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SUMMARY 

E'ake development behind circular cylinders at Reynolds 
numbersfrom 40 to 20,000 was investigatecl in a low-speed wind 
tunnel.  Standard hot-wire techniques were used to s tudy the 
velocity jluctuations. 

The Reynolds number range of periodic vortex shedding i s  
divided into two distinct subranges. A t  R=4O to 150, called 
the stable range, regular vortex streets are .formed and n o  turbu- 
lent motion i s  developed. The range R=150 to SO0 i s  a 
transition range to a regime called the irregular range, in which 
turbulent velocity$uctuations accompany the periodic formation 
of vortices. The turbulence i s  initiated by  laminar-turbulent 
transition in the free layers which spring from the separation 
points o n  the cylinder. Th i s  transition Jirst occurs in the 
range R = 150 to 300. 

Spectrum and statistical measurements were made to study 
the velocity$uctuations. In the stable range the vortices decay 
by  viscous diffusion. I n  the irregular range the diffusion i s  
turbulent and the wake becomes fu l ly  turbulent in 40 to 50 
diameters downstream. 

I t  was found that in the stable range the vortex street has a 
periodic spanwise structure. 

The dependence of shedding frequency on velocity was success- 
fu l ly  used to measurejlow velocity. 

Measurements in the wake of a ring showed that a n  annular 
vortex street i s  developed. 

INTRODUCTION 

I t  is always difficult to determine precisely the date ancl 
author of a discovery or idea. This seems to be the case 
with the periodic phenomena associated with flow about a 
cylinder. Although the effect of wind in producing vibra- 
tions in wires (aeolian tones) had been known for some time, 
the first experimental observations are due to Strouhal (ref. 
1) who showed that the frequency depends on the relative 
air velocity and not the elastic properties of the wires. Soon 
after, Rayleigh (1879, refs. 2 and 3) performed similar 
experiments. His formulation of the Reynolcls number 
dependence demonstrates his remarliable insight into the 
problem. 

These earliest observations were concerned with the rela- 
tions between vibration frequency and wind velocity. The 
periodic nature of the wake was discovered later, although 
Leonarclo da Vinci in the fifteenth century had already drawn 
some rather accurate sketches of the vortex formation in the 
flow behind bluff bodies (ref. 4). However, Leonardo's 

drawings show a symmetric row of vortices in the wake. 
The first modern pictures showing the alternating arrange- 
ment of vortices in the wake were published by Ahlborn in 
1902 (ref. 5); his visualization techniques have been used 
extensively since then. The importance of this phenomenon, 
now known as the KBrmBn vortex street, was pointed out by 
Benard (1908, ref. 6). 

I n  1911 KBrmBn gave his famous theory of the vortex 
street (ref. 7), stimulating a widespread and lasting series of 
investigations of the subject. For the most part these con- 
cerned themselves with experimental comparisons of real 
vortex streets with KBrmBn7s idealized model, calculations 
on the effects of various disturbances and configurations, and 
so on. I t  can hardly be said that any fundamental advance 
in the problem has been macle since KBrmBn's stability 
papers, in which he also clearly outlined the nature of the 
phenomenon and the unsolved problems. Outstanding per- 
haps is the problem of the periodic vortex-shedding mecha- 
nism, for which there is yet no suitable theoretical treatment. 

However, the results of the many vortex-street studies, 
especially the experimental ones, are very useful for further 
progress in the problem. Attention should be drawn to the 
work of Fage and his associates (1927, refs. 8 to lo), whose 
experimental investigations were conducted a t  Reynolds 
numbers well above the ranges examined by most other 
investigators. Their measurements in the wake close behind 
a cylinder provide much useful information about the nature 
of the shedding. More recently Kovasznay (1949, ref. 11) 
has conducted a hot-wire investigation of the stable vortex 
street (low Reynolds numbers), to which frequent reference 
will be macle. 

Vortex-street patterns which are stable and well defined 
for long distances downstream actually occur in only a small 
range of cylinder Reynolds numbers, from about R=40 to 
150, and it is to this range that most of the attention has 
been given. On the other hand, as is well known, periodic 
vortex shedding also occurs a t  higher Reynolds numbers, 
up to 10' or more, but the free vortices which move down- 
stream are quickly obliterated, by turbulent diffusion, and a 
turbulent wake is established. 

The present interest in the vortex street is due to some 
questions arising from the study of turbulent flow behind 
cylinders and grids. Such studies are usually made at  Reyn- 
olds numbers for which periodic vortex shedding from the 
cylinders or grid rods might occur. However, the measure- 
ments are always talren downstream far enough to insure 

I Supersedes N.ZC.4 TN 2913, "On the Development of Turbulent Wakes From Vortex Streets" by Anatol Roshko, 1953. 
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I I I ~ I I  1 1 1 1 5  ~ N ' I  I ( N I I ( *  rclocity fluctuations are obliterated and 
~ \ I ( P  I 15 coiilpletely turbulent. There are several 
1 1 1 1  I ) O I  I 11111 co~~scql~ences of this limitation. 

I ~ I I , ~ ,  t l ~ c  energy of the velocity fluctuations is quite low 
( . o I I I ~ ~ ~ w ~  wit11 the energy near the cylinder, and especially 
lo\v compared with tlle dissipation represented by the form 
tl~.ttg. I n  attaining the cleveloped downstream state there is 
cvitlently not only a rapid redistribution of energy among 
tlic spectral components but  also a large dissipatioll. Sec- 
ond, the theories wliicli tlcscribc Lliesc downstrt~an~ stages do 
not relate the flow to the initial conditions except very loosely 
in terms of diinensionless parameters, anil i t  is usually 
necessary to tleterininc an origin empirically (c. g., mising- 
length theory or similarity tlieories). 

On tlic other hand, tliere is evidence tliat sorne features 
are permanent, so that they must be tlcterminect near tlic 
beginning of the motion. Onc sucll feature is tlie lorn-wave- 
number encl of the spectrum wlliclr (in the tlleory of llomo- 
geneous turbulence) is invariant. 

Another is the random element. I t  has been pointecl out 
by Dryilen (refs. 12 and 13) that in the early stages of tllc 
decay of isotropic turbulence behind grids tlie bulli of tlic 
turbulent energy lies in a spectral range wliicli is well ap- 

proximated by tile simple function &21 cliaracteristic 1 f B n  
of certain random processes. Liepmann (ref. 14) has sug- 
gestecl that  such a random process may be found in the 
shedding of vortices from the grids. 

I n  short, there has been no description, otlier than very 
qualitative, of the downstream development of walies xvllich, 
over a wide range of Reynolds number, exhibit a definite 
periodicity a t  the beginning. The measurements reported 
here were undertalten to help bridge this gap. 

The main results sl~ow tlie clownstrean1 development of the 
walre, in terins of energy, spectrum, ancl statistical properties. 
This clevelopment is quite different in two Reynolds number 
ranges, tlle lower one esterlding from about 40 to 150 and tlic 
upper, from 300 to 10' (and probably lo5), with a transition 
range between. Tlle lower range is the region of tlle classic 
vortex street, stable and regular for a long distance down- 
stream. Tllc fluctuating energy of the flow has a discrete 
spcctruin a11i1 sinlply ilccays do\vnstream without transfer of 
encrgy to otl~er frcqucncies. Irrcgnlar fluctuations arc not 
developed. I n  tlie upper rtmge there is still a predominant 
(shedding) frequency in the velocity fluctuations near the 
cylinder, and most of tlic energy is concentratecl a t  this 
frequency; however, some irregularity is already developed, 
and this corresponcls to a contiriuous spectral distribution of 
somc of the energy. Dox-nstream, tlic discrete energy, a t  
tlie slledding frequency, is quiclily dissipated or transferred 
to otllcr frequencies, so that by 50 diameters tlie walie is 
cornpletcly turbulent, and tlic energy spectrum of tlle velocity 
fluctuatiorls appronclles that of isotropic turbulence. 

All otlicr features of tlie periodic shedcling and wake phe- 
rlouncna may be classified as belonging to one or the otller of 
tlic tn70 ranges. This viewpoint allows some systenlatization 
ill t l ~ e  study of wake development. 

I n  particularJ i t  is felt tile possibilities of the vortex street 
are by no means exllausted. A study of tlie interaction of 
periodic fluctuations with a turbulent field seems to be a 
fruitful approach to the turbulence problem itself. I t  is 
planned to continue the present work along these lines. 

From a more immediately practical viewpoint an  under- 
standing of the flow close to a bluff cylincler is important in a t  
]cast two problems, namely, structural vibrations in members 
whiclz themselves shed vortices and structural buffeting 

by members placed ill the walres of bluff bodies. 
hlany of these are most appropriately treated by the statis- 
tical metllods developeil in tlle tlieories of turbulence and 
otlrcr ranclom processes (ref. 15). These metllocls are easily 
extended to include the mixed turbulent-periodic phenomena 
associated with problems such as the two mentioned above. 

Tlic research was collducted a t  GALCIT uncler the spon- 
sorslrip aild with the financial assistance of the National 
Advisory Committee for Aeronautics, as part of a long-range 
turbulence study directed by Dr. H.  W. Liepmann. His 
advice and interest tl~roughout the investigation, as well as 
helpful iliscussions with Dr. Paco Lagerstrom, are gratefully 
acknowledged. 

SYMBOLS 

AJB constants 
a,b major and minor axis, respectively, of corre- 

lation ellipse 
CD drag coefficient 
CDP form clrag coefficient 

C= dN2/Nl 
D outside diameter of ring 
d cylinder dimension 
d' distance between free vortex layers 
d, diameter of ring-supporting wire 
E wake energy 
El,E2 components of wake energy due to periodic 

fluctuatiolis 
F dimensionless frequency, n1d2/v 
F(n) energy spectrum 
Fl(n),F2(n) energy spectra of discrete energy 
Fr(n) continuous energy spectrum 
G(n,) output of wave analyzer a t  setting n~ 
h lateral spacing of vortices 
h' initial lateral spacing of vortices 
h* lateral spacing between positions of u', 
K const ant  
k integer 
I; scale 
I;, scale corresponding to R, 
1 downstream spacing of vortices 
,Mlb moment, of order k, of probability density 
Nk "absolute" moment of probabilitg density 
nl shedding frequency 
n2=2nl 
P(()  probability clistribution function 
p ( ( )  probability density 
(3 area uncler response characteristic 
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tangential velocity in vortex 

Reynolds number 
response characteristic of wave analyzer 
Reynolds number based on ring diameter 
time correlation function 
space correlation function 
distance from vortex center 
raclius of vortex 
Strouhal number, based on cylinder dimension, 

n,dlU, 
Strouhal number, based on distance between 

free vortex layers, n,d'/ LT, 
time scale 
time of averaging 
time 
local mean velocity in x-direction 
mean stream velocity 
mean velocity a t  vortex center 
components of velocity fluctuation 
periodic velocity fluctuations, a t  frequencies 

n1 and n2 
random velocity fluctuation 
peak root-mean-square value of velocity fluc- 

tuation 
velocity of vortex relative to fluid 
reference axes an.cl distance from center of 

cylincler 
flatness factor of probability distribution, 

M4 in42 
strength (circulation) of a vortex 
Dirac delta function 
positive number 
distance between two points, measured in 

z-direction 
7 

L 
?I dimensionless frequency, - n u, 
e U, x dimensionless "time" in life of vortex, - - 

U* d 
dummy variable 
liinema tic viscosity 
a value of u 
clensi ty 
skewness of probability distribution, M3/M23/2 
time interval 
dimensionless spectrum, U,F,(n)/L 
half band width of wave analyzer 

GENERAL CONSIDERATIONS 

Except for the parameters directly related to the shedding 
frequency, the quantities measured were essentially those 
bhat are standard in turbulence investigations (cf. refs. 12 to 
14). These are briefly reviewed below with some modifica- 
tions required to stucly the periodic features. 

