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SUMMARY

Wake development behind circular cylinders at Reynolds
numbers from 40 to 10,000 was investigated in a low-speed wind
tunnel. Standard hot-wire techniques were used to study the
velocity fluctuations.

The Reynolds number range of periodic vortex shedding is
divided into two distinct subranges. At R==40 to 150, called
the stable range, regqular vortex streets are formed and no turbu-
lent motion s developed. The range R=150 to 300 is @
transition range to a regime called the irregular range, in which
turbulent velocity fluctuations accompany the periodic_formation
of vortices. The turbulence is initiated by laminar-turbulent
transition in the free layers which spring from the separation
points on the cylinder. This transition first occurs in the
range R=150 to 300.

Spectrum and statistical measurements were made to study
the velocity fluctuations. In the stable range the vortices decay
by viscous diffusion. In the irregular range the diffusion is
turbulent and the wake becomes fully turbulent in 40 to 50
diameters downstream.

It was found that in the stable range the vortex street has a
periodic spanwise structure.

The dependence of shedding frequency on velocity was success-
Jully used to measure flow velocity.

Measurements in the wake of a ring showed that en annular
vortex street is developed.

INTRODUCTION

It is always difficult to determine precisely the date and
author of a discovery or idea. This seems to be the case
with the periodic phenomena associated with flow about a
cylinder. Although the effect of wind in producing vibra-
tlons in, wires (aeolian tones) had been known for some time,
the first experimental observations are due to Strouhal (ref.
1) who showed that the frequency depends on the relative
air velocity and not the elastic properties of the wires. Soon
after, Rayleigh (1879, refs. 2 and 3) performed similar
experiments. His formulation of the Reynolds number
dependence demonstrates his remarkable insight into the
problem.

These earliest observations were concerned with the rela-
tions between vibration frequency and wind velocity. The
periodic nature of the wake was discovered later, although
Leonardo da Vinci in the fifteenth century had already drawn
some rather accurate sketches of the vortex formation in the
flow behind bluff bodies (ref. 4). However, Leonardo’s

drawings show a symmetric row of vortices in the wake.
The first modern pictures showing the alternating arrange-
ment of vortices in the wake were published by Ahlborn in
1902 (ref. 5); his visualization techniques have been used
extensively since then. The importance of this phenomenon,
now known as the Kédrmén vortex street, was pointed out by
Benard (1908, ref. 6).

In 1911 Kérmdn gave his famous theory of the vortex

" street (ref. 7), stimulating a widespread and lasting series of

investigations of the subject. For the most part these con-
cerned themselves with experimental comparisons of real
vortex streets with Kdrmdn’s idealized model, calculations
on the effects of various disturbances and configurations, and
so on. It can hardly be said that any fundamental advance
in the problem has been made since Kérmén’s stability
papers, in which he also clearly outlined the nature of the
phenomenon and the unsolved problems. Outstanding per-
haps is the problem of the periodic vortex-shedding mecha-
nism, for which there is yet no suitable theoretical treatment.

However, the results of the many vortex-street studies,
especially the experimental ones, are very useful for further
progress in the problem. Attention should be drawn to the
work of Fage and his associates (1927, refs. 8 to 10), whose
experimental investigations were conducted at Reynolds
numbers well above the ranges examined by most other
investigators. Their measurements in the wake close behind
a cylinder provide much useful information about the nature
of the shedding. More recently Kovasznay (1949, ref. 11)
has conducted a hot-wire investigation of the stable vortex
street (low Reynolds numbers), to which frequent reference
will be made.

Vortex-street patterns which are stable and well defined
for long distances downstream actually occur in only s small
range of cylinder Reynolds numbers, from about B=40 to
150, and it 1s to this range that most of the attention has
been given. On the other hand, as is well known, periodic
vortex shedding also occurs at higher Reynolds numbers,
up to 10° or more, but the free vortices which move down-
stream are quickly obliterated, by turbulent diffusion, and a
turbulent wake is established.

The present interest in the vortex street is due to some
questions arising from the study of turbulent flow behind
cylinders and grids. Such studies are usually made at Reyn-
olds numbers for which periodic vortex shedding from the
cylinders or grid rods might occur. However, the measure-
ments are always taken downstream far emough to insure

1 Supersedes NACA TN 2913, ““On the Development of Turbulent Wakes From Vortex Streets” by Anatol Roshko, 1953.
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that the periodic velocity fluctuations are obliterated and
the flow is completely turbulent. There are several
important consequences of this limitation.

Irirst, the energy of the velocity fluctuations is quite low
compared with the energy near the cylinder, and especially
low compared with the dissipation represented by the form
drag. In attaining the developed downstream state there is
evidently not only a rapid redistribution of energy among
the spectral components but also a large dissipation. Sec-
ond, the theories which describe these downstream stages do
not relate the flow to the initial conditions except very loosely
in terms of dimensionless parameters, and it is usually
necessary to determine an origin empirically (e. g., mixing-
length theory or similarity theories).

On the other hand, there is evidence that some features
are permanent, so that they must be determined near the
beginning of the motion. One such feature is the low-wave-
number end of the spectrum which (in the theory of homo-
geneous turbulence) Is invariant.

Another is the random element. It has been pointed out
by Dryden (refs. 12 and 13) that in the early stages of the
decay of isotropic turbulence behind grids the bulk of the
turbulent energy lies in a spectral range which is well ap-
proximated by the simple function 1———_1_%2%2: characteristic
of certain random processes. Liepmann (ref. 14) has sug-
gested that such a random process may be found in the
shedding of vortices from the grids.

In short, there has been no description, other than very
qualitative, of the downstream development of wakes which,
over a wide range of Reynolds number, exhibit a definite
periodicity at the beginning. The measurements reported
here were undertaken to help bridge this gap.

The main results show the downstream development of the
walke, in terms of energy, spectrum, and statistical properties.
This development is quite different in two Reynolds number
ranges, the lower one extending from about 40 to 150 and the
upper, from 300 to 10* (and probably 10°), with a transition
range between. The lower range is the region of the classic

vortex street, stable and regular for a long distance down- -

stream. The fluctuating energy of the flow has a discreie
spectrum and simply decays downstream without transfer of
energy to other frequencies. Irregular fluctuations are not
developed. In the upper range there is still a predominant
(shedding) frequency in the velocity fluctuations near the
cylinder, and most of the energy is concentrated at this
frequency ; however, some irregularity is already developed,
and this corresponds to a continuous spectral distribution of
some of the energy. Downstream, the discrete energy, at
the shedding frequency, is quickly dissipated or transferred
to other frequencies, so that by 50 diameters the wake is
completely turbulent, and the energy spectrum of the velocity
fluctuations approaches that of isotropic turbulence.

All other features of the periodic shedding and wake phe-
nomena may be classified as belonging to one or the other of
the two ranges. This viewpoint allows some systematization
in the study of wake development.
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In particular, it is felt the possibilities of the vortex street
are by no means exhausted. A study of the interaction of
periodic fluctuations with a turbulent field seems to be a
fruitful approach to the turbulence problem itself. It is
planned to continue the present work along these lines.

From a more immediately practical viewpoint an under-
standing of the flow close to a bluff eylinder is important in at
least two problems, namely, structural vibrations in members
which themselves shed vortices and structural buffeting
experienced by members placed in the wakes of bluff bodies.
Many of these are most appropriately treated by the statis-
tical methods developed in the theories of turbulence and
other random processes (vef. 15). These methods are easily
extended to include the mixed turbulent-periodic phenomena
associated with problems such as the two mentioned above.

The research was conducted at GALCIT under the spon-
sorship and with the financial assistance of the National
Advisory Committee for Aeronauties, as part of a long-range .
turbulence study directed by Dr. H. W. Liepmann. His
advice and interest throughout the investigation, as well as
helpful discussions with Dr. Paco Lagerstrom, are gratefully
acknowledged.

SYMBOLS
AB constants
a,b major and minor axis, respectively, of corre-
lation ellipse
Cp drag coefficient
Cp, form drag coefficient
= \/ N, 2/ Ny
D outside diameter of ring
d cylinder dimension
d’ distance between free vortex layers
ds diameter of ring-supporting wire
E wake energy .
E\E, components of wake energy due to periodic
fluetuations
F dimensionless frequency, n,d*/v
F(n) energy spectrum
Fi(n),Fy(n)  energy spectra of discrete energy
F.(n) continuous energy spectrum
G(ny) output of wave analyzer at setting ny
h lateral spacing of vortices
b’ initial lateral spacing of vortices
h* lateral spacing between positions of «’,,
K constant
k integer
L scale
L, scale corresponding to R,
l downstream spacing of vortices
M, moment, of order k, of probability density
Ny “agbsolute” moment of probability density
7y shedding frequency
Ne=2n
P(® probability distribution function

p(E) probability density
Q area under response characteristic
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q(r) tangential veloecity in vortex
q*=q0*)
R Reynolds number
R(n) response characteristic of wave analyzer
Ry Reynolds number based on ring diameter
R,(7) time correlation function
R.(D space correlation function
r distance from vortex center
r* radius of vortex
S Strouhal number, based on cylinder dimension,
ndjU,
S’ Strouhal number, based on distance between
free vortex layers, n,d’/U,
T time scale
T, time of averaging
i time
U local mean velocity in z-direction
U, mean stream velocity
U* mean velocity at vortex center
U,D,W components of velocity fluctuation
Uy, Un periodic velocity fluctuations, at frequencies
7, and ng
U, random velocity fluctuation
U peak root-mean-square value of velocity fluc-
tuation
1% velocity of vortex relative to fluid
x,Y,2 reference axes and distance from center of
eylinder
a flatness factor of probability distribution,
M, /My
T strength (circulation) of a vortex
8(n) Dirac delta function
€ positive number
e distance between two points, measured in
z-direction
. . L
7 dimensionless frequency, 7"
o
6 dimensionless “time’” in life of U, z
1fe of vortex, 7%
“ dummy variable
v kinematic viscosity
£ . a value of u
o density
o skewness of probability distribution, A;/M,?"
T time interval
@ dimensionless spectrum, U,F.(n)/L
w half band width of wave analyzer

GENERAL CONSIDERATIONS

Except for the parameters directly related to the shedding
frequency, the quantities measured were essentially those
that are standard in turbulence investigations (cf. refs. 12 to
14). These are briefly reviewed below with some modifica-
tions required to study the periodic features.

