Eruption Age of a Pleistocene Basalt From 40Ar-39Ar Analysis of Partially Degassed Xenoliths

A. R. Gillespie, J. C. Hunke, and G. J. Wasserburg

The Lunar Asylum of the Charles Arms Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125

We have applied 40Ar-39Ar dating to potassium-rich granitic xenoliths and host basalt from the Pleistocene Big Pine volcanic field, California. These xenoliths had been partially degassed upon their inclusion in the basaltic lava. Argon released from the xenoliths at extraction temperatures below ~900°C yielded plateau ages indistinguishable from the total K-Ar age of the basalt. The best estimate of the age of eruption was 1.18 ± 0.05 (2σ) m.y. 40Ar extracted at higher temperatures included radiogenic argon not degassed from the late Cretaceous xenoliths 1.18 m.y. ago, causing an increase in the apparent age for the high-temperature fractions. The agreement of the low-temperature xenolith plateau ages and the basalt K-Ar ages demonstrates that 40Ar-39Ar analysis of xenoliths may be used to measure the age of eruption of very young lavas. This is significant because in many instances ages cannot be reliably determined by analysis of the lavas themselves.

1. INTRODUCTION

We have applied the stepwise degassing variant of the 40Ar-39Ar dating method to granitic xenoliths of Cretaceous age from a Pleistocene basalt. This was done to establish whether there exist plateaus in the 40Ar-39Ar age spectra that correspond to the time of heating of the xenolith in the host magma, with the intent to develop and demonstrate a new technique for accurately dating the eruption of very young lavas. The theoretical basis for this approach was explored in a previous study [Gillespie et al., 1982]. It was shown that if xenoliths were of Cretaceous age or younger, then age plateaus extending over 25% or more of the total 39Ar released and giving the age of eruption could be realistically anticipated. The development of an eruption-age plateau requires a reasonably wide disparity in the diffusion parameters and/or activation energy for Ar diffusion from K-bearing sites in the xenolith, coupled with sufficient degassing of the xenolith in the magma.

Accurate dating of K-poor basic lavas is necessary for the study of many Quaternary geological processes. This research was part of a study of Pleistocene glacial chronology in the southeastern Sierra Nevada near Independence, Inyo County, California [Gillespie, 1982]. Here, as remarked by Knopf [1978] and Moore [1963], basalts of the Big Pine volcanic field interfinger with late Pleistocene moraines. Dating of the intercalated basalts should provide limits to the ages of the glacial advances. Dalrymple [1964a] and Dalrymple et al. [1982] have dated one of these basalts by conventional K/Ar analysis and obtained ages of 0.06 ± 0.10 and 0.09 ± 0.18 m.y. and 0.05 ± 0.09 m.y., respectively (uncertainties are 2σ). These results only place bounds on the ages and do not establish the firm age relationships that are necessary for studying such young geological events. It was to improve the accuracy of dates for such young lavas that we have explored the possibility of 40Ar-39Ar dating of the granitic xenoliths included in the basalts. In this paper we discuss the results of 40Ar-39Ar analyses of xenoliths and host basalts from the oldest flow in the same volcanic field, for which accurate K/Ar ages could be more easily obtained. In a subsequent paper we will present the analyses of xenoliths from the extremely young lava studied by Dalrymple [1964a] and Dalrymple et al. [1982].

1.1 Conventional K/Ar Dating

There are formidable obstacles to the precise and accurate dating of young basic lavas by conventional K/Ar methods. One of these is the presence of Ar dissolved in the magma. Such Ar trapped in the basalt may mask the very small amounts of radiogenic 40Ar (hereinafter denoted by superscript asterisk) found in young rocks. Furthermore, the isotopic composition (39Ar/40Ar) of the trapped Ar (hereinafter denoted by subscript t) is a priori unknown and is not determined by conventional K/Ar analysis. Especially for young, K-poor rocks with small amounts of 40Ar*, the apparent K/Ar age is quite sensitive to the assumed (39Ar/40Ar).

A second obstacle to K/Ar dating is the presence in many lavas of microscopic fragments of ancient country rock rich in K. Basalts of the Big Pine volcanic field, for example, are extensively contaminated by granitic xenoliths from the Mesozoic plutons through which the lavas erupted (Figure 1). Such fragments may contain large amounts of 40Ar* incompletely degassed from the fragment when incorporated in the lava (hereinafter denoted by 40Ar**). If incompletely degassed xenocrysts occur in the lava analyzed, the apparent eruption age of the lava will be too great.

