

which is neglected in the derivation of the simple equation,
Eq. ~22!, and the parameterU, which characterizes the den-
sity distribution. Inclusion of these produces two notable
consequences. First, the spurious divergence aty251

2 is re-
moved. Second, the equation has the special solution
Q52QR52 1

2R
2 for columns havingy2[^x2&/a25U/4.

As a consequence, the reduced quadrupole momentq2/d
2 is

not the universal function ofr p , independent of offset as Eq.
~22! suggests. Rather, one finds a family of functions
~graphs! labeled by offset~see Figs. 3 and 4!. Further, the
special solution constrains all graphs in the family to have
the common pointr p

25U/2, q2/d
254/U, where they cross.

When, instead, one plotsq2 vs d for various fixed column
sizes,r p , using eccentricity rather thanq2, the special solu-
tion predicts that one curve, labeledr p5AU/2, will be a
straight line of slopeA8/U, while those graphs labeled by
sizes smaller, or larger than the critical value will be curved.
Something like that appears in Fig. 4.3 of Ref. 1, but the
agreement is ‘‘suggestive’’ rather than quantitative. Though
the effect is small, it would—in principle—enable one to
infer U, and something about the density profile. Finally, a
more important question: how doesU affect our results?
ThoughU has the peculiar property of being independent of
scale, intrinsically ‘‘flatter’’ profiles yield smallerU, and
larger q2. In fact, as Figs. 3 and 4 indicate,U51, which
corresponds to a constant density~water bag!, gives the best
fit with experiment, though it hardly corresponds to reality. It
is merely an indication that other, significant effects remain
to be included in the analysis.
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