REFERENCE AXES

The origin of axes is taken at the center of the cylinder
(fig. 1); = is measured downstream in the direction of the

Rectangular

. Honeycomb _.--Precision screen . -Adjustable working »
s yeom. Uniform ) section g/, Vons’:scmn

v - 18 mesh \section
Silk cloth, A o Round section

i square: Cylinder
2 2" 12" Diffuser ~l

"

85—+ 3 %
Ficure 1.~—S8ketch of GALCIT 20-inch tunnel.

free-stream velocity, z is measured along the axis of the
cylinder, which is perpendicular to the free-stream velocity,
and ¥y is measured in the direction perpendicular to (z, ¥);
that is, y==0 is the center plane of the wake. The free-
stream velocity 1s U, and the local mean velocity in the
z-direction is U. The fluctuating velocities in the z-, y-, and
z-direction are w, v, and w, respectively. The flow is con-
sidered to be two dimensional; that is, mean values are the
same in all planes z=Constant.

SHEDDING FREQUENCY

The shedding ? frequency is usually expressed in terms of
the dimensionless Strouhal number S=n,d/U,, where n, is
the shedding frequency (from one side of the cylinder), d is
the cylinder diameter, and U, is the free-stream velocity.
The Strouhal number S may depend on Reynolds number,
geometry, free-stream turbulence level, cylinder roughness,
and so forth. The principal geometrical parameter is the
cylinder shape (for other than circular cylinders, d is an
appropriate dimension). However, cylinder-tunnel con-
figurations must be taken into account, for example, blockage
and end effects. In water-channel experiments surface
effects may have an influence. Usually the geometrical
configuration is fixed, and then S is presented as a function
of Reynolds number R.

Instead of Strouhal number it is sometimes convenient to
use the dimensionless parameter Fs==n;d?/v, where » is the
kinematic viscosity.

ENERGY

‘The experiments to be described. are concerned mainly
with the velocity fluctuation in the wake, and especially with
the corresponding energy.

The energy of the velocity fluctuation at a point in the

fluid is —% p(u?+v*+w?) per unit volume, where (u, v, w) is the

fluctuating velocity and the bar denotes an averaging (see
the section “Distribution Functions”). In these experi-
ments only the component 4 was measured, and the term
“energy’’ is used to denote the energy in that component
only.

The energy intensity is defined as (u/U,)*. Since the
mean flow is two dimensional, the intensity does not vary in
the z-direction. At any downstream position in the wake it
varies in the y-direction, normal to the wake. The integral
of the intensity over a plane normal to the free stream (per
unit span) is called the wake energy E:

2 The term “shedding” is used throughout this report, for convenience; it is not meant
to imply anything about the mechanism of the formation of free vortices.
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The velocity fluctuation in the wake of a shedding cylinder
displays a predominant frequency (as well as harmonics)
which is the shedding frequency. However, except in a
small Reynolds number range, the fluctuation has random
irregularities “superimposed’’ on it; that is, it is not purely
periodie, in the mathematical sense. However, it is con-
venient to speak of the “periodic’”’ and “random” or turbu-
lent parts of the fluctuation® The energy may be written

w=utul+u @)

where %,” is that portion of the energy contributed by the
random (turbulent) fluctuation, u? is contributed by the
periodic fluctuation at the shedding frequency m,, and u,?
corresponds to twice the shedding frequency na=2n;. (The
center of the wake feels the influence of vortices from both
sides and n, is prominent there, at least near the ‘beginning”
of the wake. Higher harmonics are found to be negligible.)

Equation (2) is a kind of spectral resolution, in which u?
and uz® are the energies at the specific frequencies 7, and n,.
This type of resolution is called a discrete, or line, spectrum.
But % is not a discrete spectral component, for it is the
energy in the turbulent part of the fluctuation and contains
“all” frequencies. It has a continuous frequency distribu-
tion of energy, for which a slightly different definition of
spectrum is appropriate. This is postponed until the follow-
ing section.

Corresponding to equation (2), an equation may be writ-
ten for the wake energy E and its turbulent and periodic
components:

E:ET+E1+E2 (3)
Of particular interest will be the fraction of discrete energy
(E\-+Ey)/E at various stages of wake development.
CORRELATION FUNCTIONS; SPECTRUM

Definitions.—The time correlation function of the fluctu-
ation u(f) is defined by .

R (="M @
W
where 7 is a time interval. The time scale is then defined
by . _
T:f R.dr %)
0
The Fourier transform of R, defines another function
F(n):llf B .(7) cos 2onrdr (6)
)
Then, also
Run)= f Fln) cos 2rnrdr @
0

2 A turbulent fluctuation is an irregular variation, with respect to time, which is charae-
terized in particular by its randomness and absence of periodicity (ef. ref. 13, p. 9).
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For r=0, equations (4) and (7) give
R,(O)=fmF(n) dn=1 ®
0

where F(n) 1s defined as the energy spectrum; that is, F(n)
dn is the fraction of the energy in the frequency interval n
to n+dn. It is the fraction of energy “per unit frequency,”’
as contrasted with the discrete energy spectrum discussed in
the section “Energy.”

In studies of isotropic turbulence, at Reynolds numbers
corresponding to those in the present experiments, it is
found that the energy spectrum is well represented by the
form

F (ny= (9)

”___4__
1+ B’
or, what amounts to the same thing, that the correlation
function is of the form

Ri(r)=e*" (10)

If the normalizing factor K=U,/L is used in equation (10),
L being a characteristic length, then equation (6) gives

UF () 4
I 144 (LU 7

(11a)

which may be conveniently written in terms of the dimen-
sionless parameters

e=U,F(n)/L (12a)
and
n=f]1io n (12b)
Then
_ 4
sﬁ*m (11b)

It is clear from equations (5) and (10) that L is a length
scale related to the time scale by

L=U,T (13)

Equation (11b) is used as a convenient reference curve to
compare the measurements reported below.

Periodic functions.—The energy spectrum F(n) is par-
ticularly well suited to turbulent fluctuations, for which
the energy 1is continuously distributed over the {fre-
quencies. For periodic fluctuations the discrete, or line,
spectrum is more appropriate, but in the present “mixed”
case 1t is convenient to write the discrete energy, also, in
terms of F(n). 'This may be done by using the Dirac delta
function 8(n). Thus the energy at the shedding frequency
ny 18

W:u———fﬁ §(n—mn,) dn (14)

that is,
Fi(n)=8(n—ny) (15)

Then the mixed turbulent-periodic fluctuations in the wake of
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a shedding cylinder are considered to have an energy spzc-
trum which is made up of continuous and discrete parts
(cf. eq. (2) and appendix A):

7 f "Ry dn=uz f “F () dntup f Fum) dnt
0 0 0

ung Fyn)dn  (16)
0
that is,

2 Tz )
Fl)="2 F,(n)+" s(n—ny)+=s 5(n—ns) (17)
u w w

Space correlation function; phase relations.—The cor-
relation function defined in equation (4) describes the time
correlation. Another correlation function which is useful in
the present study is one which relates the velocity fluctua-
tions at two points in the wake, situated on a line parallel
to the cylinder. This is defined by

_u(z,hulz+ b
Rz(g“)———~-—~u...2——~ (18)
where { is the distance between the two points. The corre-
sponding scale is
I— f R.ds 19)
0 .

The function R, should be particularly suited to studying
turbulent development. Close to the cylinder it should
reflect the regularity connected with the periodic shedding,
especially in a regular, stable vortex street, in which there
are no turbulent fluctuations. When there are turbulent
fluctuations and, especially, far downstream where there is
no more evidence of periodicity, R, should be typical of a
turbulent fluid; that is, the correlation should be small for
large values of {.

The function R, may be obtained by standard techniques
applied to the two signals u(zf) and w(z+{,). One well-
known visual method is to apply the signals to the vertical
and horizontal plates, respectively, of an oscilloscope and to
observe the resulting ‘‘correlation figures’” (or ellipses) on
the screen (ref. 16). If the signals u(f) are turbulent fluctua-
tions, then the light spot moves irregularly on the screen,
forming a light patch which is elliptic in shape. The correla-
tion function is given by

a*—b?
B= ey~ (20)
where ¢ and b are the major and minor axes of the ellipse.

If u(zt) is a periodic function, in both time and space,
then the correlation figure is an elliptical loop (Lissajous
figure) whose major and minor axes again give R, according
to equation (20). Such a case would exist if the wake had
a spanwise periodic structure. Then R.({) would be periodic.
A special case of this is R,({)=1, as would be expected in a
vortex street, provided the vortex filaments are straight and
parallel to the eylinder and do not “wobble.”

DISTRIBUTION FUNCTIONS

Random functions.—The probability density p(f) of
a random function u,(f) is defined as the probability of
finding u, in the interval (££4d£). It may be found by
taking the average of observations made on a large number
(ensemble) of samples of u,(t), all these observations being
made at the same time {. This is called an ensemble aver-
age. If u.(t) is a stationary process, as in the present case,
then appeal is made to the ergodic hypothesis and the en-
semble average is replaced by the time average, obtained by
making a large number of observations on a single sample
of u,(t). The probability density p(¢) is the number of
times that u, is found in (§,£-+4dE) divided by the total num-
ber of observations made. In practice, time averages are
more convenient than ensemble averages. The averaging
time 7', must be large enough so that a statistically significant
number of observations are made. This imposes no hard-
ship; it is sufficient that 7, be large compared with the time
scale 7. If necessary, the error can be computed.

Experimentally, p(¢) may be determined by the principle
illustrated below:

v A 2 1.

o _.;'t-j.f; ,.\l"am/,,._
v

= N

7
Sketeh 1.
En:, b
PO~ @D
-
= (G ] @2)

The most elementary application of this principle is a graphi-
cal one using a photographic trace of .(f). More conven-
iently, electronic counting apparatus is employed (see the
section ‘‘Statistical Analyzer”).

The statistics of u,(f) are usually described in terms of

the moments of p(¢) and certain functions derived from the
moments. The moment of order % is defined as

M~ [ ep@ae (29

Another useful definition is
Ne= [ 1@ i (21)

where N; is equal to M for even values of k. If p(%) is
symmetrical, then M is 0 for odd values of k but IV, is not.
From the definition of p(¢) it follows that My— f p(E) di=

1; ¢ will be normalized by requiring that M,=1/2, that




G REPORT 1191—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

is, the mean-square value u,°=1/2.
Three useful functions derived from the moments are

0“1\721/2MM21/2

D A 25)
Skewness o= —2\4—{—33,2 (26)
Flatness a= ]—Z‘%é 27

Periodic functions.—The above definitions may be ex-
tended to the case of a periodic function w«,(f). The
probability density can be completely determined from a
single wave length of w,(f) ; that is, it is sufficient to take T,
equal to the period. This complete a priori information is
a basic difference between periodic and random functions!