Although the temperature of xenocrysts incorporated into basaltic magma at the time of eruption rises to ~1100°C within seconds and can remain this high for more than a day while the lava flow solidifies, evidently not all the 40Ar** is diffused from the xenocryst. Dalrymple [1964b] has demonstrated Ar retention of ~2.5% in a 10-cm-diameter granitic clast found 3 m below the top of a 25-m-thick basalt flow. Because the characteristic dimension of diffusion seems to be determined not by xenolith diameter but rather by individual grain size or the width of exsolution lamellae, even individual microscopic xenocrysts dispersed throughout the magma will probably be similarly retentive. It is generally not possible to eliminate nor even to detect the presence of individual xenocrysts during preparation of samples for K/Ar analysis.

1.2 40Ar-39Ar Dating

The stepwise heating 40Ar-39Ar method [Merrihue and Turner, 1966; Turner, 1970, 1971] ameliorates many problems...
encountered in K/Ar dating. If 40Ar* and Ar, are contained in phases or sites with different retentivities, the resultant separation may in principle permit the determination of $(^{39}$Ar/40Ar)$_0$, which generally dominates Ar released from the sample at low temperatures. Furthermore, 40Ar$_e$ remaining in xenocrysts after degassing at 1100°C for many hours in the magma is unlikely to be degassed at lower temperatures in the laboratory. Therefore, it should be possible during 40Ar-39Ar analysis to separate the 40Ar$_e$ from at least some of the 40Ar* created since cooling of the lava.

1.3 40Ar-39Ar Analysis of Xenocrysts

The extent of degassing of Ar from the ancient xenocrysts during heating in the magma depends on characteristics of the xenocrysts, the temperature of the magma, and the time it takes to cool, and determines the shape of the 40Ar-39Ar age spectrum for the xenocryst as shown schematically in Figure 2 and considered in detail in Gillespie et al. [1982]. If degassing has been minor, ages for the first fractions of Ar (released at low temperatures) will be less than the age of crystallization and may approach the age of eruption (spectrum a). If degassing has been major, the first fractions of Ar may be extracted free from 40Ar*, and a plateau giving the age of eruption may be established (spectrum b). If 40Ar* from even the most retentive sites has been partially depleted at the time of eruption, the maximum apparent age will be less than the age of crystallization of the xenocrysts (spectrum c). The size of the low-
temperature plateau will increase with the extent of degassing until, for complete degassing, the entire age spectrum reflects the age of eruption (spectrum d).

Because complete degassing of xenocrysts in basaltic magma is not always achieved, we might expect a xenocryst age spectrum characterized by a region of mixed ages separating plateaus giving the ages of crystallization and eruption. If an eruption-age plateau is not found, the minimum apparent age will be an upper limit to the age of eruption, barring irradiation artifacts such as recoil redistribution.

We will demonstrate here the existence of low-temperature plateaus in age spectra of several partially degassed xenoliths and demonstrate their correspondence to the K/Ar age of eruption of the lava that incorporated them. The early Pleistocene basalt chosen for study was found by Darrow [1972] to have unusually high levels of K (1.3% by weight). It was thus well suited for K/Ar dating. A relatively old lava flow was chosen to reduce the tetheild of the K/Ar age of the basalt to contamination by \(^{40}\text{Ar}^* \) and to unusual compositions of \(^{39}\text{Ar} \) and to increase the extent of the low-temperature plateau in the age spectra of the xenoliths. Xenoliths from this basalt were found by preliminary K/Ar analysis to be \(\sim 95\% \) degassed. The results on xenolith sample 1–12 were presented by Gillespie et al. [1982] in support of their theoretical study of the conditions under which an eruption-age plateau may be observed.

2. Sample Selection

We chose samples from three sites (Figure 1) where basalt is found on present ridge tops as much as 100 m above the North Fork of Oak Creek. The basalt flows are faulted and are locally capped by eroded remnants of coarse fan deposits. Darrow [1972] considered these flows to be among the oldest in the Big Pine volcanic field. The magnetic polarity of the basalt is reversed (D. Van Alstine et al., unpublished data, 1982); thus, its age exceeded 0.73 m.y. [Mankinen and Dalrymple, 1979].