REFERENCE AXES 

The origin of axes is t.aken a t  the center of the cylinder 
(fig. 1); x is measured downstream in the direction of the 

,. I"..,...,...U. 
, Honeycomb-----Precision screen ,Uniform .-Adjustable working : section 17~ :\rtl?; , :,~, LL -"on; 

Silk cloth.: 40 ,-*,:?* ;Round section 
1'1 

----- iq-20"- - - 

FIGURE 1.-Sketch of GALCIT 20-inch tunnel. 

free-stream velocity, z is measured along the axis of the 
cylinder, which is perpendicular to the free-stream velocity, 
and y is measured in the direction perpendicnlar to (x, y) ; 
that is, y=O is the center plane of the wake. The free- 
stream velocity- is U, and the local mean velocity in the 
x-direction is U. The fluctuating velocities in the x-, y-, and 
z-direction are u, v, ancl w, respectively. The flow is con- 
sidered to be two dimensional; that is, mean values are the 
same in all planes z=Constant. 

1 SHEDDING FREQUENCY 

The shedding frequency is usually expressecl in terms of 
the dimensionless Strouhal number S=nld/U,, where nl is 
the shedding frequency (from one side of the cylinder), d is 
the cylinder diameter, and U, is the free-stream velocity. 
The Strouhal number S may depend on Reynolds number, 
geometry, free-stream turbulence level, cylinder roughness, 
and so forth. The principal geometrical parameter is the 
cylincler shape (for other than circular cylinders, d is an 
appropriate dimension). However, cylinder-tunnel con- 
figurations must be taken into account, for example, blockage 
and end effects. I n  water-channel experiments surface 
effects may have an influence. Usually the geometrical 
configuration is fixed, and then S is presented as a function 
of Reynolds number R. 

Instead of Strouhal number it is sometimes convenient to 
use the dimensionless parameter F=n,r12/v, where v is the 
kinematic viscosity. 

ENERGY 

The experiments to be described are concerned mainly 
with the velocity fluctuation in the wake, and especially with 
the corresponding energy. 

The energy of the velocity fluctuation a t  a point in the 
1 

fluid is - p(u2+v"w3 per unit volume, where (u, v, w) is the 
2 

fluctuating velocity and the bar denotes an averaging (see 
the section "Distribution Functions"). I n  these experi- 
ments only the component u was measured, and the term 
"energy" is used to denote the energy in that component 
only. 

The energy intensity is defined as (u/lT,)'. Since the 
mean flow is two dimensional, the intensity does not vary in 
the z-direction. At any downstream position in the wake it  
varies in the y-direction, normal to the wake. The integral 
of the intensity over a plane normal to the free stream (per 
unit span) is called the wake energy E: 

2 The term "shedding" is used throughout this report, for convenience; it is not meant 
to imply anything about the mechanism of the formation of free vortices. 
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displays a predominant frequency (as well as harmonics) 
which is the shedding frequency. However, except in a 
small Reynolds number range, the fluctuation has random 
irregularities "superimposed" on i t ;  that is, i t  is not purely 
periodic, in the mathematical sense. However, it is con- 
venient to speak of the "periodic" and "random" or turbu- 
lent parts of the f lu~tuat ion.~ The energy may be written 

- 
E= J-mm(2Y 0 (1) 

Tlre velocity fluctuation in the wake of a shedding cylinder 

where 7 is that portion of the e s r g y  contributed by tlre 
random (turbulent) fluctuation, u12 is contributed by the 

For r=0, equations (4) and (7) give 

R , ( o ) = ~ ~ F ( ~ )  dn=l 

where F(n) is defined as the energy sp9ctrum; that is, F(n) 
dn is the fraction of the energy in the frequency interval n 
to n+dn. It is the fraction of energy "per unit frequency," 
as contrasted with the discrete energy spectrum discussed in 
the section "Energy." 

In  studies of isotropic turbulence, a t  Reynolds numbers 
corresponding to those in the present experiments, i t  is 
found that t-he energy spectrum is well represented by the 
form 

sides and nz is prominent there, a t  least near the "beginning1' 
of the wake. Higher harmonics are found to be negligible.) 

Equation (2) is a kind of spectral resolution, in which 2 
and E2 are the energies a t  the specific frequencies nl and n2. 
This type of resolution is called a discrete, or line, spectrum. 
But  is not a discrete spectral component, for i t  is the 
energy in the turbulent part of the fluctuation and contains 
"all" frequencies. It has a continuous frequency distribu- 
tion of energy, for which a slightly different definition of 
spectrum is appropriate. This is postponed until the follow- 

periodic fluctuation a t  the shedding frequency n ~ ,  and 2 
corresponds to twice the shedding frequency n2=2n1. (The 
center of the wake feels the influence of vortices from both 

ing section. 
Corresponding to equation (2), an equation may be writ- 

ten for the wake energy E and its turbulent and periodic 

or, what amounts to Be same iling, that the correlation 
function is of the form 

components: 
E=E,+E1+Ez (3) 

Of particular interest will be the fraction of discrete energy 
(El+E2)/E a t  various stages of wake development. 

CORRELATION FUNCTIONS: SPECTRUM 

Definitions.-The time correlation function of the fluctu- 
ation u(t) is defined by 

where 7 is a time interval. The time scale is then defined 

The Fourier transform of Rt defines another funct,ion 

F ( n ) = 4 l m R 1 ( ~ )  cos 2 rn idr  (6) 

Then, also 

R , ( T ) = L ~ F ( ~ )  cos 2 ~ ' n ~ d ~  (7) 

A turbulent fluctuation is an irregular variation, with respect to time, which is charae- 
terized in particular by its randomness and absence of periodicity (cf. ref. 13, p. 9). 

If the normalizing factor K= U,/L is used in equation (lo), 
L being a characberistic length, then equation (6) gives 

which may be conveniently written in terms of the dimen- 
sionless parameters 

cp= UoF(n) IL (12%) 
and 

Then 

I t  is clear from equations (5) and (10) that L is a length 
scale related to the time scale by 

Equation (I lb)  is used as a convenient reference curve to 
compare the measurements reported below. 

Periodic functions.-The energy spectrum F(n) is par- 
ticularly well suited to turbulent fluctuations, for which 
the energy is continuously distributed over the fre- 
quencies. For periodic fluctuations the discrete, or line, 
spectrum is more appropriate, but in the present "mixed" 
case it is convenient to write the discrete energy, also, in 
terms of F(n). This may be done by using the Dirac delta 
function 6(n). Thus the energy a t  the shedding frequency 
nl  is 

Then the mixed turbulent-periodic fluctuations in the wake of 
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a shedding cylinder are considered to have an energy spzc- 
trum which is made up of continuous and discrete parts 
(cf. eq. (2) and appendix A) : 

?LaF(n) dn=?LmF, (n) dn+aLmF1(n)  dn+ 

2 l m ~ ? ( n )  iln (16) 

t,hat is. 

Space correlation function; phase relations.-The cor- 
relation function defined in equation (4) clescribes the time 
correlation. Another correlation function which is useful in 
the present study is one which relates the velocity fluctua- 
tions a t  two points in the wake, situated on a line parallel 
to the cylinder. This is defined by 

where { is the distance between the two points. The corre- 
sponding scale is 

The function R, should be particularly suited to studying 
turbulent development. Close to the cylinder i t  should 
reflect the regularity connected with the periodic shedding, 
especially in a regular, stable vortex street, in which there 
are no turbulent fluctuations. When there are turbulent 
fluctuations and, especially, far downstream where there is 
no more evidence of periodicity, R, should be typical of a 
turbulent fluid; that is, the correlation should be small for 
large values of {. 

The function R, may be obtained by standard techniques 
applied to the two signals u(z,t) and u(z+{,t). One well- 
known visual method is to apply the signals to the vertical 
and horizontal plates, respectively, of an oscilloscope and to 
observe the resulting "correlation figures" (or ellipses) on 
the screen (ref. 16). If the signals u(t) are turbulent fluctua- 
tions, then the light spot moves irregularly on the screen, 
forming a light patch which is elliptic in shape. The correla- 
tion function is given by 

DISTRIBUTION FUNCTIONS 

Random functions.-The probability density p (4) of 
a ranclom function u,(t) is defined as the probability of 
finding u, in the interval (t,t+d<). It may be found by 
taking the average of observations made on a large number 
(ensemble) of samples of u,(t), all these observations being 
made a t  the same time t .  This is called an ensemble aver- 
age. If u,(t) is a stationary process, as in the present case, 
then appeal is made to the ergoclic hypothesis and the en- 
semble average is replaced by the time average, obtained by 
making a large number of observations on a single sample 
of u,(t). The probability density p(4) is the number of 
times that u, is found in (t,<+d[) divided by the total num- 
ber of observations made. In  practice, time averages are 
more convenient than ensemble averages. The averaging 
time T, must bc large enough so that a statistically significant 
number of observations are made. This imposes no hard- 
ship; i t  is sufficient that T, be large compared with the time 
scale T. If necessary, the error can be computed. 

Experimentally, p(l) may be determined by the principle 
illustrated below : 

where a and b are the major ancl minor axes of the ellipse. 
If u(z,t) is a periodic function, in both time and space, 

then the correlation figure is an elliptical loop (Lissajous 
figure) whose major and minor axes again give R, according 
to equation (20). Such a case would exist if the wake had 
a spanwise periodic structure. Then 112,({) would be periodic. 
A special case of this is R,(f)=l,  as would be expected in a 
vortex street, provided the vortex filaments are straight and 
parallel to the cylinder and do not 'Lwobble." 

Sketch 1. 

The most elementary application of this principle is a graphi- 
cal one using a photographic trace of u,(t). More conven- 
iently, electronic counting apparatus is employed (see the 
section "Statistical Analyzer"). 

The statistics of u,(t) are usually described in terms of 
the moments of p([) and certain functions clerivecl from the 
moments. The moment of order k is defined as 

Another useful clefinition is 

where NL is equal to iM, for even values of k. If p({) is 
symmetrical, then MI, is 0 for odd values of k but  N, is not. 

From the definition of p ( f l  i t  follows that ~,=f-: p(Q 4= 
1;  < will be normalized by requiring that M2=1/2, that 
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Skewness nl; ,,=- 
hf2312 

- 
I,. I I t ( %  rnc>nn-square value u,L= 112. 

'1'ln.c~ useful functions derived from tlre moments arc 

AT21/2 &f2112 c= ------ = -- 
N1 NI (25) 

wave result in a large incrcasc in the ltigl~cr moments. I t  
is intcrcstirlg to stutly tllc rclatioll between probability 
functions ant1 spct-tra, particularly the case wlicrc most of tlle 

The probability dcrlsity of a function which is 1):11.t I \ 
perioclic ancl partly random is cxpcctctl to clisplaj 
transition from o~rc  type to the other Tlle tendency toxvm.tl 
tlre random probability tlcnsit,y slroultl be strong. For 
instance, mndom fliictr~atiolrs in tlrc amplitode of a sirlr 

A44 Flatness a=- 34; (27) 

Periodic functions.-The above dcfilritious may be ex- 
teniied to thc case of a periodic f~mction ul(t). Tllc 
probability density can be completely (lctcl.mi1lctl froln .? 

single wave lcngtll of ul(t) ; that  IS, i t  IS sufficicllt to take T, 
equal to the period. Tllis complctc a 1)rior.i information is 
a basic difl'erencc betwccn pcrioclica ant1 r.a~rtlom f ~ ~ ~ l c t t o u s  I 

If u, ( t )  is measurctl cxperimentallj- then t ,  ([) in eclriatiorr 
(21) can also be measured. If ul(t) is given in analytic 
form then t , ( [ )  may be calculated from eqliatiolr (22). 'I'li~ls 
the tlistribution dcnsitics for sirnplc \t7avc sllapcs arc casily 
calculated. Table I gives the probability ticrlsities arid 
mom(Tkts for tllc triangular Wave, sill(' WaV?, alld Stlllel'c 
wave. Also included is tltc Gaussian pro1)abilitj- dc11sitj-, 
which is a standa1.d reference for randorn functiorls 

The moments of tllc probabilitj- dcnsitics of tlicsc wave 
shapes are sllown in figure 2. Tllc mornerlts for the randorn 
function increase much faster than tllosc for the periodic 
functions. This results from tllc fact that the lnaxirllllln 
values of a periodic function arc fixed by its amplitutlc, wllile 
for a random function d l  va111cs are possible. 