If w,(t) is measured experimentally then ¢(£) in equation
(21) can also be measured. If () is given in analytic
form then #;(£) may be calculated from equation (22). Thus
the distribution densities for simple wave shapes are casily
calculated. Table I gives the probability densities and
moments for the triangular wave, sine wave, and square
wave. Also included is the Gaussian probability density,
which is a standard reference for random functions.

The moments of the probability densities of these wave
shapes are shown in figure 2. The moments for the random
function increase much faster than those for the periodic
functions. This results from the fact that the maximum
values of a periodic function are fixed by its amplitude, while
for a random function all values are possible.

1.2

Gaussion---|

Ny r
6 Triongulor..

-Sine

Firoure 2.—Amplitude distribution moments.

¢ For a periodic function the ergodic principle may not be invoked; the ensemble aver-
age and the time average are not the same (unless the members of the ensemble have random
phase differences). It is the time average that is computed here, for comparison with the
experimental results, which are also time averages.

The probability density of a function which is partly
periodic and partly random is expected to display the
transition from one type to the other. The tendency toward
the random probability density should be strong. For
instance, random fluctuations in the amplitude of a sine
wave result in a large increase in the higher moments. It
is interesting to study the relation between probability
functions and spectra, particularly the case where most of the
energy is discrete but the fluctuation amplitude 1s random.

EXPERIMENTAL DATA

WIND TUNNEL

The experiments were all made in the GALCIT 20- by
20-inch low-turbulence tunnel (fig. 1). The turbulence level
is about 0.03 percent. The wind velocity may be varied
from about 50 centimeters per second (1 mile per hour) to
1,200 centimeters per second (25 miles per hour).

CYLINDERS

The cylinders used in the experiments varied in diameter
from 0.0235 to 0.635 centimeter. Music wire or drill rod
was used. The diameter tolerances are about 0.0002 centi-
meter. The cylinders spanned the tunnel so that the length
in all cases was 50 centimeters (20 inches); the cylinders
passed through the walls and were fastened outside the
tunnel.

RINGS

Some studies were made of the flow behind rings. These
were made up of wire. EKach ring was supported in the
tunnel by three thin support wires, attached to the ring
circumference at 120° intervals. Table IT gives the dimen-
sions of the rings used (where d is the wire diameter, D, the
ring diameter, and d;, the diameter of the support wire).

VELOCITY MEASUREMENTS

Velocities higher than about 400 centimeters per second
were measured with a pitot tube, calibrated against a
standard. The pressures were read on a precision manom-
eter to an accuracy of about 0.002 centimeter of alcohol.
Velocities lower than 400 centimeters per second were
determined from the shedding frequency of a reference
cylinder (0.635 centimeter), as explained in the section “Use
of Shedding Frequency for Velocity Measurements.”

Fluctuating velocities were measured with a hot-wire
anemometer (1/20 mil platinum). Only u(t), the fluctuating
velocity in the flow direction, has been measured so far.
The hot-wire was always parallel to the cylinder.

TRAVERSING MECHANISM

The hot-wire was mounted on a micrometer head which
allowed it to be traversed normal to the walke and positioned
to 0.001 centimeter. The head was mounted on a horizontal
lead screw which allowed traversing in the flow direction, in
the center plane of the tunnel. The positioning in this
direction was accurate to about 0.01 centimeter. The hori-
zontal lead screw could be turned through 90° to allow
traversing parallel to the cylinder, for correlation or phasc
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measurements (see the section “Space correlation function;
phase relations”). For this purpose, a second micrometer
head with hot-wire could be set up in a fixed position along
the line of traverse of the first hot-wire. Then correlations
could be measured between this point and the movable one.

ELECTRONIC EQUIPMENT

The hot-wire output was amplified by an amplifier pro-

vided with compensation up to 10,000 cycles per second.
The amplifier output could be observed on an oscilloscope
sereen or measured on a Hewlett-Packard Model 400¢ vac-
uum-tube voltmeter. Values of u? were obtained by reading
the root-mean-square voltage on the voltmeter. (This
voltraeter is actually an average-reading meter; it reads
true root-mean-square values only for a sine wave. A few
of the indicated root-mean-square values, for turbulent
velocity fluctuations, were checked against true root-mean-
square values as obtained from the statistical analyzer (see
the section ‘‘Statistical Analyzer”); these may differ up to
10 percent, depending on the wave shape, but, at present,
no corrections have been made, since the absolute values
were not of prime interest.) Usually only relative values of

u? were required, but absolute values could be determined
by comparing the voltage with that obtained by placing the
hot-wire behind a calibrated grid.

The frequencies of periodic fluctuations were determined
by observing Lissajous figures on the oscilloscope; that is,
the amplifier output was placed on one set of plates and a
known frequency on the other. This reference frequency
was taken from a Hewlett-Packard Model 202B audio oscil-
lator, which supplied a frequency within 2 percent of that
indicated on the dial.

FREQUENCY ANALYZER

Spectra were measured on a Hewlett-Packard Model 300A
harmonic wave analyzer. This analyzer has an adjustable
band width from 30 to 145 cycles per second (defined in
appendix A) and a frequency range from 0 to 16,000 cycles,
The output was computed directly from readings of the volt-
meter on the analyzer. It was not felt practicable to read
output in the frequency range below 40 cycles; therefore,
the continuous spectrum was extrapolated to zero frequency.

To determine the discrete spectrum in the presence of a
continuous background some care was required. In such
cases the analyzer reading gives the sum of the discrete
spectral energy and a portion of that in the continuous
spectrum, the proportions being determined by the response
characteristic of the wave analyzer. The value in the con-
tinuous part was determined by interpolation between bands
adjacent to the discrete band and subtracted out to give
the discrete value, as outlined in more detail in appendix A.

STATISTICAL ANALYZER

The statistical analyzer, designed to obtain probability
functions, operates on. the principle described in the section

“Distribution Functions;” here u(t) is a voltage signal. A
pulse train (fig. 3) is modulated by «(¢) and is then fed into
a discriminator which “fires” only when the input pulses
exceed a certain bias setting, that is, only when u(t)>¢.
For each such input pulse the diseriminator output is a pulse
of constant amplitude. The pulses from the discrinimator
are counted by a series of electronic decade counters termi-
nating in a mechanical counter.

The complete analyzer consists of 10 such diseriminator-
counter channels, each adjusted to count above a different
value of £ It will be seen that the probability function
obtained is the integral of the probability density described
in the section ‘“Distribution Functions;” that is,

P(g)=Probability that u(f)>¢

=f: plwdp

It is possible to rewrite the moments (see the section ‘Dis-
tribution Functions”) in terms of p(£), & more convenient
form for calculation with this analyzer. These are also
shown in table 1.

N\ ~ N\

Turbulence signaf

Pulse generator output

i

Modulator output

Discriminator output to counter

Freure 3.—Representative signal sequence for statistical analyzer.



\More complete details of the analyzer and computation
niethods may be found in references 17 and 18.

RESULTS

SHEDDING FREQUENCY

Sinee Strouhal’s first measurements in 1878 (ref. 1) the
relntion between the shedding frequency and the velocity
has been of interest to many investigators. Rayleigh (ref.
2, p. 413) pointed out that the parameter n,d/U, (now called
the Strouhal number 8) should be a function of the Reynolds

number.  Since then there have been many measurements of
the relationship (ref. 19, p. 570). One of the latest of these
is the measurement by Kovasznay (ref. 11), whose determina-
tion of S(R) covers the range of R from 0 to 10*. Kovasznay
also made detailed investigations of the vortex-street flow
pattern at low Reynolds numbers. He observed that the
street is developed only at Reynolds numbers above 40 and
that it is stable and regular only at Reynolds numbers
below about 160.
The present measurements of S(R) are given in figures 4 and
Except at Reynolds numbers between 150 and 300, the

5.
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scatter is small, and the measurements agree with those of
Kovasznay. The large number of cylinder sizes used results
in overlapping ranges of velocity and frequency so that
errors in their measurement should be ‘“‘smeared” out. It
is believed that the best-fit line is accurate to 1 percent.

The measurements are corrected for tunnel blockage, but
no attempt is made to account for end effects. With the
cylinder sizes used no systematic variations were detected.

NATURE OF VELOCITY FLUCTUATIONS

It was observed, as in Kovasznay’s work, that a stable,
regular vortex street is obtained only in the Reynolds number
range from about 40 to 150. The velocity fluctuations in
this range, as detected by a hot-wire, are shown on the
oscillograms in figure 6, for a Reynolds number of 80. These
were taken at two downstream positions, z/d=6 and 48, and
at several values of y/d. (The relative amplitudes are
correct at each value of z/d, but the oscillograms for z/d=48
are to a larger scale than those for z/d=6.) The frequencies
and amplitudes are quite steady; it is quite easy to determine
the frequencies from Lissajous figures (see the section
“Electronic Equipment’’), which, of course, are also steady

.220
} N
_-Best-fit fine ®
B \>B> a P |pp e q a
210 Y .zv v V;,__z,(_b‘ xl>‘<1‘ Ag o NPy W N P0G W ———
e i > 1 e v >
’;g\s"‘v_’—\y—“’; , i 3 v
o212 (- 1&7)
.200
190
180
&)
g,
5 170 acm
= o 0.0235
£ o 0362
§ ¢ .0613
a  .0800
160 v .0989
> .58
4 318
vy .635
150 <] Kovasznay
Ab2 "Tail" indicates thot velocity
was computed from shedding
frequency of a second cylinder
140
130
.120 -
0 100 200 300 400 500 600 700 800 900 1,000 1,00 1,200 1300 1400

Reynoids number, 7

Fiaure 4.—Strouhal number against Reynolds number for circular eylinder.
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(b) ‘ R =180

(¢ F =500
d=0.158 centimeter; z/d="6; y/d=1; {/d=>50.

Ficure 7.—Simultaneous oscillograms.

Another example, at R==145, is shown in figure 7(a).
(The double signal was obtained for correlation studies and
is referred to later in the section “Spanwise Correlation and
Phase Measurements.” The dotted nature of the trace is
due to the method of obtaining two signals on one screen,
using an electronic switch.)

At Reynolds numbers between about 150 and 300 there
are irregular bursts in the signal. An example is shown in
figure 7 (b), at R==180 and z/d=6. The bursts and irregu-
larities become more violent as R increases. It is rather
difficult to determine the frequency. The Lissajous figure
is unsteady because of the irregularity, but, in addition, the
frequency, as well as it can be determined, varies a little.
This is the reason for the scatter in this Reynolds number
range. Two separate plots of S(R) obtained in two different
runs are shown in figure 8. They illustrate the erratic
behavior of S(R) in this range. '

At Reynolds numbers above 300, signals like that in figure
7 (c) were obtained (near the beginning of the wake). This
is typical of the velocity fluctuations up to the highest value
of R investigated (about 10,000). There are irregularities,
but the predominant (shedding) frequency is easy to deter-
mine from a Lissajous figure. The Lissajous figure in this
case is not a steady loop, as it is at B=40 to 150, but neither

L-84890

is it s0 capricious as that at B==150 to 300, and the matching
frequency is quite easily distinguished from the nearby
frequencies. ‘

At z/d=48, in this range, all traces of the periodicity have
disappeared and the fluctuations are typically turbulent.