At site A, the contact between weathered quartz monzonite of the Cretaceous McGann pluton [Moore, 1963] and an overlying nonvesicular basalt is exposed in a road cut. The unusual absence of granitic xenoliths in this basalt suggests that it may have a source separate from the basalts south of Oak Creek at sites B and C. Samples of basalt (NFOC-23a) 10 m above the base of the flow and of quartz monzonite bedrock (NFOC-109) 2 m below the contact were taken at site A. These samples were chosen to explore the possibility of measuring eruption ages by using overridden rock only lightly degassed.

Site B was near the base of the thick (~50 m) sequence of basalt flows that cap the ridge south of Oak Creek. No interbedded fluvial gravels have been found, and the entire sequence may have erupted at about the same time. The sample from site B, NFOC-1, consisted of a large block of basalt containing two 1-cm-diameter granitic xenoliths (NFOC-1a, NFOC-1b). Three pieces of the basalt and duplicates of each xenolith were analyzed.

Site C was at the eroded top of the upper flow. Three samples taken 10 cm below the surface of a 1-m-diameter quartz monzonite xenolith (NFOC-103) (but no samples of basalt) were analyzed.

3. Petrography

The lava from site A is a basanite [Darrow, 1972] and contains phenocrysts of olivine and clinopyroxene in a network of smaller laths of plagioclase. Potassium probably resides to some extent in the plagioclase but is found mainly in the small biotite and nepheline crystals reported by Darrow and in ~10-μm glass blebs in the groundmass. Olivine phenocrysts show no iddingsite rims. Granitic xenoliths are rare.

The ridgetop basalt at site B is similar to the basalt at site A, except that in NFOC-1 phenocrysts are larger and more numerous. A few olivine crystals show incipient iddingsite alteration; otherwise, the basalt appears quite fresh. Granitic xenoliths are common, but no isolated xenocrysts were seen in thin sections of NFOC-1 basalt. However, the irregular xenolith interface suggests that some crystals may have been detached from xenolith surfaces.

Most of the granitic xenoliths found in the Oak Creek lavas were probably derived from the McGann quartz monzonite, the pluton exposed in the vicinity of the vents (Figure 1) and overrun by flows at site A. The K-feldspar is microcline, and the dominant mafic mineral is biotite, with subordinate hornblende. At site A the bedrock was weathered before being buried by basalt, and a thin zone of grus was present. This zone was baked by the basalt and is now cemented by iron oxides. Sample NFOC-109 was taken from below this zone, and individual feldspar grains are remarkably fresh appearing, although zones of alteration products can be seen. Plagioclase crystals are sericitized, and mafic minerals are altered, with some replacement by iron oxides. Xenoliths appeared to be distinctly less altered, probably because they were not weathered prior to incorporation in the magma. However, some could be disaggregated by hand, and the xenolith NFOC-103 (site C) showed extensive replacement of biotite and hornblende by iron oxides, which also pervaded the xenolith along fractures. The 1-cm-diameter xenoliths in NFOC-1 exhibited incipient transformation of K-feldspars from microcline to sanidine, especially at the xenolith-basalt interface. Quartz crystals, as reported by Moore [1963] and Darrow [1972], were corroded and showed reaction rims of clinopyroxene needles.

4. Analytic Techniques

4.1 Sample Preparation

Basalt samples weighing ~0.5 gram were picked from the interior of blocks after coarse crushing. Samples from NFOC-1 were wrapped in metal foil packets to prevent loss during irradiation or loading. It was not necessary to wrap basalt sample 8-12 (from NFOC-23a) in foil. Samples were visually checked for xenocrysts, but none was found.

The granitic bedrock and xenolith samples were gently crushed and sieved. The 104–220-μm fraction was then magnetically cleaned of its mafic minerals to reduce the amount of altered material. Grains of sample 8-3 (from NFOC-103) were etched in 20% HF for 30 s at 25°C to reduce further fine alteration products. Isolated quartz grains were removed from 8-3 by handpicking, so that the sample consisted of etched microcline and plagioclase crystals. All samples were wrapped in foil packets for irradiation. After the first analyses it became obvious that the Ar giving the eruption-age plateau was released at temperatures between ~500°C and ~900°C, so Sn foil packets were substituted for AI packets in subsequent experiments. This was done to lower the temperature at which air incorporated in the foil was degassed from 660°C to 230°C. Sn and Al foil appeared to degas entirely upon melting.