0 2 4 6 8 10 12 
k 

FIGURE 2.-4111pllt1tdc d l s ~ ~ i b l t t l o t ~  I I I O I I ~ C I ~ ~ S .  
-- 

4 FOI a pe~iodic lunrtion the clfodtc piiilcil)lc m.lr not bc in\olrd, thc rn~rmhlr n\rt- 
age and the time average ale not thc ~JII IP  (UIIICFS the n~cmhris of the rnyrmhlc ha\? rnndonl 
phase d11Tzienct's) It 15 Lhc iimc .i\rtdpc that 15 computed hcrc, fol c o m l ~ a ~ i - o ~ ~  with the 
expellmental re\ults, n hich a10 JISO time J\CLA:CS 

energy is discrete 1)ut the fluctuation arnplitude is 1.andom. 

EXPERIMENTAL DATA 

WIND TUNNEL 

Tlrc cspc~imcnts nrerc all rnntlc in tllc GATJCIT 20- by 
20-incl1 lo~t7-t,lrbulcIlt.e trlrlllel (fig, 1). ~ 1 , ~  turbulence level 
is about 0,03 rplle ,Trin(l vciocity lnar be varied 
from abollt cellti,llctcrs secon(l rnilc per l,o,lr) to 
1,200 centimeters per secolrtl (25 rniles per liour). 

CYLINDERS 

Tlle cj-linders used in the experiments varied in diameter 
from 0.0235 to 0.635 centimeter. hIusic \vire or clrill 
7,s used. TIle (iiarnetc>r tolerances are about 0.0002 cellti- 
meter, The tylintlers spannctl tho tunnel so that  the lengtll 
in all cases was 50 celltimeters (20 incllcs); tllr cJ-lincicrs 
passed tltronglt the 11-alls and were fastc~recl or~tsidc the 
tunnel. 

RINGS 

Sonle stut{ics rlln(lc of tllc flow bcllinil rillgs. Tllcsc 
\\,ere up of wire, Earll ring was sul l l~or tc t~  in tlrc 
tullnel by tllrec tllill slll~l,~l.t \virCS, attncollcil to tlrc riIlp 
circumference at 120' irrt crvals. Table I1 gives tlie tlimcn- 
siorrs of tllc rings usctl (wl~crc (1 is the wire tliamctcr, I?, the 
ring diameter, ant1 tl,, the tliarneter of tllc suppo~.t ~virc). 

VELOCITY MEASUREMENTS 

Velocities liiglicr than about 400 centimeters per scconcl 
wcrc rncasmctl \\-it11 a pitot tube, calibratctl against a 
standard. Tltc pressures \yere read on n precision manom- 
eter to an  accuracy of about 0.002 centimeter of alcohol. 
Velocities lower than 400 centimeters per second were 
determined from tlre sl~eilding frequency of a reference 
cylinder (0.635 centimeter), as esplainecl in the section "Use 
of Shedding Frequencj- for Velocitj- hIeasurements." 

Fluctuating velocities \+-ere nreasurcd \t~itll a hot-wire 
anemometer (1120 mil platinum). Onlj- u(t), the fluctuating 
velocit-\-. in the flow direction, has been measurecl so far. 
Tile hot-wire was always parallel to the cylinder. 

TRAVERSING MECHANISM 

The hot-\\.ire \\-as rnolilrted on a micrometer llcad \vliicli 
allowed it to be traversed normal to tllc walic arrtl positionetl 
to 0 001 centimeter. Tlle 11eacl was mounted on a llorizolltal 
lead screw r;~-llich allowcii tra~rersing in the flov- ilircction, ill 
the center plalle of tllc tunnel. 7'hc positioning in this 
direction was accurate to about 0.01 ccntimctcr. The llori- 
~ 0 n f  a1 lead Screw collltl be t ~ r n e d  tllrotlgll 90' to allow 
traversing parallel to the cj-linclcr, for correlation or pllasc 
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measurements (see the section "Space correlation function; 
phase relations"). For this purpose, a second micrometer 
head with hot-wire could be set up in a fixed position along 
the line of traverse of the first hot-wire. Then correlations 
could be measured between this point and the movable one. 

ELECTRONIC EQUIPMENT 

The hot-wire output was amplified by an amplifier pro- 
vided with compensation up to 10,000 cycles per second. 
The amplifier output could be observed on an oscilloscope 
screen or measured on a Hewlett-Paclrard Model 400c vac- 
uum-tube voltmeter. Values of 2 were obtained by reading 
the root-mean-square voltage on the voltmeter. (This 
voltmeter is actually an average-reading meter; i t  reads 
true root-mean-square values only for a sine wave. A few 
of the indicated root-mean-square values, for turbulent 
velocity fluctuations, were checked against true root-mean- 
square values as obtained from the statistical analyzer (see 
the section "Statistical Analyzer"); these may differ up to 
10 percent, depending on the wave shape, but, a t  present, 
no corrections have been made, since the absolute values 
were not of prime interest.) Usually only relative values of 
2 were required, but absolute values could be determined 
by comparing the voltage with that obtained by placing the 
hot-wire behind a calibrated grid. 

The frequencies of periodic fluctuations were determined 
by observing Lissajous figures on the oscilloscope; that is, 
the amplifier output was placed on one set of plates and a 
known frequency on the other. This reference frequency 
was taken from a Hewlett-Packard Model 202B audio oscil- 
lator, which supplied a frequency within 2 percent of that 
indicated on the dial. 

FREQUENCY ANALYZER 

Spectra were measured on a Hewlett-Packard Model 300A 
harmonic wave analyzer. This analyzer has an adjustable 
band width from 30 to 145 cycles per second (defined in 
appendix A) and a frequency range from 0 to 16,000 cycles. 
The output was computed directly from readings of the volt- 
meter on the analyzer. I t  was not felt practicable to read 
output in the frequency range below 40 cycles; therefore, 
the continuous spec,trum was extrapolated to zero frequency. 

To determine the discrete spectrum in the presence of a 
continuous background some care was required. I n  such 
cases the analyzer reading gives the sum of the discrete 
spectral energy and a portion of that in the continuous 
spectrum, the proportions being determined by the response 
characteristic of the wave analyzer. The value in the con- 
tinuous part was determined by interpolation between bands 
adjacent to the discrete band and subtracted out to give 
the discrete value, as outlined in more detail in appendix A. 

STATISTICAL ANALYZER 

The statistical analyzer, designed to obtain probability 
functions, operates on the principle described in the section 

"Distribution Functions;" here u(t) is a voltage signal. A 
pulse train (fig. 3) is modulated by u(t) and is then fed into 
a discriminator which "fires" only when the input pulses 
exceed a certain bias setting, that is, only when u(t)>5. 
For each such input pulse the discriminator output is a pulse 
of constant amplitude. The pulses from the discrinimator 
are counted by a series of electronic decade counters termi- 
nating in a mechanical counter. 

The complete analyzer consists of 10 such discriminator- 
counter cllannels, each adjusted to count above a different 
value of 5. I t  will be seen that the probability function 
obtained is the integral of the probability density described 
in the section "Distribution Functions;" that is, 

P(() =Probability that u(t)> 5 

It is possible tao rewrite the moments (see the section "Dis- 
tribution Functions") in terms of p ( 0 ,  a more convenient 
form for calculation with this analyzer. These are also 
shown in table I. 

I 
Turbulence signof 

Pulse generotor output 

Modulator output 

Discriminator output to counter 

FIGURE 3.wRepresentative signal sequence for statistical analyzer. 
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\ I I , I I .  1 . , , 1 1 1 1 ) l ~ ~ t t ~  tlctails of the analyzer and computation 
1 1 1 ,  1 1 1 c t 1 1 -  11111,1 found in references 17 and 18. 

RESULTS 

SHEDDING FREQUENCY 

\ I I I ( Y .  St ~.oi~hal's first measurements in 1878 (ref. 1) the 
I , - 1 1 ,  I l c r l t  I)c~t\vrcn tllc shedding frequency and the velocity 
I l r t ,  I ) c ~ c ~ r r  of intcrcst to many investigators. Rayleigh (ref. 
, I I :i) pointed out that the parameter nld/LTo (now called 
r 1 1 1 5  St roulltll number S) sllould be a function of the Re-molds 
I I .  Since then there have been many measurements of 
I 111s ~ . ( ' l t b t  io~~sllip (ref. 19, p. 570). One of the latest of these 
1, I I I ( L  rnc~asurement by Kovasznay (ref. 11),  whose determina- 
I 1011 of S(R)  covers the range of R from 0 to lo4. Kovasznay 
r~lw nrade detailed investigations of the vortex-street flow 
1):lttcrn a t  low Reynolds numbers. He observed that the 
5t1.rc.t is developed only at  Reynolds numbers above 40 and 
t l l n t  it is stable and regular only a t  Reynolds numbers 
bc~low about 160. 

The present measurements of S(R) are given in figures 4 and 
5 .  Except a t  Reynolds numbers between 150 and 300, the 

scatter is small, and the measurements agree with those of 
Kovasznay. The large number of cylinder sizes used results 
in overlapping ranges of velocity and frequency so that 
errors in their measurement should be "smeared" out. I t  
is believed that the best-fit line is accurate to 1 perc,ent. 

The measurements are corrected for tunnel bloc,l<age, but 
no attempt is made to account for end effects. With the 
cylinder sizes used no systematic variations were detected. 

NATURE OF VELOCITY FLUCTUATIONS 

I t  was observed, as in Kovasznay's work, that a stable, 
regular vortex street is obtained only in the Reynolds number 
range from about 40 to 150. The velocity fluctuations in 
this range, as detected by a hot-wire, are shown on tlie 
oscillograms in figure 6 ,  for a Reynolds number of 80. These 
were taken a t  two downstream positions, x/d=6 and 48, and 
at several values of y/d.  (The relative amplitudes are 
correct a t  each value of xld, but the oscillograms for r/d=48 
are to a larger scale than those for x/d=6.) The frequencies 
and amplitudes are quite steady; it is quite easy to determine 
tlle frequencies from Lissajous figures (see tlie section 
"Electronic Equipment"), which, of course, are also steady 

FIGURE 4.-Strouhal number against Reynolds ~ltttnbcr for circular cylinder. 
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Reynolds number, R 

FIGURE 5.-Strouhal number against Reynolds number for circular cylinder. 

(a) x/d= 6. 
(b) x/d=48, 

FIGURE 6.-Oscillograms for R= 80 and d= 0.158 centimeter. 
323328-55----2 
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(a) R = 145 

FIGURE 7.-Simultaneous oscillograms. d= 0.158 centimeter; z/d= 6; yld = 1 ; l /d= 50. 

Another example, a t  R= 145, is shown in figure 7(a). 
(The double signal was obtained for correlation studies and 
is referred to later in the section "Spanwise Correlation and 
Phase Measurements." The dotted nature of the trace is 
due to the method of obtaining two signals on one screen, 
using an electronic switch.) 