.220
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(a) d=0.0362 centimeter.
(b) d=0.318 centimeter.

Ficurs 8.—Plot of S(R) for two single runs.
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REGULAR AND IRREGULAR VORTEX STREETS

The above observations show that there are three charac-
teristic Reynolds number ranges, within the lower end of the
shedding range. These will be called as follows:

Stable range 40<R<150

Transition range 150<C R<300

Irregular range 300<R<10,000+
Asnoted above, the actual limits of these ranges are somewhat
in doubt and may depend on configuration, free-stream tur-
bulence, and so forth. Also the upper limit of the irregular
range is undoubtedly higher than 10,000. (Periodic fluctua-
tions in the wake have been observed up to the critical
Reynolds number, about 200,000, but the present measure-
ments did not extend beyond 10,000.)

In addition to the differences in the nature of the velocity
fluctuations, the ranges are characterized by the behavior of
the Strouhal number: In the stable range S(R) is rapidly
rising, in the irregular range it is essentially constant, and
in the transition range it is “unstable.”

Tt will be seen in the further results presented below that
all phases of the wake development are different in the two
ranges, stable and irregular, and that they are indeed two
different regimes of periodic wake phenomena.

RELATION OF SHEDDING FREQUENCY TO DRAG

The relation between the Strouhal number S(R) and the
drag coefficient Cp(R) has often been noted (ref. 19, p. 421).
Roughly, rising values of S(R) are accompanied by falling
values of Cp(R) and vice versa.

The relation to the form drag is even more interesting. The
total drag of a cylinder is the sum of two contributions: The
skin friction and the normal pressure. At Reynolds numbers
in the shedding range the skin-friction drag is ‘“‘dissipated”
mainly in the cylinder boundary layer, while the pressure
drag (or form drag) is dissipated in the wake. It may,
then, be more significant to relate the shedding frequency
to the form drag, both of which are separation phenomena.
The R-dependence of the pressure drag coefficient Cp,,
taken from reference 19, page 425, is shown in figure 5. It
has several interesting features:

(a) Cp, is practically constant, at the value Up,=1.

(b) The minimum point A is at a value of E close to that

at which vortex shedding starts.

(c) The maximum point B is in the transition range.

(d) In the irregular range Cp,(F) is almost & “mirror re-

flection” of S(R).

Since the drag coefficient is an “integrated” phenomenon,
it is not expected to display so sharply detailed a dependence
on R as does the Strouhal number, but these analogous varia-
tions are believed to be closely related to the position of the
boundary-layer separation point, to which both the shedding
frequency and the pressure drag are quite sensitive.

USE OF SHEDDING FREQUENCY FOR VELOCITY MEASUREMENTS

The remarkable dependence of the shedding frequency on
the velocity and the possibility of accurately measuring S(R)

323328—55——3

make it possible to determine flow velocities from frequency
measurements in the wake of a cylinder immersed in the flow.
At normal velocities the accuracy is as good as that obtain-
able with a conventional manometer, while at velocities
below about 400 centimeters per second it is much better.
(For instance, at a velocity of 50 centimeters per second the
manometer reading is only about 0.001 centimeter of alco-
hol.) 1In fact, in determining S(R) in the present experi-
ments, this method was used to measure the low velocities by
measuring the shedding frequency at a second reference cyl-
inder of large diameter. The self-consistency of this method
and the agreement with Kovasznay’s results are shown in
figure 4.

For velocity measurements it is convenient to plot the
frequency-velocity ‘relation in terms of the dimensionless
parameter F (see the section ‘“Shedding Frequency’’) as has
been done in figures 9 and 10. The points on these plots
were taken from the best-fit line in figure 4. They are well
fitted by straight lines

(18) F=0.212R—4.5
(1b) F=0.212R—2.7

50< R<150
300< R<2,000

which correspond to

(28) §=0.212 (1—21.2/R)
(2b) 8=0.212 (1—12.7/R)

50<R<150
300< R< 2,000
Line (2b) has been plotted in figure 4 to compare with what
is considered the best-fit line. The agreement is better than

1 percent. Ifline (2b) is extended up to B==10,000, the maxi-
mum error. relative to the best-fit line, is 4 percent.

30

25

20

F=n|d2/u

’ /
A

0 20 40 60 80 100 120 140
R=Uypd /v

Froure 9.—Plot of F against B (50<{R<(140). F=0.212R—4.5.
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500 \ \
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F=0212R-2.7
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o s F 9212/‘?‘ 45
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R=U,dfv

Froure 10.—Plot of F against R (50< k< 2,000).

The plot of F(R) is used as follows: The shedding frequency
is observed and F'=n,d?/v is calculated (vis easily determined);
R 1s found on the F(R) plot and the velocity is calculated
from R=U,d/v.

WAKE ENERGY

From the velocity traces on the oscilloscope (figs. 6 and 7)
1t is clear that in the regular range the fluctuating velocity
u(t) 1s purely periodic, while in the irregular range some of
the fluctuations are random. This difference is illustrated
in figure 11 which shows the distribution of energy intensity
(u/U,)* across the wake at two Reynolds numbers, one in the
regular range, at R==150, and one in the irregular range, at
R=500. Only half the wake is shown for each case; the one
at R=150 is plotted on the left side of the figure and the one
for R=500 on the right.

The total energy intensity (u/U,)? at each point was de-
termined directly from the reading on the root-mean-square
voltmeter (see the section “Electronic Equipment”). The
components at the frequencies n, and n, were determined

by passing the signal through the wave analyzer. The curves
in each half of figure 11 satisfy the equalities
2 2 2
(2) =) +() R=is
ll“ 2_‘ U b '@2:2 Uy N2 _
() =) +@) +(F) fr=500

The values of (u/U,)% (u/U,)?% and (u,/U,)? were obtained
by measurement (and at R=150 are self-consistent) while
(u,/U,)? was obtained by difference. The absolute values in-
dicated are somwhat in doubt since the vacuum-tube volt-
meter i1s not a true root-mean-square meter but are believed
accurate to about 10 percent.

The particular feature illustrated in figure 11 (already ob-
vious from the oscillographs) is the absence of turbulent
energy at B=150 as contrasted with the early appearance of
turbulent energy at R=500. This contrast is typical of the
regular and irregular ranges.

The measurements shown were made at 6 diameters down-
stream, but the same features exist closer to the cylinder.

032 — ‘
028 (@ f{\ _U_)z (b)

ARG

020 ﬂ v 2\ (@¥
|| NI
&) 7

012

008 i “upe —
NEVER AR
P
%.O 25 20 15 10 5 O 5 10 15 20 25 g‘O
y74 W

(a) R==150.

(b) R==500.

Ficure 11.—Wake energy. d==0.190 centimeter; x/d=06.
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DOWNSTREAM WAKE DEVELOPMENT

The downstream development for the case of figure 11
(but B=500 only) is shown in figure 12. The distribution of
total energy intensity (u/U,)* is shown on the left of the
figure and the discrete energy intensity (u,/U,)?% at the shed-
ding frequency, is shown on the right. Traverses were
made at 6, 12, 24, and 48 diameters downstream. The
discrete energy decays quite rapidly and is no longer measur-
able at 48 diameters. (Note that the plot of (u,/l/,)* ut 24
diameters is shown magnified 10 times, for clarity.) A plotof
(u2/U,)* has unot been included since it can no longer bhe
measured at even 12 diameters. The distribution of (u,/{ ,}*
may be obtained from these curves by difference.

Figure 13 presents the downstream wake development in
another way. The wake energy E was calculated by integra.
tion of curves like those in figure 12 (cf. the section “ln-

ergy’’); that is,
(" 2y, (v
2= [ (&) ¢(5)

Figure 13 is a plot of the energy ratio (E;-+E,)/E, that is, the
ratio of the discrete energy relative to the total encrgy.

In the irregular range the energies were computed in this
way at R==500 and 4,000 (two cylinder sizes in each case)
and R=2900 (one cylinder). Figure 13 shows that the
decay in all these cases is similar and the wake is completely
turbulent at 40 to 50 diameters.

The value of a/d for which E,/E becomes zero was detoer-
mined for a variety of cylinders, varying in size from 0.06
to 1.3 centimeters and at Reynolds numbers from 200 o
10,000. The value was found to lie between 40 and 50 in nli
cases but closer to 40. A precise determination is diflieult
(and not important) because of the asymptotic approach of
EL/E to zero (E: is already zero at less than 12 diameters;,

In contrast with this, the stable range (R=50 and 100 in
fig. 13) has no development of turbulence before 50 dinmeters,
The plots for R=150 and 200 illustrate the rather spectaculny
transition from the stable range to the irregular.
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Figure 12.—Wake development. d=0.190 centimeter; E==500.
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Ficure 13.—Decay of discrete energy.

For R=50 and 100 the energy ratio remained constant at
unity up to z/d=100. Beyond that the energy intensity
is 86 low that the tunnel turbulence cannot be neglected.

MEASUREMENTS OF SPECTRUM

Figure 14 shows spectrum measurements at 6, 12, 24, and
48 diameters downstream at a Reynolds number of 500,
in the irregular range. The lateral position y/d chosen for
the measurement at each z/d is the one for which (u,/U,)%1s a
maximum (cf. fig. 12). The method of plotting is as follows.
The curve through the experimental points is the continuous
spectrum F,(n), plotted in normalized coordinates. The
discrete energies Fy=8(n—n,) and Fp=5(n—n,) are incicated
by narrow “bands” which should have zero width r~a infinite
height but are left “open” in the fizuve. The relative
energies represented by the areas under the corinuous curve
and under the delta functions, res~or4ivelv. e marked in
the figure with values of u,2/u* and w,*/u?, us-ju".

4

——- Reference curve ¢ = W

Fieure 14.—Downstream development of spectrum. d=0.190
centimeter; R=500; n,=440.

To normalize the continuous spectrum the dimensionless

parameters <p=%3 F.(n) and n==£ n are used. In each case

U,

the curve ¢== is included for reference. The nor-

4
1+ (2my)*
malizing coeflicient L was determined as follows:
(a) F,(0) was found by extrapolation of the measured
values to n=0.
(b) F,(0) and the other values of F,(n) were normalized
to make S F(n)dn=1.