Samples were irradiated with a fast neutron fluence of ~10^{17} n cm\(^{-2}\) in the TRIGA reactor facility of the United States Geological Survey at Denver, Colorado. Sample 6-12 (NFOC-1) was irradiated at half this level. Neutron fluence inhomogeneities were monitored by measuring the \(^{56}\text{Co}\) γ activity induced in Ni wires placed between samples. The Bern 4M stan-
Fig. 3. The three-isotope correlation diagram of $^{36}\text{Ar}/^{40}\text{Ar}$ versus $^{39}\text{Ar}/^{40}\text{Ar}$. A linear array in this diagram indicates mixing of a single well-defined trapped Ar component with K-derived Ar of constant composition and hence constant age. Schematic trajectories of the isotopic compositions of Ar released during stepwise heating of degassed xenoliths are drawn to illustrate mixing among different reservoirs of Ar, which may include K-derived Ar accumulated since original crystallization (B'), K-derived Ar accumulated since cooling of the host lava (A'), and trapped Ar (T and T_2). Compositions of K-derived Ar plot on the abcissa; compositions of trapped Ar plot on the ordinate. If only a single composition of trapped Ar is present, trajectories will range within the triangle $T' A' B'$.

standard muscovite [Jüger et al., 1963] was used as the neutron irradiation monitor, along with samples of CaF$_2$ to measure Ca-derived Ar interferences. The age of the muscovite is 17.9 ± 0.6 m.y., the result of $^{40}\text{Ar}/^{39}\text{Ar}$ analyses reported by Dalrymple and Lanphere [1971] corrected for the recommended ^{40}K abundance and decay constant $\lambda = \lambda_o + 2\beta = 5.543 \times 10^{-10}$ y$^{-1}$ [Steiger and Jäger, 1977].

4.2 Argon Analysis

After neutron irradiation, Ar was extracted from samples in 6–15 1-hour steps at successively higher temperatures from roughly 300°C to 1700°C. Heating was by RF induction in a tungsten crucible vapor-deposited in a helium atmosphere to reduce the Ar blank. Blank Ar was of atmospheric composition. Blank levels of Ar ranged from 10^{-10} cm3 STP at temperatures below 800°C to 10^{-8} cm3 STP at 1700°C, and temperature intervals between extraction steps were selected to maintain blank levels at <5% of the sample. The Ar extracted from the samples was purified, and then analyzed by using the HENEA K II gas mass spectrometer, with programed magnetic field control. General aspects of the procedure have been published elsewhere [Radicati et al., 1981; Gillespie, 1982].

After correction of the measured Ar for interfering isotopes, blank ^{40}Ar and ^{36}Ar were subtracted. Conservative errors of ±50% were assigned to blank levels. Measured blanks were reproducible to ±20%. $^{40}\text{Ar}/^{39}\text{Ar}$ was calculated by subtracting ^{40}Ar contributions assuming air Ar composition ($^{40}\text{Ar}/^{36}\text{Ar} = 295.5$), and apparent ages obtained by using

$$t = \lambda^{-1} \ln (1 + J \text{ }^{40}\text{Ar}^{*}/^{39}\text{Ar})$$

with $J \equiv (^{40}\text{Ar}^{*}/^{39}\text{Ar})^{-1} [\exp (\lambda t_a) - 1]$ determined from the muscovite monitor. Total ages were calculated from (1) by summing the Ar released in all the extractions of the analysis.

Plateau ages were calculated by averaging the ages for each step in the plateau weighted by the fraction of ^{39}Ar released. Ages calculated by assuming a value for ($^{36}\text{Ar}/^{40}\text{Ar}$) are called model ages. To the extent that the composition of the Ar is unlike air, the model ages will be inaccurate. To avoid this problem, it would be necessary to know the actual composition of the Ar, which may be found by fitting a line to the linear array of compositions plotted in $^{36}\text{Ar}/^{40}\text{Ar}$ versus $^{39}\text{Ar}/^{40}\text{Ar}$ diagrams as discussed below. Ages found in this manner will be called isochron ages.