At Reynolds numbers between about 150 and 300 there 
are irregular bursts in the signal. An example is shown in 
figure 7 (b), a t  R=180 and x/d=6. The bursts and irregu- 
larities become more violent as R increases. I t  is rather 
difficult to determine the frequency. The Lissajous figure 
is unsteady because of the irregularity, but, in addition, the 
frequency, as well as i t  can be determined, varies a little. 
This is the reason for the scatter in this Reynolds number 
range. Two separate plots of S(R) obtained in two different 
runs are shown in figure 8. They illustrate the erratic 
behavior of S(R) in this range. 

At Reynolds numbers above 300, signals like that in figure 
7 (c) were obtained (near the beginning of the wake). This 
is typical of the velocity fluctuations up to the highest value 
of R investigated (about 10,000). There are irregularities, 
but the predominant (shedding) frequency is easy to deter- 
mine from a Lissajous figure. The Lissajous figure in this 
case is not a steady loop, as i t  is a t  R=40 to 150, but neither 

is it so capricious as that a t  R= 150 to 300, and the matching 
frequency is quite easily distinguished from the nearby 
frequencies. 

At x/d=48, in this range, all traces of the periodicity have 
disappeared and the fluctuations are typically turbulent. 

R R 

(a) d=0.0362 centimeter. 
(b) d=0.318 centimeter. 

FIGURE 8.-Plot of S ( R )  for two single runs. 
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REGULAR AND IRREGULAR VORTEX STREETS 

The above observations show that there are three charac- 
teristic Reynolds number ranges, within the lower end of the 
shedding range. These will be called as follotvs: 

Stable range 40<R< 150 
Transition range 150< R<300 
Irregular range 300<R< 10,000f 

As noted above, the actual limits of these ranges are somewhat 
in doubt and may depend on configuration, free-stream tur- 
bulence, and so forth. Also the upper limit of the irregular 
range is undoubtedly higher than 10,000. (Periodic fluctua- 
tions in the wake have been observed up to the critical 
Reynolds number, about 200,000, but the present measure- 
ments did not extend beyond 10,000.) 

In  addition to the differences in the nature of the velocity 
fluctuations, the ranges are characterized by the behavior of 
the Strouhal number: I n  the stable range S(R) is rapidly 
rising, in the irregular range i t  is essentially constant, and 
in the transition range it is "unstable." 

It will be seen in the further results presented below that 
all phases of the wake development are different in the two 
ranges, stable and irregular, and that they are indeed two 
different regimes of periodic wake phenomena. 

RELATION OF SHEDDING FREQUENCY TO DRAG 

The relation between the Strouhal number S(R) and the 
drag coefficient CD(R) has often been noted (ref. 19, p. 421). 
Roughly, rising values of S(R) are accompanied by falling 
values of CD(R) and vice versa. 

The relation to the form drag is even more interesting. The 
t,otal drag of a cylinder is the sum of two contributions: The 
skin friction and the normal pressure. At Reynolds numbers 
in the shedding range the skin-friction drag is "dissipated" 
mainly in the cylinder boundary layer, while the pressure 
drag (or form drag) is dissipated in the wake. It may, 
then, be more significant to relate the shedding frequency 
to the form drag, both of which are separation phenomena. 
The R-dependence of the pressure drag coefficient CDp, 
taken from reference 19, page 425, is shown in figure 5 .  It 
has several interesting features: 

(a) CD, is practically constant, a t  the value CD,= 1. 
(b) The minimum point A is a t  a value of R close to that 

a t  which vortex shedding starts. 
(c) The maximum point B is in the transition range. 
(d) In the irregular range CDp(R) is almost a "mirror re- 

flection" of S(R) . 
Since the drag coefficient is an "integrated" phenomenon, 

it is not expected to display so sharply detailed a dependence 
on R as does the Strouhal number, but these analogous varia- 
tions are believed to be closely related to the position of the 
boundary-layer separation point, to which both the shedding 
frequency and the pressure drag are quite sensitive. 

USE OF SHEDDING FREQUENCY FOR VELOCITY MEASUREMENTS 

The remarkable dependence of the shedding frequency on 
the velocity and the possibilit,~~ of accurately measuring S(R) 

make it possible to determine flow velocities from frequency 
measurements in the wake of a cylinder immersed in the flow. 
At normal velocities the accuracy is as good as that obtain- 
able with a conventional manometer, while a t  velocities 
below about 400 centimeters per second it is much better. 
(For instance, a t  a velocity of 50 centimeters per second the 
manometer reading is only about 0.001 centimeter of alco- 
hol.) In  fact, in determining S(R) in the present experi- 
ments, this method was used to measure the low velocities by 
measuring the shedding frequency a t  a second reference cyl- 
inder of large diameter. The self-consistency of this method 
and the agreement with Kovasznay's results are shown in 
figure 4. 

For velocity measurements it is convenient to plot the 
frequency-velocity relation in terms of the dimensionless 
parameter F (see the section "Shedding Frequency") as has 
been done in figures 9 and 10. The points on these plots 
were taken from the best-fit line in figure 4. They are well 
fitted by straight lines 

(la) F=0.212R--4.5 50<R<150 
(lb) F=0.212R--2.7 300<R<2,000 

which correspond to 

(2a) 8 ~ 0 . 2 1 2  (1-21.2/R) 50<R<150 
(2b) S=0.212 (1- 12.7/R) 300<R<2,000 

Line (2b) has been plotted in figure 4 to compare with what 
is considered the best-fit line. The agreement is better than 
1 percent. If line (2b) is extended up to R= 10,000, the maxi- 
mum error. relative to the best-fit line, is 4 percent. 

30 

25 

20 

5 
=22 

2 I5 
k 

10 

5 

0 20 40 60 80 100 120 140 
R=U,d/v 

FIGURE 9.-Plot of F itgrti~lst R (50<R<140). ~ = 0 . 2 1 2 ~ - 4 . 5 .  
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The plot of F(R) is used as follours: The shedding frequency 
is observed and F=n1d2/v is calculated (V is easily determined) ; 
R is found on the F(R) plot and the velocity is calculated 
from R= U ,~ /V .  

WAKE ENERGY 

From the velocity t.1-aces on the oscilloscope (figs. 6 and 7) 
i t  is clear that in the regular range the fluctuating velocity 
u(t) is purely periodic, while in the irregular range some of 
the fluctuations are random. This difference is illustrated 
in figure 11 which shows the distribution of energy intensity 
(u/U,)~ across the wake a t  two Reynolds numbers, one in the 
regular range, a t  R=150, and one in the irregular range, a t  
R=500. Only half the wake is shown for each case; the one 
a t  R= 150 is plotted on the left side of the figure and the one 
for R=500 on the right. 

The total energy intensity (u/Zi,)? a t  each point was de- 
termined directly from the reading on the root-mean-square 
voltmeter (see the section "Electronic Equipment"). The 
components a t  the frequencies n, and nz were determined 
by passing the signal through the wave analyzer. The curves 
in each half of fiiure 11 satisfy the equalities 

-- 
The values of (u/U,)', (u,/U,)', and (u2/Uo)? were obtained 
by measurement (and a t  R=150 are self-consistent) whilc 
(u,/U,)* was obtained by difference. The absolute values in- 
dicated are somwhat in doubt since the vacuum-tube volt- 
meter is not a true root-mean-square meter but are believed 
accurate to about 10 percent. 

The particular feature ill~istrated in figure 11 (already ob- 
vious from the oscillographs) is the absence of turbulent 
energy a t  R= 150 as contrasted with the early appearance of 
turbulent energy a t  R=500. This contrast is typical of the 
regular and irregular ranges. 

The measurements shown were made at 6 diameters down- 
stream, but the same features exist closer to the cylinder. 

(a) R= 150. 
(b) R=500. 

FIGURE 11.-Wake energy. d=O.190 centimeter; x/rl=(i. 

DOWNSTREAM WAKE DEVELOPMENT 

The downstream development for the case of figrt~.ca I I 
(but R=500 only) is shown in figure 12. The distrihulioir of 
total energy intensity (U/U,)~ is shown on the left of t 111t 

figure and the discrete energy in tensity (U,/U,)~, a t  tllo HI I 1'4 I 
ding frequency, is shown on the right. Travcrscbs 1% c t r  c t  

made a t  6, 12, 24, and 48 diameters downstrcaln ' I ' I I I ~  
discrete energy decays quite rapidly and is no longer I r r c L r l s t l t  

able a t  48 diameters. (Note that the plot of (u,/li,,)' I I I  2 I 
diameters is shown magnified 10 times, for clarity.) A plot 4,f 
( u ~ / U , ) ~  has not been included since it can no lo~lgc I I t ( ,  

measured a t  even 12 diameters. The distribution of (71 , I  1 , I 

may be obtained from these curves by difference. 
Figure 13 presents the downstream wake develol)rr~c~rrt I I I  

another way. The wake energy E was calculated by i 1 1 t c 8 ~ 1  ,I 

tion of curves like those in figure 12 (cf. the sec t io~~ " I C t t  
ergy") ; that is, 

Figure 13 is a plot of the energy ratio (El-+ EZ)/E, t lra~ ~ h ,  I l i t .  

ratio of the discrete energy relative to the total cncarg> 
I n  the irregular range the energies were comptl t t.11 t r  I I It la 

way a t  R=500 and 4,000 (two cylinder sizes in cv tc -11  c.trtat.i 

and R=2,900 (one cylinder). Figure 13 shows t l r t ~ t   lit* 
decay in all these cases is similar and the wake is c.orr1ltl1~tr4\ 
turbulent a t  40 to 50 diameters. 

The value of x/d for which E,/E becomes zero \ t ~ t s  I I I % I I ~ ~  
mined for a variety of cylinders, varying in sizes ft.0111 I I I ~  

to 1.3 centimeters and a t  Reynolds numbers fl.0111 ~ U ( I  ( 4 s  

10,000. The value was found to lie between 40 r ~ r l t l  50 $11 1111 
cases but closer to 40. A precise determination I. t l ~ l l t t ~ i i l ~  

(and not important) because of the asymptotic tr l)ltr.oric~li c t b  

&/E to zero (E? is already zero a t  less than 12 t l i r ~ r r r c ~ t c ~ l ~ i  

I n  contrastwith this, the stable range (R=50 ; r r ~ c l  loo t l r  

fig. 13) hzs no devel~pment of turbulence beforc 50 ~ l t r ~ r t l ~ ~ t ( ~ ~ a i  

The plots for R= 150 and 200 illustrate the rat1it.r spt.ctt r t c ~ l t l r i r  

transition from the stable range to the irregular 
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(a) Total energy intensizy ( u / U , ) ~ .  
(b) Discrete energy intensity (u1/U,)2. 

Curve for x/d=24 magnified 10 times for clarity. 

FIGURE 12.-Wake development. d=0.190 centimeter; R=500. 

Downstream distance, diam 

FIGURE 13.-Decay of discrete energy. 

For R=5O and 100 the energy ratio remained constant a t  
unity up to x/d=100. Beyond that the energy intensity 
is so low that the tunnel turbulence cannot be neglected. 

MEASUREMENTS OF SPECTRUM 

Figure 14 shows spectrum measurements a t  6, 12, 24, and 
48 diameters downstream at a Reynolds number of 500, 
in the irregular range. The lateral position y /d  chosen for 
the measurement a t  each x/d is the one for wliich (U,/U,)~ is a 
maximum (cf. fig. 12). The method of plotting is as follows. 
The curve through the experimental points is the continuous 
spectrum F,(n). plotted in normalizecl coordinates. The 
discrete energies F, = 6(n-n,) and Fz = 6(n- n2) are idicated 
by narrow "bands" which should have zero widh  ?-(I i7finite 
height but are left "open" in the fi;u,.c. Tic relative 
energies represented by the areas cn6.c; .iic co- inuos s. curve 
and under the delta functions, r e s - ~ ~ ' i ~ - l ~ I ~ -  f,:c narketl in - -- 
the figure with values of u,2/u2 and ul-/ u', UZ-/uL. 