(¢) L was found from gf" F,(0)=4.

In short, the measured curve and the reference curve were
made to agree in ¢,(0) and in area. This requirement deter-
mines L.

In these coordinates the shedding frequency shows an ap-
parent increase downstream; this is because the normalizing
parametec L increases. For 2/d=48 the shedding frequency
(i. e , ;) is marked with a dash; it contains no discrete energy
at this value of z/d.

The “bumps’”’ in the continuous spectrum, near n, and
ns, indicate a feeding of energy from the discrete to the
continuous spectrum. The portion of the spectrum near
n=0, which is established early and which contains a large
part of the turbulent energy, seems to be unrelated to the
shedding frequency (cf. fig. 15). As the wake develops the
energy in the bumps is rapidly redistributed (part of it
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Ficure 15.—Downstream development of spectrum. d=0.953
centimeter; R=4,000; n;=144.

decays) to smooth the spectrum, which, in the fully de-
veloped turbulent wake at 48 diameters, tends toward the
characteristic curve <p=~—-~é-—~-

1+ (2mn)*

In figure 16 the spectrum for z/d=12 and y/d=0.8 is
plotted together with the one at y/d=0. The curves are sim-
ilar at low frequencies (large eddies) and at high frequencies;
they differ only in the neighborhood of the discrete band.
(The slight discrepancy between this figure and fig. 14 is
due to the fact that they were measured at two different
times, when the kinematic viscosity v differed. This re-
sulted in different values of n; at the same R.)

A similar downstream development is shown in figure 15
for R=4,000. Here the spectrum at z/d="6 is smoother than
that in the previous example (fig. 14). This effect may be
due not so much to the higher Reynolds number as to the
fact that the shedding frequency is closer to the low frequen-
cies; that is, the shedding frequency 1s “embedded” in the
low-frequency turbulent band. It seems to result, at 48

diameters, in a much closer approach to the reference curve.

Figure 17 shows the spectra at 48 diameters for three
cylinders and several values of y/d. It is remarkable that
R=4,000, d=0.477 centimeter agrees better with R=>500,
d==0.190 centimeter than with R=4,000, d=0.953 centi-
meter. This seems to bear out the above remark about the
relative influence of R and n,, for the respective shedding
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Finally it may be noted that values of %, which in fipune
11 were obtained by difference, check well with the values
computed from ul= fF,(n)dn (before nornmlizatiom ol
F.(n)).

Spectra for the regular range are not presented, for thes
are simple discrete spectra.

SPANWISE CORRELATION AND PHASE MEASUREMENTN

The function B, was not measured, but the muin fentares
of the spanwise correlation® are illustrated in figures 7 and 1%
Figure 7 shows three examples, in each of which winintie
neous signals were obtained from two hot-wires nt rd &
and y/d=1 and separated by 50 diameters spanwise  The
two signals were obtained simultaneously on the osedloscaps
screen by means of an electronic switeh.
the dotted traces.
At R==145 (fig. 7 (a)) the correlation is perfect, hut thers
iS & phase Shlft At R=180 (ﬁg 7 (}))) the correlntion ia
still good, but the individual signals oceasionnlly broak

This necounts for

3 In the remainder of this section a distinction is mude between the terms
funetion’ and ‘‘correlation.”

frequencies are 565, 440, and 144.

Teaspe
The former refers to the funetion defiind dn te
‘Space correlation function; phase relations,” while the Intter s tned oo boges ¢
tive sensc.
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Frgure 18.—Correlation figures. d=0.158 centimeter; z/d="56; y/d=1;
exposure, 4 second.

down. The breakdowns are uncorrelated at this distance of
50 diameters. At B=>500 (fig. 7 (c)) each signal still shows
a predominant frequency. There is some variation in phase
between the two signals. The amplitude irregularities
appear to be uncorrelated.

Figure 18 shows the correlation figures obtained by plac-
ing the signals of the two hot-wires on the horizontal and
vertical plates, respectively, of the oscilloscope.

For K=80 and {/d=100 a steady Lissajous figure is
obtained, showing that the periodic fluctuations at the two
points (100 diameters apart) are perfectly correlated (but
they a2re not in phase).

For R=220 and 500 there is good correlation only at small
values of ¢/d, that is, only when the two hot-wires are in the
same ‘“‘eddy,”’ so to speak. For R=500 the figures are
similar to those obtained in fully developed turbulence.

In obtaining these correlations a remarkable phenomenon
was observed. The stable vortex street (i. e., R<(150) has
a periodic spanwise structure. This was shown by the phase
shifts on the Lissajous figure, as the movable hot-wire was
traversed parallel to the cylinder. From the phase coinci-
dences observed, the wave length parallel to the cylinder
was about 18 diameters at a Reynolds number of 80. It has
not been determined whether this periodicity structure is
due to a “waviness” in the vortex filaments or whether the
vortex filaments are straight but inclined to the cylinder
axis. ~

STATISTICAL MEASUREMENTS

A few amplitude distribution functions were measured
and are shown in figure 19. One measurement is in the
stable range; the other shows downstream development in
the irregular range.

|2 T T T T T
R oy o ¢ a
| °© 100 6 13 008 115 17
0 050 6 6 49 120 2377
) ©500 12 75 35 12| 258
B 4500 24 16 44 123 290
8 v 500 48 25 67 124 313+
PlE) "@(} ——OS5(ixerf £) O 125 30
Q——-045—£/~/§ o] 1.156 18
6 &\'
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20 16 12 8 4 0 4 8 12 16 20

Fraure 19.—Distribution functions. d=0.190 centimeter.

The table in figure 19 shows values of ¢ and « computed
from these curves. The behavior, of course, is as expected,
butb the numerical values are of some interest. These values
(and the curves) show that at R=100 the signal was prac-
tically triangular but had rounded “tops.” At R=2500 the
downstream development of randomness is shown by the
tendency of ¢ and o toward the Gaussian values.

The distribution is in fact not Gaussian, as may be seen
in the figure, for its skewness o is quite high.

VORTEX RINGS

The flow behind wire rings was briefly investigated. The
dimensions of the rings used are given in table II.
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With the rings of diameter ratio D/d=10 vortices are shed
from the wire in almost the same way as from the straight
wire, and there is apparently an annular vortex street for
some distance downstream. The Strouhal number, meas-
ured from R==70 to 500, is lower than that for the straight
wire (about 3 percent at R=>500 and 6 percent at R=100).

Fluctuating velocity amplitudes were measured in the
wake at several downstream positions. The results for the
largest ring, measured along 2 diameter, are shown in figure

20. It should be noted that \/ZL_? rather than the energy
has been plotted here (¢f. fig. 11); only relative values were
computed. Close behind the cylinder the wake behind
the wire on each side of the ring is similar to that behind the
straight wire, but the inside peaks are lower than the outside
peaks. This may be partly due to the interference of the
hot-wire probe, for a similar effect, much less pronounced,
was noticed in the measurements behind a straight wire.

Farther downstream there was some indication of strong
interaction between the vortices, for a peak could not be
followed ‘‘smoothly”. downstream. However, the investi-
gations were not continued far enough to reach conclusive

results. At about 40 diameters downstream the flow became
unstable.
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Ficure 20.—Shedding from a ring. d=0.168 centimeter; D=1.59
centimeters; R=100; n;=84.

The ring with D/d=5 behaved somewhat differently.
The observed frequencies gave values of Strouhal number as
shown in table IJII. The table shows values of § and R
based on the wire diameter, as well as values of S;, and B
based on ring diameter. Between R=153 and 182 there is
a sudden increase in S, and at higher Reynolds numbers, in
what corresponds to the irregular range, the shedding is
similar to that from a straight wire, while in the stable range
the shedding is at a much lower frequency. From the
observations made it seems likely that in the stable range the
ring acts like a disk, shedding the vortex loops observed by
Stanton and Marshall (vef. 18, p. 578, and ref. 20). Stanton
and Marshall do not give their frequency-velocity observa-
tions except at the critical Rp, where shedding first starts.

They observed this to be at about B,=200, with a corre-
sponding Sp, of 0.12.

Again, these experiments were too incomplete to warrant
definite conclusions, but the difference in behavior for D/d=10
and D/d=5 is interesting. This behavior is similar to that
observed by Spivack (ref. 21) in his investigation of the
frequencies in the wake of a pair of cylinders which were
separated, normal to the flow, by a gap. He found that
when the gap was just smaller than 1 diameter instability
occurred. For larger gaps the cylinders behaved like indi-
vidual bodies, while for smaller gaps the main frequencies
were, roughly, those corresponding to a single bluff body of
dimension equal to that of the combined pair, including the
gap.

DISCUSSION

The most significant results of this investigation may be
discussed in terms of the Reynolds number ranges defined
in the section ‘“Regular and Irregular Vortex Streets,”
namely, the stable range from E=40 to 150, the transition
range from R=:150 to 300, and the irregular range above
R=300.

STABILITY

The transition range from R=150 to 300 displays the
characteristics of a laminar-turbulent transition, and it is
instructive to compare the stability of the flow around the
cylinder with boundary-layer stability. The flow in the
irregular range has turbulent characteristics, while in the
stable range it is essentially viscous.

The Reynolds number regimes may be described as follows:
Below R=40 the flow around the cylinder is a-symmetrie,
viscous configuration, with a pair of standing vortices be-
hind the cylinder. At about R=40 this symmetric configu-
ration becomes unstable. It changes to a new, stable con-
figuration which consists of alternate periodic breaking away
of the vortices and formation of a regular vortex street. The
change at R=40 is not a laminar-turbulent instability;
it divides two different ranges of stable, viscous flow. In
either range, disturbances to the stable configuration will
be damped out.

On the other hand, the transition range from E==150 to 300
involves a laminar-turbulent transition. To understand
how this transition is related to the vortex shedding, it is
necessary to know something about the formation of the
vortices. Involved in this formation is the ecirculating
motion behind the cylinder as shown in the following sketch.
A free vortex layer (the separated boundary layer) springs
from each separation point on the cylinder. This free layer
and the backflow behind the cylinder establish a cireulation
from which fluid “breaks away’”’ at regular intervals.
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Sketch 2.
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The laminar-turbulent transition is believed to occur
always in the free vortex layer; that is, the circulating fluid
becomes turbulent before it breaks away. Then each vortex
passing downstream is composed of turbulent fluid.

The point in the free vortex layer at which the transition
occurs will depend on the Reynolds number. This transition
was actually observed by Schiller and Linke (ref. 18, p. 555,
and ref. 22) whose measurements were made at cylinder
Reynolds numbers from 3,500 to 8,500. The distance to the
transition point, measured from the separation point, de-
creased from 1.4 diameters to 0.7 diameter, and for a given
Reynolds number these distances decreased when the free-
stream turbulence was increased. Dryden (ref. 23) observed
that at some value of R, depending on free-stream turbulence
and so forth, the transition point in the layer actually reaches
the separation point on the cylinder. Transition then re-
mains fixed and vortex shedding continues, essentially
unchanged, up to Reynolds numbers above 100,000, that is,
up to the value of R for which transition begins in the cylinder
boundary layer ahead of the separation point. Tt is quite
likely that even above this critical value of R the phenome-
non is essentially unchanged, but now the vortex layers are
much nearer together and the vortices are diffused in & much
shorter downstream distance.

In summeary, vortex formation in the stable range occurs
without laminar-turbulent transition. The circulating fluid
breaks away periodically, and alternately from the two sides,
forming free ‘“‘viscous” vortices which move downstream
and arrange themselves in the familiar vortex street. In
the irregular range transition occurs in the circulating fluid
before it breaks away, and the vortices are composed of
turbulent fluid. The transition range corresponds to the
similar range in boundary-layer stability, and it displays a
similar intermittency. The values R=150 and 300 used to
define the range are expected to be different in other experi-
ments, depending on wind-tunnel turbulence, cylinder
roughness, and so forth.

SHEDDING FREQUENCY

The Strouhal number and Reynolds number dependence
is different in the two ranges. In the stable range S(R) is
rapidly rising, while in the irregular range it is practically
constant.

Fage and Johansen, who investigated the structure of the
free vortex layers springing from the separation points on
various bluff cylinders (ref. 9), made an interesting observa-
tion on the relation of the shedding frequency to the distance
between the vortex layers. This distance increases as the
cylinder becomes more bluff, while the shedding frequency
decreases. In fact, if & new Strouhal number S’ is defined in
terms of the distance d’ between the free vortex layers
(instead of the cylinder dimension d), then a universal
value S/~0.28 is obtained for a variety of (bluff) cylinder
shapes. The measurements of reference 9 were made at
R=20,000, but it is believed that the similarity exists over
the whole irregular range. It does not extend to the stable
range. To check this point the shedding frequency was
measured in the wake of a half cylinder placed with the flat
face broadside to the flow. It was found that S(R) was

rising for Reynolds numbers below 300 and then became
practically constant at the value S=0.140. For a similar
case, at 1==20,000, Fage and Johansen found §=0.143.

The universality of the constant S” is useful in systematiz-
ing the shedding phenomena (at least in the irregular range).
It indicates that when the circulating fluid behind the cyl-
inder is turbulent then the formation of free vortices is
similar for a variety of bluff shapes and over a wide range
of Reynolds numbers.

Finally, the relation between Strouhal number and form
drag coefficient has been mentioned in the section “Relation
of Shedding Frequeney to Drag.” In the irregular range
the slight variations in S(R) reflect slight variations of Cp,
and so, probably, of the separation point. However, con-
stancy of (', is not enough to insure a fixed separation point.
For instance, (,, remains practically constant down to
Reynolds numbers below the shedding range, but the separa-
tion point there is farther back than it is at higher Reynolds
numbers. It would seem worth while, and fairly easy, to
measure the position of separation as a function of Reynolds
number over the whole shedding range, that is, to complete
the data available in the literature.

DOWNSTREAM DEVELOPMENT

The way in which the wake develops downstream is quite
different in the stable and irregular ranges.

When the circulating fluid breaks away before the occur-
rence of transition in the free vortex layers (i. e., below
R=150), then the free vortices which are formed are the
typical viscous vortices. There is no further possibility
for the fluid in them to become turbulent. The vortices
simply decay by viscous diffusion as they move downstream
(see the section ‘“‘Spread of Vortex Street” in appendix B).

When turbulent transition does occur, then the vortices
which are formed consist of turbulent fluid. They diffuse
rapidly as they move downstream and are soon obliterated,
so that no evidence of the shedding frequency remains. This
development to a completely turbulent wake takes place in
less than 50 diameters. In terms of the decay of the discrete
energy (fig. 13), the development is roughly the same for
Reynolds numbers from 300 to 10,000.. This again indicates
a remarkable similarity over the whole irregular range.

The stable and wrregular ranges are also characterized by
the difference in the energy spectra of the velocity fluctua-
tions. It has been pointed out that in the irregular range a
continuous, or turbulent, part of the spectrum is established
at the beginning of the wake development. This turbulence
is a result of the transition in the free vortex layers and might
be expected to be independent (at first) of the periodic part
of the fluctuation, which results from the periodic shedding.
Indeed, most of the energy at first is concentrated at the
shedding frequency n; (some at ns), and it may be represented
as a discrete (delta function) part of the spectrum, within the
accuracy of the measurements (cf. appendix A). However,
the continuous and discrete parts are not entirely independ-
ent, as shown by the bumps near n, and n, (fig. 14). This
may be regarded as a result of energy “feeding” from the
discrete to the continuous parts of the spectrum, and it
proceeds in a way which tends to smooth the spectrum. Such
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transfer of energy between spectral bands is a process de-
pending on the nonlinear terms of the equations of motion.
The “activity” in the spectrum, at any stage of its develop-
ment, may be regarded as an equilibrium between the
nonlinear and the viscous terms. It is an important problem
in the theory of isotropic turbulence.

The spectral activity near the frequency of discrete energy
might be looked upon as a simplified case in which a single
band has an excess of energy and the spectral energy flow is
unidirectional, that is, out of it into the adjacent bands.
However, the nonhomogeneous character of the field involved
(the wake) reduces the simplicity, for it is necessary to take
account of energy transfer across the wake. One interesting
possibility is to superimpose a homogeneous (isotropic)
turbulent field, by means of a screen ahead of the shedding
cylinder, and to study the effect of this field on the spectral
activity near the discrete band. Although the wake will still
introduce nonhomogeneity (not even counting the periodic
part of the motion), it may be possible to arrange the relative
magnitudes to give significant results from the simplified
model.

To study such problems the technique for measuring the
spectrum (appendix A) near the frequency of discrete energy
will be improved.

To summarize, it is suggested that the initial development
of the spectrum might be regarded as follows: The continu-
ous and the discrete parts are established independently, the
one by the transition in the vortex layers and the other by
the periodic shedding. The turbulence due to the transition
is the “primary” turbulent field and its spectrum is the
typical, continuous (turbulent) spectrum. (It has been noted
in the section ‘“Measurements of Spectrum’ that the low-
frequency end of the spectrum is established early; it would
contain only energy of the primary field.®) The discrete part
of the spectrum is embedded in the turbulent part, and it
thereby is “excited” into spectral transfer. Some of its
energy is transferred to the adjacent frequency bands result-
ing, initially, in the development of bumps in the continuous
spectrum. Subsequently, as the spectral transfer proceeds,
the spectrum becomes smooth.

The above discussion is an abstract way of saying that the

vortices are diffused by a turbulent fluid (instead of a viscous

one). The diffusion involves the nonlinear processes typical
of turbulence; the study of these processes, in terms of
spectrum, is an important problem.

There is a similar case of turbulent, periodic structure in
the flow field between two cylinders, one of which rotates.
Taylor’s discovery of the periodic structure of the flow is
well known (ref. 24). When the inner cylinder rotates, it
is possible to obtain a steady, regular arrangement of ring
vortices, enclosing the inner cylinder, and having, alternately,
opposite directions of circulation. Above a critical value of

8 In the theory of homogeneous turbulence it is shown that the low-frequency end of
the spectrum is invariant, a property related to the Loitsianski invariant.

the speed of rotation this laminar, periodic structure be-
comes unstable and the fluid becomes turbulent, but alternate
ring-shaped vortices still exist at speeds several hundred
times the critical speed (ref. 25).

STATISTICS

The probability distribution functions (fig. 19) display the
characteristics which are expected, from the other observa-
tions. The contrast between the functions at £=100 and
R==500, that is, in the stable and irregular ranges, respectively,
is quite evident. In the irregular range, even at x/d=8,
where most of the energy is discrete, there is a marked
irregularity in the fluctuation, as shown by the high value of a.

However, these descriptions are little better than qualita-
tive, and it is hoped to obtain more interesting results by
extending these statistical methods. Of particular interest
in the development of random from periodic motion would
be the relation between the probability distributions and the
the spectra. For instance, it is plain that a purely periodic
function (discrete spectrum) will have a probability dis-
tribution with finite cutoff, while development of random
irregularities in the function’s amplitude is strongly re-
flected in (1) a “spreading” of the distribution function to
higher values of ¢ and (2) the appearance of a continuous
spectrum. However, the relation between the two is not
unique; that is, the spectrum does not give (complete)
information about the probability distribution, and vice
versa.

SUGGESTIONS FOR FUTURE INVESTIGATIONS

Some further lines of investigation indicated by these
experiments are sumimnarized below.

(a) The transition from the stable to the irregular range
should be investigated with controlled disturbances, for
example, cylinder roughness and free-stream turbulence.
It is expected that the limits of the transition range (roughly
R=150 to 300 for the experimental conditions here) will be
lower for higher free-stream turbulence or cylinder roughness.
The critical cylinder Reynolds numbers should be related to
corresponding numbers for the transition point in the free
vortex layers (based on distance from separation point or on
the thickness of the layer).

Such studies of stability to different disturbance amplitudes
and frequencies are well known in the case of the boundary
layer. A variation of the experiments of Schubauer and
Skramstad (ref. 26), who used an oscillating wire in the
boundary layer to produce disturbances of definite fre-
quencies, would be to use a second shedding cylinder.

(b) A study of the spectral development in the neighbor-
hood of a discrete band, the effect of a turbulent field on its
activity, and so forth (discussed in the section “Downstream
Development”’) may be the most fruitful continuation of
these experiments. So far, the problem has been approached
only in the theory of isotropic turbulence, where it has not
advanced much beyond the similarity considerations of
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Kolmogoroff, and very Jittle is known about the form of the
spectral transfer function.

Interactions between discrete bands, for example, at
slightly different frequencies, can be studied by the use of
two or more cylinders arranged to “interfere” with each
other (some such studies have been made by Spivack (vef.
21) but not from this viewpoint), or possibly by using one
cylinder having diameter changes along its span.

(¢) Townsend has recently used the concepts of intermit-
~ tently turbulent flow and local isotropy in his investigations
of the turbulent wake and has obtained a new description of
its structure (ref. 27). His studies were made at downstream
distances of 80 diameters or more, so that the wake was fully
turbulent. Probably the structure he describes is essentially
the same up to the beginning of the fully developed wake
(about 50 diameters), but then there is the question of how
it is related to the earlier developments. The most obvious
“early developments” are the turbulent transition in the
free vortex layers and the periodic shedding. (Although the
shedding frequency is no longer distinguished far down-
stream, it is prominent in the early spectral developments
and thus has an influence on the downstream wake.)