--- Reference curve tp = 4 
1 + (2*a2 

FIGURE 14.-Downstream development of spectrum. d = 0.190 
centimeter; R= 500; nl=440. 

To normalize the continuous spectrum the dimensionless 
Uo L parameters p=- F,(n) and q=- n are used. In  each case L Uo 

the curve p= is included for reference. The nor- 
1+ (2rrrl)2 

malizing coeffic~ent L was determined as follows: 
(a) Fr(0) was found by extrapolation of the measured 

values to n=O. 
(b) F,(O) and the other values of F,Cn) were normalized 

to make ,fF(n)dn= 1. 
Uo (c) L was found from - F:(O) =4. L. 

In  short, the measured curve and the reference curve were 
made to agree in Q,(0) and in area. This requirement deter- 
mines L. 

I n  these coordinates the shedding frequency shows an ap- 
parent increase downstream; this is because the normalizing 
parameter L increases. For x/d=48 the sheclding frecluency 
(i. e , n,) is marked with a dash; it contains no discrete energy 
a t  this value of xld. 

The "bumps" in the continuous spectrum, near nl and 
n?, indicate a feeding of energy from the discrete to the 
continuous spectrum. The portion of the spectrum near 
n=O, which is established early and which contains a large 
part of the turbulent energy, seems to be unrelated to the 
shedding frequency (cf. fig. 15). As the wake develops the 
energy in the bumps is rapidly redistributed (part of i t  



--- Reference curve y, = 
I + (2r7)' 

FIGURE 15.-Downstream developr~le~lt of spectrum. d=0.953 
centimeter; R=4,000; nl= 144. 

decays) to smooth the spectrum, which, in the fully cle- 
veloped turbulent wake a t  48 diameters, tends toward the 

4 characteristic curve v=-----~. 
1 + ( 2 7 4  

I n  figure 16 the spectrum for x/d= 12 and y/d=0.8 is 
plotted together with the one a t  y/d=O. The curves are sim- 
ilar a t  low frequencies (large eddies) and a t  high frequencies; 
they differ only in the neighborhood of the discrete band. 
(The slight discrepancy between this figure and fig. 14 is 
due to the fact that they were measured a t  two different 
times, when the kinematic viscosity v differed. This re- 
sulted in different values of nl a t  the same R.) 

A similar downstream development is shown in figure 15 
forR=4,000. Here thespectrumatx/d=6issmoother than 
that in the previous example (fig. 14). This effect may be 
due not so much to the higher Reynolds number as to the 
fact that the shedding frequency is closer to the low frequen- 
cies; that is, the shedding frequency is "embedded" in the 
low-frequency turbulent band. I t  seems to result, a t  48 
diameters, in a much closer approach to the reference curve. 

Figure 17 shows the spectra a t  48 diameters for ?hree 
cylinders and several values of yld. It is remarkable that 
R=4,000, d=0.477 centimeter agrees better with R=500, 
d=O.190 centimeter than with R=4,000, d=0.953 centi- 
meter. This seems to bear out the above remark about the 
relative influence of IZ and n,, for the respective shedding 
frequencies are 565, 440, and 144. 

FIGURE 16.-Spectra at 12 diameters. d=0.190 ( . C ~ I I (  I I I I ~ , I  I I 11' ' ) I ~ I I  

nl=430. 

Finally it may bc noted that values of 16,", \\1111.11 111 1 1 1 ~ 1 1 1 t  

11 were obtained by difference, check wcll 1% it 11 I 1 1 1 6  \ J I ~ I J ,  

computed from z= ~ ~ , ( n ) d n  (before 1101.1111111~11( I O I J  t t f  

Fr(n)). 
Spectra for the regular range are not ~~rc~sc~rli~~ll  I 11 ,  \ 

are simple discrete spectra. 

SPANWISE CORRELATION AND PHASE MEAHIIItIa:M &:h 1 :. 

The function K, was not measured, but t11(. I I I I L I I I  11 I I I I I I ~  

of the spanwise correlation5 are illustrat~cl 111 figlit I- ; 11111~1 I * 
Figure 7 shows three examples, in rnc.11 of \ \ I I I I  1 1  . I I I I ~ I ~ I P  

neous signals were obtained from t w o  ]lot-\\ I I I ~ .  111 r .i I ,  

and y/d= 1 and separated by 50 dianictl~tr\ \ l l i i r t \ \  I .t ' I  lit 
two signals were obtalned simultaneotlsl 011 I 1 1 1 s  (I,, 1 1 1 0  $ 4  

screen by means of an electronic su-itc.11 '1'111, 11, I I ~ I I I ~ I  4 f r e t  

the dotted trares. 
At R=145 (fig. 7 (a)) the correlat~oii IS 1 ) c ' r  TI . (  I 1 ~ 1 1 1  t l u  r t  

is a phase shift. At R=180 (fig. 'i ( I ) ) )  1111, I I I I  1 1  l l t c l ~ t ~ t  $ 4  

still good, hut the individual sig11:~ls ~ I . I . I I \ I I I I I I I ~ ~ \  Jtit~ik 

- 
In thc remainder Of this section a distinction is 111nrlv l i t , l  uvvlt I In 1 3  z r r t  ' ,  ~ s t B ,  i a a - . b .  

function" and "correlation." ?'he former refers to thv 11111~111111 ~ 1 1 . 1 1 1 1 ~ ~ 1  1 1 ~  i t i i  _+ 

"Space correlation function; pllase relations," whilc: Lhn L i t 1 t . r  I. #I.I.#I 1 4 1  , I.P..~.. . l . - , . i l  

tive sensc. 
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FIGURE 17.-Spectra a t  48 diameters. 

4.0 

3.5 

3.0 

2.5 

'P 

2.0 

1.5 

Figure 18 sllows the correlation figures obtained by plac- 
ing the signals of the two hot-wires on the horizontal and 
vertical plates, respectively, of the oscilloscope. 

For N=80 and {/d=100 a steady Lissajous figure is 
obtained, sliowing that the periodic fluctuations a t  the two 
points (100 diameters apart) are perfectly correlated (but 
they are not in phase). 

For R=220 and 500 there is good correlation only a t  small 
values of {Id, that is, only when the two hot-wires are in the 
same "eddy," so to spealr. For R=500 the figures are 
s imil~r  to those obtained in fully developed turbulence. 

In obtaining these correlations a remarkable phenomenon 
was observed. Tbe stable vortex street (i. e., R<150) has 
a perioclic spanwise structure. This was shown by the phase 
shifts on the Lissajous figure, as the movable hot-wire was 
traversed ~ara l l e l  to the cylinder. From the phase coinci- 
clences observed, the wave length parallel to the cylinder 
was about 18 diameters a t  a Reynolds number of 80. I t  has 
not been determined whether this periodicity structure is 
due to a "waviness" in the vortex filaments or whether the 
vortex filaments are straight but inclined to the cylinder 
axis. \ 

STATISTICAL MEASUREMENTS 

A few amplitude distribution functions were measured 
and are slsown in figure 19. One measurement is in the 
stable range; the other shows downstream development in 
the irregular range. 
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FIGURE 19.-Distribution functions. d=O.190 centimeter. 

Tlrc tablc in figure 19 shows values of c and a computed 
from these curves. The behavior, of course, is as expected, 

(dl R =500; (el R =  500; ( f )  R =  500, 
S/d = 3. </d = 10. </d = 105. 
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FIGURE 18.-Correlation figures. d=0.158 centimeter; x/d= 6; y/d= 1; 
exposure, f / z  second. 
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down. The breakdowns are uncorrelated a t  this distance of 
50 diameters. At R=500 (fig. 7 (c)) each signal still shows 
a predominant frequency. There is some variation in phase 
between the two signals. The amplitude irregularities 
appear to be uneorrelated. . 

but the numerical values are of some interest. These values 
(and the curves) show that a t  R=100 the signal was prac- 
tically triangular but had rounded "tops." At R=500 the 
downstream clevelopment of randomness is shown by the 
tendency of e and a toward the Gaussian values. 

The clistribution is in fact not Gaussian, as may be seen 
in the figure, for its sliewness u is quite high. 

VORTEX RINGS 

The flow behind wire rings was briefly investigated. The 
dimensions of the rings used are given in table 11. 
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With the rings of diameter ratio D/d= 10 vortices are shed 
from the wire in almost the same way as from the straight 
wire, and there is apparently an annular vortex street for 
some distance downstream. The Strouhal number, meas- 
ured from R=70 to 500, is lower than that for the straight 
wire (about 3 percent at R=500 and 6 percent a t  K=100). 

Fluctuating velocity amplitudes were measured in the 
wake a t  several downstream positions. The results for the 
largest ring, measured along a diameter, are shown in figure 
20. I t  should be noted that 43 rather than the energy 
has been plotted here (cf. fig. 11); only relative values were 
computed. Close behind the cylinder the wake behind 
the wire on each side of the ring is similar to that behind the 
straight wire, but the inside peaks are lower than the outside 
peaks. This may be partly due to the interference of the 
hot-wire probe, for a similar effect, much less pronounced, 
was noticed in the measurements behind a straight wire. 

Farther downstream there was some indication of strong 
interaction between the vortices, for a peak could not be 
followed "smoothly" downstream. However, the investi- 
gations were not continued far enough to reach conclusive 
results. At about 40 diameters downstream the flow became 
unstable. 

Y/D 

FIGURE 20.-Shedding from a ring, d=0.168 centimeter; D=1.59 
centimeters; R= 100; nl=84. . 

They obskrved this to be at  about R,=200, with a corre- 
sponding SD of 0.12. 

Again, these experiments were too incomp1e.te to warrant 
definite conclusions, but the difference in behavior for D/d= 10 
and D/d=5 is interesting. This behavior is similar to that 
observed by Spivack (ref. 21) in his investigation of the 
frequencies in the wake of a pair of cylinders which were 
separated, normal to the flow, by a gap. He found that 
when the gap was just smaller than 1 diameter instability 
occurred. For larger gaps the cylinders behaved like indi- 
vidual bodies, while for smaller gaps tthe main frequencies 
were, roughly, those corresponding to a single bluff body of 
dimension equal to that of the combined pair, inc,luding the 
gap. 

DISCUSSION 

The most significant results of this investigation may be 
discussed in terms of the Reynolds number ranges defined 
in the section "Regular and Irregular Vortex Streets," 
namely, the stable range from R=40 to 150, the transition 
range from R=150 to 300, and the irregular range above 
R=300. 

STABILITY 

The transition range from R=150 to 300 displays the 
characteristics of a laminar-turbulent transition, and i t  is 
instructive to compare the stability of the flow around the 
cylinder with boundary-layer stability. The flow in the 
irregular range has turbulent characteristics, while in the 
st~able range i t  is essentially viscous. 

The Reynolds number regimes may be described as follows: 
Below R=40 the flow around the cylinder is a-symmetric, 
viscous configuration, with a pair of standing vortices be- 
hind the cylinder. At about R=40 this symmetric configu- 
ration becomes unstable. I t  changes to a new, stable con- 
figuration which consists of alternate periodic breaking away 
of the vortices and formation of a regular vortex street. The 
change at  R=40 is not a laminar-turbulent instability; 
it divides two different ranges of stable, viscous flow. In  
either range, disturbances to the stable configuration will 
be damped out. 

On the other hand, the transition range from R= 150 to 300 
involves a laminar-turbulent tran~it~ion. To understand 
how this transition is related to the vortex shedding, it is 
necessary to know something about the formation of the 
vortices. Involved in this formation is the circulating 

- 
a sudden increase in S, and at higher Reynolds numbers, in 
what corresponds to the irregular range, the shedding is 
similar to that from a straight wire, while in the stable range 
the shedding is at a much lower frequency. From the 
observations made it seems likely that in the stable range the 
ring acts like a disk, sl~edcling the ~ o r t e x  loops observed by 
Stanton and Marshall (ref. 18, p. 578, and ref. 20). Stanton 
and Marshall do not give their frequency-velocity observa- 
tions except at  the critical RDJ where shedding first starts. 

The ring with D]d=5 behaved somewhat differently. 
The observed frequencies gave values of Strouhal number as 
shown in table 111. The table shows values of S and R 
based on the wire diameter, as well as values of S, and R, 
based on ring diameter. Between R= 153 and 182 there is 

motion behind the cylinder as shown in the following sketch. 
A free vortex layer (the separated boundary layer) springs 
from each separation point on the cylinder. This free layer 
and the Fackflow behind the cylinder establish a circulation 
from which fluid "breairs away" at  regular intervals. 



THE DEVELOPMENT O F  TURBULEP 

Tlie laminar-turbulent transition is believed to occur 
always in t,he free vortex layer; that is, the circulating fluid 
becomes turbulent before it breaks away. Then each vortex 
passing downstream is composed of turbulent fluid. 

The point in the free vortex layer a t  which the transition 
occurs will depend on the Reynolds number. This transition 
was actually observed by Schiller and Linlre (ref. 18, p. 555, 
and ref. 22) whose measurements were made a t  cylinder 
Reynolds numbers from 3,500 to 8,500. The distance to the 
transition point, measured from the separation point, de- 
creased from 1.4 diameters to 0.7 diameter, and for a given 
Reynolds number these distances decreased when the free- 
stream turbulence was increased. Dryden (ref. 23) observed 
that a t  some value of R, depending on free-stream turbulence 
and so forth, the transition point in the layer actually reaches 
the separation point on the cylinder. Transition then re- 
mains fixed and vortex shedding continues, essentially 
unchanged, up to Reynolds numbers above 100,000, that is, 
up to the value of R for which transition begins in the cylinder 
boundary layer ahead of the separation point. I t  is quite 
likely that even above this critical value of R the phenome- 
non is essentially unchanged, but now the vortex layers are 
much nearer together and the vortices are diffused in a much 
shorter downstream distance. 

In summary, vortex formation in the stable range occurs 
without laminar-turbulent transition. The circulating fluid 
breaks away periodically, and alternately from the two sides, 
forming free iiviscous" vortices which move downstream 
and arrange themselves in the familiar vortex street. In  
the irregular range transition occurs in the circulating fluid 
before it breaks away, and the vortices are composed of 
turbulent fluid. The transition range corresponds to the 
similar range in boundary-layer stability, and it displays a 
similar intermittency. The values R= 150 and 300 used to 
define the range are expected to be different in other experi- 
ments, depending on wind-tunnel turbulence, cylinder 
roughness, and so forth. 

SHEDDING FREQUENCY 

The Strouhal number and Reynolds number dependence 
is different in the two ranges. In  the stable range S(1r') is 
rapidly rising, while in the irregular range i t  is practically 
constant. 

Fage and Johansen, who investigated the structure of the 
free vortex layers springing from the separation points on 
various bluff cylinders (ref. 9), made an interesting observe- 
tion on the relation of the shedding frequency to the distance 
between the vortex layers. This distance increases as the 
cylinder becomes more bluff, while the shedding frequency 
decreases. In  fact, if a new Strouhal number Sf is defined in 
terms of the distance d' between the free vortex layers 
(instead of the cylinder dimension d), then a universal 
value S'=0.28 is obtained for a variety of (bluff) cylinder 
shapes. The measurements of reference 9 were made a t  
R=20,000, but it is believed that the similarity exists over 
the whole irregular range. I t  does not extend to the stable 
range. To check this point the shedding frequency was 
measured in the wake of a half cylinder placed with the flat 
face broadside to the flow. It was found that S(R) was 
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rising for Itcynoltls nr11111)c~t.s bclow 300 and then became 
practitanlly c.onslan( : ~ t  t l r c ,  v:iliic S=0.140. For a similar 
case, at 11= 20,000, L'i~gc :~ntl Jollansen fount1 S=0.143. 

The universality of tllc constant Sf is useful in systematiz- 
ing the shedding phenomena (at least in the irregular range). 
I t  indicates that when the circulating fluid behind the cyl- 
inder is turbulent then the formation of free vortices is 
similar for a variety of bluff shapes and over a wide range 
of Reynolds numbers. 

Finally, the relation between St,roullal number and form 
drag coefficient has been mentioned in the section "Relation 
of Shedding Frequency to Drag." In the irregular range 
the slight variations in S(R) reflect slight variations of C,, 
and so, probably, of the separation point. However, con- 
stancy of C,, is not enough to insure a fixed separation point. 
For instance, Cb, remains practically constant down to 
Reynolds numbers below the shedding range, but the separa- 
tion point there is farther back than it is a t  higher Reynolds 
numbers. I t  would seem worth while, and fairly easy, to 
measure the position of separation as a function of Reynolds 
number over the wl~ole shedding range, that is, to complete 
the data available in the literature. 

DOWNSTREAM DEVELOPMENT 

Tile way in which the wake develops downstream is quite , 
different in the stable and irregular ranges. 

When the circulating fluid breaks away before the occur- 
rence of transition in the free vortex layers (i. e., below 
R= 150)) then the free vortices which are formed are the 
typical viscous vortices. There is no further possibility 
for the fluid in them to become turbulent. The vortices 
simply decay by viscous diffusion as they move downstream 
(see the section "Spread of Vortex Street" in appendix B). 

When turbulent transition does occur, then the vortices 
which are formed consist of turbulent fluid. They diffuse 
rapidly as thcy move clomnstrcam and are soon obliterated, 
so that no evidence of the shedding frequency remains. This 
development to a completely turbulent wake takes place in 
less than 50 diamctcrs. In terms of the decay of the discrete 
energy (fig. 13), the development is roughly the same for 
Reynolds numbers from 300 to 10,000. This again indicates 
a remarkable similarity over the whole irregular range. 

The stable ancl irregular ranges are also characterized by 
the difference in the energy spectra of the velocity fluctua- 
tions. I t  has been pointed out that in the irregular range a 
continuous, or turbulent, part of the spectrum is established 
at the beginning of the wake development. This turbulence 
is a result of the transition in the free vortes layers and might 
be expected to be independent (at first) of the periodic part 
of the fluctuation, which results from the periodic shedding. 
Indeed, most of the energy at  first is concentrated at  the 
shedding frequency nl (some at na), and it may be represented 
as a discrete (delta function) part of the spectrum, within the 
accuracy of the measurements (cf. appendix A). However, 
the continuous and discrete parts are not entirely independ- 
ent, as shown by the bumps near nl and nz (fig. 14). This 
may be regarded as a result of energy "feedingJ' from the 
discrete to the continuous parts of the spectrum, and i t  
proceeds in a way which tends to smooth the spectrum. Such 
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transfer of energy between spectral bands is a process de- 
pending on the nonlinear terms of the equations of motion. 
The "activity" in the spectrum, a t  any stage of its develop- 
ment, may be regarded as an equilibrium between t,he 
nonlinear and the viscous terms. I t  is an important problem 

the speed of rotation this laminar, periodic structure be- 

comes unstable and the fluid becomes turbulent, but alternate 
ring-shaped vortices still exist a t  speeds several hundred 
times the critical speed (ref. 25). 

STATISTICS 

in the theory of isotropic turbulence. 
The spectral activity near the frequency of discrete energy 

might be loolred upon as a simplified case in which a single 
band has an excess of energy and the spectral energy flow is 
unidirectional, that is, out of it into the adjacent bancls. 
However, the nonhomogeneous character of the field involved 
(the make) reduces the simplicity, for it is necessary to talce 
account of energy transfer across the wake. One interesting 
possibility is to superimpose a homogeneous (isotropic) 
turbulent field, by means of a screen ahead of '1" shedding 
cylinder, and to study the effect of this field on the spectral 
activity near the discrete band. Al tho~gh the wake will still 
introdme nonhomogeneity (not even counting the periodic 
part of the motion), it may be possible to arrange the relative 
magnitudes to give significant results from the simplified 
model. 

To study such problems the technique for measuring the 
spectrum (appendix A) the of discrete energy 
will be improved. 

To summarize, i t  is suggested that the initial development 
of the spectrum might be regarded as follows: The continu- 
ous and the discrete parts are established independently, the 
one by the transition in the vortex layers and the other by 
the periodic shedding. The turbulence due to the transition 
is the "primary" turbulent field and its spectrum is the 
typical, continuous (turbulent) spectrum. (It has been noted 
in the section "Measurements of Spectrum" that the low- 
frequency end of the spectrum is established early; it would 
contain only energy of the primary field.6) The discrete part 
of the spectrum is embedded in the turbulent part, and it 
thereby is "excited" into spectral transfer. Some of its 
energy is transferred to the adjacent frequency bands result- 
ing, initially, in the development of bumps in the continuous 
spectrum. Subsequently, as the spectral transfer proceeds, 
the spectrum becomes smooth. 

The above discussion is an abstract way of saying that the 
vortices are diffused by a turbulent fluid (instead of a viscou~s 
one). The diffusion involves the nonlinear processes typical 
of turbulence; the study of these processes, in terms of 
spectrum, is an important problem. 

There is a similar case of turbulent, periodic structure in 
the flow field between two cylinders, one of which rotates. 
Taylor's discovery of the periodic structure of the flow is 
well known (ref. 24). When the inner cylinder rotates, it 
is possible to obtain a steady, regular arrangement of ring 
vortices, enclosing the inner cylinder, and having, alternately, 
opposite directions of circulation. Above a critical value of 

6 In the theory of homogeneous turbulenc~ it 1s shown that the low-lrequencv pnd of 
the spectrum is ~nvarlant, a property related to the I,olts~anshl mlarlnnt 

The probability distribution functions (fig. 19) display the 
characteristics which are expected, from the other observa- 
tions. The contrast between the functions a t  R=100 and 
R=500, that is, in the stable and irregular ranges, respectively, 
is quite evident. In the irregular range, even at 2/d=6, 
where most of the enern is discrete, there is a marked 
irreplarity in the fluct,lation, as shown by the high value of a. 

However, these descriptions are little better than qualita- 
tive, and it is hoped to obtain more interesting results by 
extending these statistical methods. of interest 
in the development of random from periodic motion would 
be the relation the probability distributions and the 
the spectra, F~~ instance, it is plain that a purely periodic 
function (discrete spectrum) will have probability dis- 
tribution with finite cutoff, while development of random 
irregularities in the function's amplitude is strongly re- 
flected in (I)  a of the distribution function to 
higher values of < and (2) the appearance of a continuous 
spectrum. However, the relation between the two is not 
unique; that is, the spectrum does not give (complete) 
information about the probability distribution, and vice 
versa. 

SUGGESTIONS FOR FUTURE INVESTIGATIONS 

Some further lines of investigation indicated by these 
experiments are summarized below. 

(a) The transition from the stable to the irregular range 
should be investigated with controlled disturbances, for 
example, cylinder roughness and free-stream turbulence. 
I t  is expected that the limits of the transition range (roughly 
R=150 to 300 for the experimental conditions here) will be 
lower for higher free-stream turbulence or cylinder roughness. 
The critical cylinder Reynolds numbers should be related to 
corresponding numbers for the transition point in the free 
vortex layers (based on distance from separation point or on 
the thickness of the layer). 