Such studies will involve considerably more detailed
investigations of the wake structure than were made here,
possibly along the lines of Townsend’s experiments and the
classical measurements of energy balance across the wake.
The other two components of the energy ¢ and w? will be
needed.

(d) The nature of the circulating flow behind the cylinder
and the formation of free vortices, that is, the shedding
mechanism, should receive further attention.

(e) The spanwise periodic structure of the vortex street
should be investigated, beyond the very cursory observations
made here. In particular, a study of the stability of single
vortex filaments seems important.

(f) Measurements of the fluctuating forces on the cylinder,
due to the shedding, would be interesting and should have
immediate practical applications. There seems to be very
little information about the magnitude of these forces. It

might be obtained either by direct measurement of forces
(on a segment) or pressures (with pressure pickups) or
inferred from measurements of the velocity fluctuations close
to the eylinder. In addition to the magnitude of the force
or pressure fluctuations, their spanwise correlation is of
prime importance.

CONCLUSIONS

An experimental investigation of the wake developed
behind eircular cylinders at Reynolds numbers from 40 to
10,000 indicated the following conclusions:

1. Periodic wake phenomena behind bluff cylinders may
be classified into two distinet Reynolds number ranges
(joined by a transition range). For a circular cylinder these
are:

Stable range

Transition range 150<R<300

Irregular range 300<R<10,000+
In the stable range the classical, stable Kdrmén streets are
formed; in the irregular range the periodic shedding is
accompanied by irregular, or turbulent, velocity fluctuations.

2. The irregular velocity fluctuation is initiated by a
laminar-turbulent transition in the free vortex layers which
spring from the separation points on the cylinder. The
first turbulent bursts occur in the transition range defined
above. v

3. In the stable range the free vortices, which move
downstream, decay by viscous diffusion, and no turbulent
motion is developed. In the irregular range the free vortices
contain turbulent fluid and diffuse faster; the wake becomes
fully turbulent in 40 to 50 diameters.

4. A velocity meter based on the relation between velocity
and shedding frequency is practical.

5. In the stable range a spanwise periodic structure of the
vortex street has been observed.

6. An annular vortex-street structure has been observed
behind rings having a diameter ratio as low as 10.

40<R<150

Cavrrornia INsTITUTE OF TECHNOLOGY,
Pasapuna, Cavir., May 29, 1952.

APPENDIX A
EXPERIMENTAL ANALYSIS OF SPECTRUM

These notes supplement the brief descriptions in the
sections “Frequency Analyzer” and “Measurements of
Spectrum.”

ANALYZER RESPONSE

Consider the response of a spectrum analyzer, such as
that used in the present experiments, to a mixed periodic-
random input, and in particular consider the problem of
inferring the input from the output.

The input, an energy or power, has a random and a periodic
component:

=4’ (A1)
The correspouding spectra are defined by
— — o N
u‘z:qu F@n)dn
0
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where

Fi(n)=s(n—mn,) (A3)

and 6(n) is the Dirac delta function.

The response characteristic of the analyzer may be ob-
tained by considering the effect of a periodic input. When
che analyzer setting n, coincides with the input frequency n,
the output is & maximum, and when the setting is moved
away from n, the output falls off. The response character-
istic is

Output at setting n,
Output at setting n,=m

Riny—n )= =R(n,—n) (Ad)
The output spectrum G(n,) of the analyzer is related to the
input spectrum F(n) by (cf. ref. 15)

Gn)= fo " F)R(n—n.)dn

U

e f " FmRn—n)dn+ L f ¥ b(ni—n.) R (n—n.)dn
K74 0 u 0
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—% [ " FRo—n) i+ Rou—n.) (A5
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Since B (n—mny) is sharp, that is, almost a delta function (see
the section “Half Band Width"”), F,(n) may be considered

to be constant over the significant interval of integration in

equation (A5). Then

G0 =" F ) Q4+ B (=) (46)
u W

where

o=/ Ra—n)dn= [ Ra—nydn, (A7
4
is the area under the response characteristic.

Equation (A6) gives the output for a mixed periodic-
random input. It is required to find the separate terms
which make up this sum. The procedure is outlined in the
section “Separation of Discrete Energy’” below.

HALF BAND WIDTH

The resolution of the analyzer is determined by its half
band width w. This is defined as the number of “cycles off
resonance’’ at which the output falls off to 0.01 percent; that
is

R(n,—w)=0.0001 (AB)
For an ideal analyzer the response characteristic would be a
delta function, but even with half band widths from 30 to
145 (which is the range of the analyzer used here) the char-

acteristic is quite sharp, relative to the frequency intervals
of interest. The values 30 to 145 seem quite high, but they
are a little misleading because of the high attenuation used
to define w. For example, if the response-characteristic half
band width o is 30 cycles per second, it has a total width of
only 6 cycles per second at 50-percent attenuation.

SEPARATION OF DISCRETE ENERGY

To separate the discrete energy wu,® from the continuous
spectrum the following procedure is used.

— |
ut6(ny)@ - l =
U R(m=ry) “
|
f =<\
4RF ()0 7\
|
ﬂ,-w ﬂ‘ n,+w ﬂA
Sketch 3.

At n,+o and n1—w (see sketch) the contribution from u,®
is only 0.01 percent, so the measured points there are assumed
to lie on the continuous spectrum. It is assumed at first that
the continuous spectrum between these points may be deter-
mined by interpolation, and its value at n; is calculated.
Then u? is determined by difference and the last term in
equation (A7) is calculated, since the form E(n) is known.
The first term in equation (A6) then gives the values of
G(n,) in the vicinity of n;; these should check the measured
values.

If, however, the continuous spectrum within the band
width has a bump, then the above calculation is not self-
consistent, and the true values can be determined by
successive estimates of u..

In principle the method is satisfactory, but in practice the
accuracy is low because in the regions of interest, that is,
near peak frequencies, it depends on the differences of
relatively large quantities. One of these, E(n), is known
precisely, but the precision is difficult to realize since the
settings on the analyzer cannot be read accurately enough.
For the spectral investigations discussed in the section
“Downstream Development’’ the technique will be improved,
by monitoring the analyzer with a counter.

APPENDIX B

NOTES ON VORTEX-STREET GEOMETRY AND SHEDDING FREQUENCY

The regularity of the vortex shedding and its sensitivity
to velocity changes have undoubtedly intrigued everyone
who has investigated the flow past bluff bodies. However,
as Kdrmén pointed out in his first papers on the vortex street,

the problem is inherently diﬁictﬂt, involving as it does the
separation of the boundary layer from the cylinder, and

there is yet no adequate theoretical treatment of the mech-
anism.
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The following notes may be useful as a summary of the
interesting features of the problem. They are based largely
on the literature but include some results obtained during
the present experiments. Chapter XIII of reference 19 has
a very useful review and list of references.

IDEALIZED KARMAN STREET

Kérmdn’s theory treats a double row of potential
vortices, infinite in both directions. The distance between
the rows & and the spacing of the vortices in each row [ are
constants. The vortices have strength (circulation) I' which,
with the geometry, determines the velocity 17 of the street
relative to the fluid. The theory shows that the configura-
tion is stable when the rows are staggered by a half wave
Iength and the spacing ratio is

E:O.281

: ®1)

The circulation and velocity relative to the fluid are then
related by

—F~:=2.83

Vi B2)

Two of the parameters (b, [, T, and V) must be determined
from some other considerations. In the real vortex street
they must be related to the conditions at the cylinder.

REAL VORTEX STREET

The real vortex street, even in the stable range, differs
from the idealized one in the following points:

(1) The street is not infinite.
stream of the cylinder and eventually loses its identity far
downstream. However, the classical vortex-street patterns
extending for 10 or more wave lengths should be a good
approximation.

(2) The vortex spacing is not constant.
the lateral spacing A increases downstream.

(3) The real vortices must have cores of finite radius.
These grow downstream, so that the vortices diffuse into
each other and decrease their circulation. For the same
reason the velocity 17 is expected to differ considerably
from the theoretical value, since it is strongly dependent
on the configuration.

Related to these considerations is the way in which the
vortices are first formed. At Reynolds numbers below the
shedding range a symmetrical pair of eddies is formed at
the back of the cylinder. As the Reynolds number increases
these two eddies grow and become more and more elongated
in the flow direction, until the configuration is no longer
stable and become asymmetric. Once this occurs the
circulating fluid breaks away 7 alternately from each side
to form free vortices which flow downstream and arrange
themselves into the regular, stable vortex street.

In particular,

7 Possibly. the breaking away should be regarded as primary, resulting in asymmetry.

It starts shortly down-

In the irregular range the process is similar, except that
the fluid is turbulent (because of the transition in the free
vortex layers).

DOWNSTREAM VORTEX SPACING

In the flow past a stationary eylinder the frequency with

which vortices of one row pass any point is given by

nl:@g{_f (B3)
This must be the same as the shedding frequency
m=SU,/d B4
Two useful expressions result:
[ 1 |4
s ®B3)
or
v . Sl
T 1—— B6)

In a real vortex street, 1"—0 far downstream and then Elz—e%

Or, if Si/d is known from measurements, then V/l/, may be
computed.

An example of measured values of [/d is shown in figure 21.
These were taken from the streamline plot obtained by
Kovasznay (vef. 11) at R=>53 (for which §=0.128). There
is a little scatter, but I/d does approach the constant value
1/S=7.8.

The scatter, while relatively unimportant in the case of
l/d, gives very low accuracy for values of V/U, calculated
from equation (B6). These have also been plotted in figure
21. It is surprising that some of the values, near the
cylinder, are negative (corresponding to values of //d higher
than 1/8); it is believed that this results from the combined
difficulty of estimating the vortex centers, especially near the
cylinder, and the sensitivity of equation (B6). (However,
it must be noted that negative values of V are not impossible.
Negative V simply means that the vortex velocity is directed
upstream relative to the fluid, while it is still downstream
relative to the cylinder. Such a possibility exists at low
values of z/d, where the mean velocity at the edges of the
wake is considerably higher than U,.)

Another way to obtain V/U, is to assume that the vortex
centers move with the local mean velocity. Kovasznay’s
paper includes measurements of mean velocity profiles.
From his results the mean velocity along the line of vortex

*

centers U* has been determined and from it rg=l—%

o g

has been calculated. The result is plotted in figure 21.

Near the eylinder it does not agree with the values obtained

by the previous method; it is believed that this is principally

due to the difficulties mentioned above and that the deter-
mination of V/U, from 1—(U*/U,) is more accurate.
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Froure 21.—Vortex-street geometry. Calculated from data in

reference 11.

LATERAL SPACING

The lateral spacing, at least initially, must be determined
by conditions near the cylinder. The way in which this
spacing increases downstream is discussed, for the stable
range, in the section “Spread of Vortex Street.”

In the irregular range, the dependence of the shedding
frequency on the distance between the free vortex layers,
noted by Fage and Johansen (see the section “Shedding
Frequency’), leads to an interesting estimate of the initial
lateral spacing of the free vortices. The maximum distance
d’ between the free vortex layers, instead of the cylinder
dimension d, may be used to define a new Strouhal number

’
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Fage and Johansen found that, whereas S varies considerably
with cylinder shape, S’ is practically constant for a variety
of bluff cylinders. Now the initial lateral spacing A" of the
free vortices will be roughly the same as d’, possibly a little
smaller:

—=(1—¢) (BS)

Then, comparing with equations (B6) and (B7),

h'__ 1—e

Ti=wiy) S (B9)

From the measurements of Fage and Johansen, S’ =0.28.

The factor ~1. Thus equation (B9) gives A'[l=

1—e
1=(VU.)
0.28; that is, the spacing ratio agrees with Kdrmdn’s value,
at least close to the cylinder.

SHEDDING FREQUENCY

There is yet no adequate theory of the periodic vortex
shedding, and it is not clear what is the principal mechanism
which determines the frequency.

The downstream spacing ratio is related to the shedding
frequency by equation (B3) and to the lateral spacing by a
stability criterion (e. g., Kdrmédn’s value of 0.28 for the
idealized street). It might be considered that the shedding
frequency is determined by the spacing requirement, or,
conversely, that the shedding is primary and determines
the downstream spacing. The latter viewpoint seems the
more plausible one; that is, the shedding frequency is estab-
lished by a mechanism which depends on features other than
the vortex spacing. It is necessary to obtain a better under-
standing of the flow field near the cylinder. One of the
elements involves the problem of separation, particularly
the nonstationary problem. Another that requires more
study is the flow field directly behind the cylinder.

With a better knowledge of these, and possibly other,
features it may be possible to set up a model of the shedding
mechanism. In the meantime it is not clear whether the
vortex spacing requirement is decisive in determining the
frecquency.

DESTABILIZATION ¢ OF SHEDDING

The following experiment illustrates the dependence of
the periodic shedding on “‘communication’” between the free
vortex layers, that is, on the flow field directly behind the
cylinder. A thin flat plate was mounted behind the cyl-
inder in the center plane of the wake (fig. 22). It was
completely effective in stopping the periodie shedding.
Spectrum measurements in the flow on one side of the plate
are shown in figure 22. At R=7,500 no significant fre-
quencies could be separated out from the continuous back-
ground. At RB=3,200 there were several predominant fre-
quencies (all higher than the shedding frequency for the
cylinder), but, by the time the flow reached the end of the
plate, 5 diameters downstream, it was completely turbulent.
(The shedding frequency n; for the cylinder is marked in
the figures.) .

The important effect, on the shedding, of the flow field
directly behind the cylinder is apparent. Probably an even
shorter length of plate would be effective in destablizing
the periodic shedding, and there may be a most effective

8 The stability considered in this section is not with respect to laminar-turbulent transi-
tion; it concerns the stability of the periodie shedding (ef. the section * Stability’).
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Ficure 22.—Effect of downstream plate on wake frequencies.

position for such an interference element. Kovasznay
remarks that the hot-wire probe used in investigating the
vortex street must be inserted from the side, for if it lies in
the plane of the street it has a strong destablizing influence.

A more complete study of the destabilization of shedding
by such interference devices may be quite useful from a
practical viewpoint. Structural vibrations and failures are
often attributed to the periodic forces set up on members
exposed to wind or other flow (smokestacks, pipe lines, struc-
tural columns, to mention a few). In many cases it might
be possible to destabilize the vortex shedding by addition
of simple interference elements or by incorporating them in
the original designs. In the case where one member is
buffeted by the wake of another the same principle might
be applied.

SPREAD OF VORTEX STREET

It has been observed by most investigators that the spac-
ing ratio A/l is Kdrmdn’s value (0.28) close to the cylinder
but increases rapidly downstream. The increase of A/l is
mainly due to the increase of A, since ! changes very little
(fig. 21). In the stable range this is the result of viscous
diffusion of the real vortices.

Hooker (ref. 28) has made an interesting analysis, First,
a real vortex has a core of finite radius; its center is the point
of zero velocity and maximum vorticity. Hooker shows
that in a vortex street, where the velocity field of the other
vortices must be taken into account, the points of zero
velocity and maximum vorticity do not coincide. The
point of maximum vorticity is unchanged, but the point of
zero velocity is farther away from the center of the street.
As the vortex decays, the point of zero velocity moves
farther out, its distance from the center of the street increas-
ing almost linearly with time. Thus the spacing based on
vorticity centers remains constant, while the spacing based
on velocity centers inereases linearly. Hooker’s calcula-
tion of the linear spread checks fairly well with some pic-
tures taken by Richards (ref. 29) in the wake of an elliptical
cylinder having a fineness ratio of 6:1 and the major diameter
parallel to the free-stream velocity,

However, the spread of the wake is not always observed
to be linear. Among the different investigators there is a
large variation of results, apparently dependent on the
experimental arrangement. In Richards’ experiment the
cylinder was towed in a water tank and the vortex patterns
were observed on the free surface.

In Kovasznay’s experiment the cylinder was mounted in
a wind tunnel, the arrangement being similar to the one
used here (see the section ‘“Experimental Data’). On
his plot of the streamlines at B=53 the downstream spread
of the vortex street is parabolic rather than linear. It is
possible to fit his results by a somewhat different applica-
tion of Hooker’s idea, using decaying vortex filaments.

Each vortex in the street is considered to behave like a
single vortex filament carried along by the fluid, its decay
or diffusion being the same as if it were at rest. The decay
of such a vortex is described by a heat equation, whose
solution is (ref. 30, p. 592):

I
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where ¢ is the tangential velocity at the distance r from the
center and at the time ¢. The circulation is T. This is
essentially a vortex with a ““solid” core and potential outer
flow joined by a transition region in which the velocity has a
maximum value. This maximum velocity is

g*=0.72(T'/27r*) B11)
and occurs at the radial distance
r¥*==2.24 (1) B12)

Here 7* is defined as the vortex radius.

Thus the radius increases as /2 and the maximum velocity
decreases as t72, In the vortex street, the time ¢ is replaced
by the downstream distance z. Since the vortices move
with the velocity U* rather than U,, the dimensionless time

0=%§g is appropriate, where U* also varies downstream

(see the section “Downstream Vortex Spacing”).

When a pattern of such vortices is superimposed on a uni-
form flow, it is possible to calculate the velocity fluctuation
at a point due to the pattern passing over it.

Now the following hypothesis is added. It is assumed
that the vortex radius 7* is equal to the width & of the street.
Then the width of the street increases as z'/.

A second result follows. The maximum velocity fluctua-
tion (observed by a hot-wire, say) will occur on the line of
vortex centers and will have the amplitude

*__..1 *
that is, the hot-wire encounters instantaneous velocities

varying from U* (because of vortex centers passing over it)
to U*-q* because of the fields of vortices on the other side
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of the street). Relations (B11) and (B12) then give the
downstream behavior of the maximum fluctuation amplitude.

The results may be summarized as follows:

_(a) Wake width & =6'2

(b) The maximum amplitude of fluctuation v* occurs on
the line of vortex centers (so there are two maximum points
across the wake).

(c) u*=e07172,

(d) u*=0.36 (T/27h).

A comparison of the above predictions was made with
calculations based on Kovasznay’s measurements which in-
clude profiles of velocity fluctuation amplitude (ef. fig. 11)
as well as the streamline plot. The following comparisons
were obtained, item by item:

(a’) The time variation of A/d, determined from the vortex
centers on the streamline plot is shown in figure 21. The
parabola h/d=0.59(6—6)"* is shown for comparison.

(b") The line of maximum velocity fluctuation lies slightly
inside the line of vortex centers and is fitted by ~A*/d=0.53
(0"—6)1/2.

(¢/) The time variation of u* is also plotted in figure 21.
(Actually Kovasznay's maximum root-mean-square values
', are plotted, but these should differ from «* only by a
constant factor.) The curve v,/ U,=0.26(6—6)"/* is shown
for comparison. The points could be fitted better, but the
curve was chosen again to have the origin #=6.

(d’) A comparison with (d) may be made by estimating
the strength T of the vortices. Such a consideration, in fact,
led to the present model, for it was found that the magnitude
of the observed velocity fluctuations could be accounted for
only by assuming that the radius of the vortex core is about
equal to the width of the street. This observation had
already been made by Fage and Johansen (ref. 8), for
R=2x10% If the free vortex layer is represented by a
velocity discontinuity U=U, to U=0, then the circulation
is U, per unit length and “the circulation” flows with the
velocity U,/2. On the other hand, the rate at which circu-
lation enters one side of the street is n;I', where I' is the cir-

culation per vortex. Therefore
_Ul _Ud
2’”,1 2S

For Kovasznay's example, S=0.13, so I'=4U.d. Then,
comparing with (d), the maximum fluctuation in the initial
part of the wake is ' .

u* d

=== 0.2 -=0.2

i, 0.2 7 0
assuming h=d at this low Reynolds number. The largest
value of u/,/U, in Kovasznay’s example is 0.14 at x/d=7,
corresponding to u*/U,=~0.2. The ordet of magnitude of this
estimate is quite sensitive to the size of the core relative to

% The veloeity ai the outer edge of the layer is actually about 1.5U,, but experiments

indicate that only about half the vorticity of theshearlayer goes into individual vortices.
Therefore, the value U.d/28 is a fair estimate.

the width of the street; if the core is assumed to be much
smaller, the calculated velocity fluctuations are much larger
than those observed. Also, if the cores were very small
compared with the width of the wake, four peaks instead of
two would be observed in the profile of tha velocity fluctua-
tion amplitude.
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TABLE II
RING DIMENSIONS
Ring d, cm (5 [ Djd
1 0. 168 0.030 9.5
2 .081 .018 10.0
3 079 .018 5.1
TABLE III

VALUES OF STROUHAL NUMBER FOR VARIOUS TEST
REYNOLDS NUMBERS

R 8 Ep Sp
89 0.051 450 0.26
96 052 490 . 265

103 -052 525 . 265

128 087 850 .29

153 - 060 780 .3

182 147

215 . 189

302 204

366 21

455 212
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