Such studies of stability to different disturbance amplitudes 
and frequencies are well lrnown in the case of the boundary 
layer. A variation of the experiments of Schubauer and 
Skramstad (ref. 26), who used an  oscillating wire in the 
boundary layer to produce disturbances of definite fre- 
quencies, would be to use a second shedding cylinder. 

(b) A study of the spectral development in the neighbor- 
hood of a discrete band, the effect of a turbulent field on its 
activity, and so forth (discussed in the section "Downstream 
Development") may be the most fruitful continuation of , 

these experiments. So far, the problem has been approached 
only in the theory of isotropic turbulence, where it has not 
advanced much beyond the similarity considerations of 
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Kolmogoroff, and very little is known about the form of the 
spectral transfer function. 

Interactions between discrete bands, for example, a t  
slightly different frequencies, can be stuclietl by the use of 
two or more cylinders arranged to "interfereJ' with each 
other (some such studies have been macle by Spivacli (ref. 
21) but not from this viewpoint), or possibly by using one 
cylinder having diameter changes along its span. 

(c) Townsend has recently used the concepts of intermit- 
tently turbulent flow and local isotropy in his investigations 
of the turbulent walie and has obtained a new description of 
its structure (ref. 27). His studies were made a t  downstream 
distances of 80 diameters or more, so that the walie was fully 
turbulent. Probably the structure he describes is essentially 
the same up to the beginning of the fully developed walic 
(about 50 diameters), but then there is the question of how 
i t  is related to the earlier developments. Tlle most obvious 
"early developments" are the turbulent transition in the 
free vortex layers and the periodic sheclding. (Although the 
shedding frequency is no longer distinguished far clown- 
stream, it is prominent in the early spectral developments 
and thus has an influence on the downstream walic.) 

Such studies will involve considerably more detailed 
investigations of the wake structure tllan wcrc made here, 
possibly along the lines of Townsend's experiments and the 
classical measurements of energy balance across the walie. 
The other two components of the energy 7 and 3 will bc 
needed. 

(cl) The nature of the circulating flow behind the cylincler 
ancl the formation of free vortices, that is, the shedding 
mechanism, should receive further attention. 

(e) The spanwise periodic structure of the vortex street 
should be investigated, beyond the very cursory observations 
made here. In  particular, a study of the stability of single 
vortex filaments seems important. 

(f) Measurements of the fluctuating forces on the cylilincler, 
due to the shedding, would be interesting and should have 

might be obtained either by direct measurement of forces 
(on a segment) or pressures (with pressure pickups) or 
inferred from measuroments of the velocity fluctuations close 
to the cylincler. In  addition to the magnitude of the force 
or pressure fluctuations, their spanwise correlation is of 
prime importance. 

CONCLUSIONS 

An experimental investigation of the walie developed 
behind circular cylinders a t  Reynolds numbers from 40 to 
10,000 indicated the following conclusions: 

1. Periodic walie phenomena behind bluff cylinders may 
be classifiecl into two distinct Reynolds number ranges 
(joined by a transition range). For a circular cylincler these 
are : 

Stable range 40<R<150 
Transition range 150<R<300 
Irregular range 300<R< 10,000+ 

In the stable range the classical, stable Kilrmiln streets are 
formccl; in the irregular range the periodic shedding is 
accompanied by irregular, or turbulent, velocity fluctuations. 

2.  Tllc irregular velocity fluctuation is initiated by a 
laminar-turbulent transition in the free vortex layers which 
spring from the separation points on the cylinder. The 
first turbulent bursts occur in the transition range defined 
abovc. 

3. In tllc stable range the free vortices, which move 
clownstresm, decay by viscous diffusion, and no turbulent 
motion is developed. In tho irregular range the free vortices 
contain turbulent fluid and diffuse faster; the wake becomes 
fully turbulent in 40 to 50 diameters. 

4.  A velocity meter based on the relation between velocity 
and slledding frequency is practical. 

5. In the stable range a spanwise periodic structure of the 
vortex street has been observed. 

6. An annular vortex-street structure has been observed 
behind rings having a diameter ratio as low as 10. 

immediate practical applications. Thcre seems to be very CALIFORNIA INSTITUTE OF TECHNOLOGY, 
little information about the magnitude of these forces. I t  PASADENA, CALIF., May 29, 1952. 

APPENDIX A 
EXPERIMENTAL ANALYSIS OF SPECTRUM 

These note,s supplement th: brief descriptions in tlre I 
sections ''Frequency AnalyzerJ' and l'Measurcments of 
Spectrum.' 

ANALYZER RESPONSE 

Consider the response of a spectrum analyzer, such as 
that used in tile present experiments, to a mixed pedodic- 
random input, and in particular consider the problenl of 
inferring the input from the output. 

The input, an energy or power, has a ranclom ancl a periodic 
component : 

The corresponcling spectra are defined by 
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APPENDIX B 
NOTES ON VORTEX-STREET GEOMETRY AND SHEDDING FREQUENCY 

where 
Fl(n) =6(n-n,) (A3) 

and 6(n) is the Dirac delta function. 
The response ~haracteristic of the analyzer may be ob- 

tained by considering the effect of a periodic input. When 
bhe analyzer setting nA coincides with the input frequency n1 
the output i3 a maximum, and when the setting is moved 
away from nl the output falls off. The response character- 
istic is 

Output a t  setting nA 
R(nl-n~)'~utput at  setting n,=nl 

=R(n,-nl) (A4) 

The output spectrum G(n,) of the analyzer is related to the 
input spectrum F(n) by (cf. ref. 15) 

a(n,)=Sm F(n)R(n-n,)dn 
o 

- - ="im F,(n)R(n-n,)dn+& 6(nl-n,)R(n-nA)dn " '1- uZ u2 
- - 

ur2 
- u 

(A5) =- F.(n)R(n-n,)dn+-R(n~-nA) 
u2 u2 

Since R(n-n,) is sharp, that is, almost a delta function (see 
the section "Half Band Width"), F,(n) may be considered 
to be constant over the significant interval of integration in 
equation (AS). Then 

- - 
u u 

G(n,)=+ Fr(n,) &+A R (nl-n,) 
u2 

(A6) 
U 

where 

Q=Sm ~ ( n - n A ) d n =  R(n-nA)dnA 
0 I- (A7) 

is the area under the response characteristic. 
Equation (A6) gives the output for a mixed periodic- 

random input. I t  is required to find the separate terms 
which make up this sum. The procedure is outlined in the 
section "Separation of Discrete Energy" below. 

HALF BAND WIDTH 

The of the analyzer is determined by its half 
band width w. This is defined as the number of "cycles off 
resonance" a t  which the output falls off to 0.01 percent; that 
is 

R(nl-w) =0.0001 ( ~ g )  

For an ideal analyzer the response characteristic would be a 
delta function, but even with half band widths from 30 to 
145 (which is the range of the analyzer used here) the char- 

acteristic is quite sharp, relative to the frequency intervals 
of interest. The values 30 to 145 seem quite high, but they 
are a little misleading because of the high attenuation used 
to define w. For example, if the response-characteristic half 
band width is 30 cycles per second, i t  has a total width of 
only cycles per second at attenuation. 

SEPARATION OF DISCRETE ENERGY 

To separate the discrete energy from the continuous 
spectrum the following procedure is used. 

- 
u2~(nA)0  

"I-W nl n , + ~  "a 

Sketch 3. 

At n1 + w and nl-w (see sketch) the contribution from 2 
is only 0.01 percent, so the measured points there are assumed 
to lie on the continuous spectrum. It is assumed at first that 
the continuous spectrum between these points may be deter- 
mined by interpolation, and its value a t  n, is calculated. 
Then 3 is determined by difference and the last term in 
equation (87) is calculated, since the form R(n) is known. 
The first term in equation (A6) then gives the values of 
G(nA) in the vicinity of nl ;  these should check the measured 
values. 

If ,  however, the continuous spectrum within the band 
width has a bump, then the above calculation is not self- 
consistent, and the true values can be determined by 
successive estimates of 

I n  principle the method is satisfactory, but in practice the 
accuracy is low because in the rsgions of interest, that is, 
near peak frequencies, it depends on the differences of 
reliltively large quantities. One of these, R(n), is known 
precisely, but the precision is difficult to realize since the 
settings on the analyzer cannot be read accurately enough. 
For the spectral investigations discussed in the section 
"Downstream Development" the technique will be improved, 
by monitoring the analyzer with a counter. 

The regularity of the vortex shedding and its sensitivity 
to velocity changes have undoubtedly intrigued everyone 
who has investigated the flow past bluff bodies. However, 
as KBrmBn pointed out in his first papers on the vortex street, 

the problem is inherently difficult, involving as it does the 
separation of the boundary layer from the cylinder, and 
there is yet no adequate theoretical treatment of the mech- 
anism. 
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The following notes may be useful as a summary of tllc 
intercsting features of the problem. Thev are based largely 
on the literature but include some results obtained during 
the present experiments. Chapter XI11 of reference 19 has 
a very useful review and list of references. 

Klirmtin's theory treats a double row of potential 
vortices, infinite in both directions. The distance between 
the rows h and the spacing of the vortices in each row Z are 
constants. The vortices have strength (circulation) r which, 
with the geometry, determines the velocity T-  of the street 
relative to the fluid. The theory shows that the configura- 
tion is stable when the rows are staggered by a half wave 
length ancl the spacing ratio is 

The circulation and velocity relative to the fluid arc then 
related by 

Two of the parameters (h, 1, r, and T7) must be determined 
from some other consic1erations. I11 the real vortex street 
they must be related to the conditions a t  the cylinder. 

REALVORTEXSTREET 

The real vortex street, even in the stable range, clifl'ers 
from the idealized one in the following points: 

(1) The street is not infinite. I t  starts shortly down- 
stream of the cylinder and eventually loses its identity far 
downstream. However, the classical vortex-street patterns 
extending for 10 or more wave lengths should be a good 
approximation. 

(2) The vortex spacing is not constant. I n  particular, 
the lateral spacing h increases downstream. 

(3) The real vortices must have cores of finite radius. 
These grow downstream, so that the vortices diffuse into 
each other and decrease their circulation. For the same 
reason the velocity T' is expected to differ considerably 
from the theoretical value, since i t  is strongly dependent 
on the configuration. 

Related to these considerations is the way in which the 
vortices are first fornled. At Reynolds numbers below the 
shedcling range a symmetrical pair of eddies is formed at 
the bacli of the cylincler. As the Reynolds number increases 
these two eddies grow and become more and more elongated 
in the flow direction, until the configuration is no longer 
stable and become asymmetric. Once this occurs the 
circulating fluitl breaks away alternately from each side 
to form free vortices which flow downstream and arrange 
themselves into the regular, stable vortex street. 

7 Possibly the breaking away should be regarded as primary. reallting in asymmetry. 

In the irregular ~xngc the process is similar, except that 
the fluid is turbulent (bccausc of the transition in the free 
vort es la>-rrs). 

DOWNSTREAM VORTEX SPACING 

In the flow past a stationary cyliniler the frequency with 
which vortices of one row pass any point is given by 

This must be the same as the shedcling frequency 

Two useful expressions result: 

1 1  
In a real vortex street, T i 0  far downstaream ancl then -4- d S' 
Or, if SL/d is linown from measurements, then T7/lr0 may be 
computed. 

An example of measured values of L/d is shown in figure 2 1. 
These were talien from the streamline plot obtained by 
Kovasznay (ref. 11) a t  R=53 (for which S=0.128). There 
is a little scatter, but l/d does approach the constant value 
l/S=7.8. 

The scatter, while relatively unimportant in the ease of 
Ijd, gives very low accuracy for values of V/U, calculated 
from equation (B6). These have also been plottecl in figure 
21. I t  is surprising that some of tlie values, near the 
cylinder, are negative (corresponding to values of l/d higher 
than 118); i t  is believed that this results from the combined 
ciifficulty of estimating the vortex centers, especially near the 
cylinder, and the sensitivity of equation (B6). (However, 
i t  must be noted that negative values of V are not impossible. 
Negative V simply means that the vortex velocity is clirected 
upstream relative to the fluid, while i t  is still downstream 
relative to the cylinder. Such a possibility exists a t  low 
values of zltl, where the mean velocity a t  the eclgcs of the 
wake is consiclerably higher than U,.) 

Another way to obtain V/U, is to assume tliat the vortex 
centers movc with tlie local mean velocity. Kovasznay's 
paper includes measurements of mean velocity profiles. 
From his rcsults the mean velocity along the line of vortex 

v U* 
centers U* 112s brcln clclt,c.rmined and from it -=I-- 

Uo Uo 
liss been calrulatetl. Tlie result is plotted in figure 21. 
Near tlic cylintler it docs not agree with the values obtained 
by the previous metliotl; it is believed that this is principally 
due to the difficulties mentio~ied above and tliat the deter- 
mination of V/Uo from 1 - (U*/Uo) is more accurate. 
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FICURE 21.-vortex-street geometry Calculated from da ta  111 
reference 11. 

LATERAL SPACING 

The lateral spacing, a t  least initially, must be determined 
by conditions near the cylinder. The way in which this 
spacing increases downstream is discussed, for the stable 
range, in the section "Spread of Vortex Street." 

I n  the irregular range, the dependence of the shedding 
frequency on the distance between the free vortex layers, 
noted by Fage and Johansen (see the section "Shedding 
Frequency"), leads to an interesting estimate of the initial 
lateral spacing of the free vortices. The maximum distance 
d' between the free vortex layers, instead of the cylinder 
dimension d, may be used to define a new Strouhal number 

d' 
S '=nl - u 0 

(B7) 

Fage and Johansen found that, whereas S varies considerably 
with cylinder shape, 8' is practically constant for a variety 
of bluff cylinders. Kow the initial lateral spacing h' of the 
free vortices will be roughly the same ss  d', possibly a little 
smaller : 

h' -- d' 
-(I-€) (Bg) 

Then, comparing with equations (Be) and (B7), 

hf- 1-t -- 
1 1-(VIUO) 

6' 039) 

From the measurements of Fage and Johansen, S'=0.28. 
1 - 6  

The factor 1 - (V/Uo) =I .  Thus equation (B9) gives h'/l= 

0.28; that is, the spacing ratio agrees with KbrmAn's value, 
a t  least close to the cylinder. 

SHEDDING FREQUENCY 

There is yet no adequate theory of the periodic vortex 
shedding, and i t  is not clear what is the principal mechanism 
which determines the frequency. 

The downstream spacing ratio is related to the shedding 
frequency by equation (B3) and to the lateral spacing by a 
stability criterion (e. g., KbrmbnJs value of 0.28 for the 
idealized street). I t  might be considered that the shedding 
frequency is determined by the spacing requirement, or, 
conversely, that the shedding is primary and determines 
the downstream spacing. The latter viewpoint seems the 
more plausible one; that is, the shedding frequency is estab- 
lished by a mechanism which depends on features other than 
the vortex spacing. I t  is necessary to obtain a better under- 
standing of the flow field near the cylinder. One of the 
elements involves the problem of separation, particularly 
the nonstationary problem. Another that requires more 
study is the flow field directly behind the cylinder. 

With a better knowledge of these, and possibly other, 
features i t  may be possible to set up a model of the shedding 
mechanism. I n  the meantime i t  is not clear whether the 
vortex spacing requirement is decisive in determining the 
frequency. 

DESTABILIZATION a OF SHEDDING 

The following experiment illustrates the dependence of 
the periodic shedding on "communication" between the free 
vortex layers, that is, on the flow field directly behind the 
cylinder. A thin flat plate was mounted behind the cyl- 
inder in the center plane of the wake (fig. 22). It was 
completely effective in stopping the periodic shedding. 
Spectrum measurements in the flow on one side of the plate 
are shown in figure 22. ~t ~ = . 7 , 5 0 0  no significant fie- 
quencies could be separated out from the continuous back- 
ground. ~t R=3,200 there were several predominant fie- 
quencies (all higher than the shedding frequency for the 
cylinder), but, by the time the flow reached the end of the 
plate, 5 diameters downstream, i t  was completely turbulent. 
(The shedding frequency nl for the cylinder is marked in 
the figures.) 

The important effect, on the shedding, of the flow field 
directly behind the cylinder is apparent. Probably an even 
shorter length of plate would be effective in destablizing 
the periodic shedding, and there may be a most effective 

8 The ctabillty ronsidrled in thls section 3s not a ~ t h  recpect to lammar-turbulent transi- 
tion, it concern? the stab~lity of the periodle shedding (rf. the sectIonL1Stdb~lity") 
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FIGURE 22.-Effect o f  downstream plate on wake frequencies. 

position for such an interference element. Kovasznay 
remarks that the hot-wire probe used in investigating the 
vortex street must be inserted from the side, for if i t  lies in 
the plane of the street i t  has a strong destablizing influence. 

A more complete study of the destabilization of shedding 
by such interference devices may be quite useful from a 
practical viewpoint. Structural vibrations and failures are 
often attributed to the periodic forces set up on members 
exposed to wind or other flow (smoliestacks, pipe lines, struc- 
tural columns, to mention a few). I n  many cases i t  might 
be possible to destabilize the vortex shedding by addition 
of simple interference elements or by incorporating them in 
the original designs. I n  the case where one member is 
buffeted by the wake of another the same principle might 
be applied. 

S P R E A D O F V O R T E X S T R E E T  

I t  has been observed by most investigators that the spac- 
ing ratio h/l is Kirm6nJs value (0.25) close to the cylinder 
but increases rapidly downstream. The increase of h/l is 
mainly due to the increase of h, since 1 changes very little 
(fig. 21). In  tshe stable range this is the result of viscous 
diffusion of the real vortices. 

Hooker (ref. 28) has made an interesting analysis. First, 
a real vortex has a core of finite radius; its center is the point 
of zero velocity and maximum vorticity. Hooker shows 
that in a vortex street, where the velocity field of the other 
vortices must be taken into account, the points of zero 
velocity and maximum vorticity do not coincide. The 
point of maximum vorticity is unchangect, but the point of 
zero velocity is farther away from the center of the street. 
As the vortex decays, the point of zero velocity moves 
farther out, its distance from the center of the street increas- 
ing almost linearly wit11 time. Thus the spacing based on 
vorticity centers remains constant, while the spacing based 
on velocity centers increases linearly. Hooker's calcula- 
tion of the linear spread checks fairly well with some pic- 
tures taken by Richards (ref. 29) in the wake of an elliptical 
cylinder having a fineness ratio of 6: 1 and the major diameter 
parallel to the free-stream velocity. 

However, the spread of the wake is not always observed 
to be linear. Among the different investigators there is a, 
Iargc variation of results, apparently dependent on the 
experimental arrangement. I n  Richards' experiment the 
cylinder was towed in a water tank and the vortex patterns 
were observed on the free surface. 

I n  KovasznayJs experiment the cylinder was mounted in 
a wind tunnel, the arrangement being similar to the one 
used here (see the section "Experimental DataJ'). On 
his plot of the streamlines at  R=53 the downstream spread 
of the vortex street is parabolic rather than linear. I t  is 
possible to fit his results by a somewhat different applica- 
tion of Hooker's idea, using decaying vortex filaments. 

Each vortex in the street is considered to behave like a 
single vortex filament carried along by the fluid, its decay 
or diffusion being the same as if it were at  rest. The decay 
of such a vorte; is described by a heat equat,ion, whose 
solution is (ref. 30, p. 592): 

where q is the tangential velocity a t  the distance r from the 
center and at  the time t .  The circulation is r. This is 
essentially a vortex with a "solidJJ core and potential outer 
flow joined by a transition region in which the velocity has a 
maximum value. This maximum velocity is 

and occurs at  the radial distance 
* 

r*=2.24(vt)lI2 (B12) 

Here r* is defined as the vortex radius. 
Thus the radius increases as t1J2 and the maximum velocity 

decreases as t-'I2. I n  the vortex street, the time t is replaced 
by the downstream distance x. Since the vortices move 
with the velocity U* rather than U,, the dimensionless time 

uo x 8=- - is appropria.te, where U* also varies downstream 
U* d 

(see the section "Downstream Vortex SpacingJ'). 
When a pattern of such vortices is superimposed on a uni- 

form flow, i t  is possible to calculate the velocity fluctuation 
at  a point due to the pattern passing over it. 

Now the following hypothesis is added. I t  is assumed 
that the vortex radius r* is equal to the width h of the street. 
Then the width of the street increases as xlJ2. 

A second result follows. The maximum velocity fluctua- 
tion (observed by a hot-wire, say) will occur on the line of 
cortex centers and will have the amplitude 

that is, the hot-wire encounters instantaneous velocities 
varying from U* (because of vortex centers passing over it) 
to U*+q* because of the fields of vortices on the other side 
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of the street). Relations (Bl l )  and (B12) then give the 
downstream behavior of the maximum fluctuation amplitude. 

The results may be summarized as follows: 
(a) Wake width h = eli2. 

(b) The maximum amplitude of fluctuation u* occurs on 
the line of vortex centers (so there are two maximum points 
across the wake). 

(c) U* 
(d) u*=0.36 (rl2ah). 
A comparison of the above predictions was made with 

calculations based on Kovasznay's measurements which in- 
clude profiles of velocity fluctuation amplitude (cf. fig. 11) 
as well as the streamline plot. The following comparisons 
were obtained, item by item: 

(a') The time variation of hld, determined from the vortex 
canters on the streamline plot is shown in figure 21. The 
parabola h/d=0.59(e- 6)'12 is shown for comparison. 

(b') The line of maximum velocity fluctuation lies slightly 
inside the line of vortex centers and is fitted by h*/d=0.53 
(e-6)''2. 

(c') The time variation of u* is also plotted in figure 21. 
(Actually Kovasznay's maximum root-mean-square values 
u', are plotted, but these should cliffer from u* only by a 
constant factor.) The curve u',/ Uo=0.26(8-6)-'12 is shown 
for comparison. The points could be fitted better, but the 
curve was chosen again to have the origin P=6. 

(d') A comparison with (d) may be made by estimating 
the strength r of the vortices. Such a consideration, in fact, 
led to the present model, for i t  was found that the magnitude 
of the observed velocity fluctuations could be accounted for 
only by assuming that the radius of the vortex core is about 
equal to the width of the street. This observation had 
already been made by Fage and Johansen (ref. 8), for 
R=2X104. If the free vortex layer is represented by a 
velocity discontinuity U= U, to U=0, then the circulation 
is U, per unit length and "the circulation" flows with the 
velocity U0/2. On the other hand, the rate a t  which circu- 
lation enters one side of the street is nlr ,  where r is the cir- 
culation per v o r t e ~ . ~  Therefore 

For Kovasznay's example, S = 0.13, so r .x 4 U,d. Then, 
cornparing with (d), the maximum fluctuation in the initial 
part of the wake is 

the width of the street; if the core is assumed to be much 
smaller, the calculated velocity fluctuations are much larger 
than those observed. Ailso, if the cores were very small 
compared with the width of the wake, four peaks instead of 
two would be observed in the profile of th? velocity fluctua- 
tion amplitude. 
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