Uncertainties in ages of events must include the 3.5% systematic uncertainty in the age of the muscovite monitor. However, inclusion of this uncertainty is inappropriate if ages referred to the same monitor are to be compared.

4.3 Data Presentation and Systematics

We present the isotopic measurements of Ar released during $^{40}\text{Ar}/^{39}\text{Ar}$ analysis in two ways: conventional age spectra, in which the apparent age at each step is plotted against the cumulative fractional amount of ^{39}Ar released, and three-isotope variation diagrams, in which the relative amounts and isotopic compositions of trapped and K-derived Ar are made evident. Three-isotope diagrams are especially useful because they show trends in the composition of Ar released at successively higher temperatures. Figure 3 schematically illustrates the use of such diagrams. Ar, compositions plot on the ordinate and K-derived Ar compositions plot on the abcissa. In general, Ar released from a sample contains both trapped and K-derived Ar and plots along a mixing line connecting the two compositions. Ages are related to $^{39}\text{Ar}/^{40}\text{Ar}^{*}$ by (1). The apparent age for Ar from a single extraction step is determined from the abcissa intercept (P) of a line passing through the measured composition (P) and the Ar composition (T). If several fractions of Ar released from a sample were mixtures of the same trapped and K-derived components, their linear array of compositions defines an isochron with axis intercepts that specify the composition of the endmembers, which generally cannot be measured directly. The abcissa intercept of the isochron determines an age (isochron age) for the sample.

Measurement errors and deviation of the real systems from ideal behavior both contribute to uncertainties in the isochrons. If measurement was the main source of error, we used the least squares method of Williamson [1968] to estimate the isochron. In this method, individual compositions are weighted according to their measurement precisions. If measurement errors are subordinate, Williamson’s method gives unrealistically precise apparent ages because the scatter of compositions about the isochron is not considered. As was recommended by York [1969] for such cases, we multiplied the uncertainty of the isochron by $[S/(n - 2)]^{1/2}$ where S is the sum of the squares of the residua of data about the isochron and where n is the number of compositions measured. S is distributed as χ^2 with $(n - 2)$ degrees of freedom. If S were so large that there was less than 1% chance that the scatter of the compositions about the isochron resulted from measurement uncertainty alone, we took the reduced major axis [Kermack and Haldane, 1950] to be the isochron. In this approach the data are not weighted by the measurement uncertainties; the precision of the reduced major axis depends on the correlation coefficient of the isotopic compositions. Because the scatter of compositions about the axis is due to nonexperimental sources, the uncertainty of the age of the isochron must be multiplied by Student’s t factor, with $(n - 2)$ degrees of freedom [Brooks et al., 1972].

Isochrons shown in Figure 3 connect A_0 of composition T to K-derived Ar from undisturbed samples of two ages (A' and B'). In the context of this discussion, B' includes $^{40}\text{Ar}^{*}$ accumulated since original crystallization of the xenocryst, while A' includes only $^{40}\text{Ar}^{*}$ accumulated since the time of eruption. Isochron $T A_0$, then, is anticipated for the lava and isochron $T B'$ for the undegassed parent material of the xenocryst. The trajectory of isotopic compositions from the partially degassed xenocryst will range within the triangle $T A_0 B'$. One possibility is the
components compositions will range within the quadrilateral compositions be expected to lie along binary mixing lines over even part of the trajectory and only if such binary mixing lines are derived from sites of sufficiently different Ar retentivity can present.

spectrum similar to spectrum b of Figure 2.

curving line progressing initially along TA' but deflecting toward B near composition A and progressing finally along TB. Arrows indicate the trend of compositions as degassing progresses during analysis. Such a trajectory would have an age spectrum similar to spectrum b of Figure 2.

If more than a single composition of Ar, is present (T and T_2), trends in measured compositions will be more complicated. In the presence of a single K-derived component A', compositions will range within $TA'T_2$, or in the presence of two K-derived components compositions will range within the quadrilateral $TA'B'T_2$. There is no guarantee that a true isochron will be present. Only if the different K-derived or trapped components are derived from sites of sufficiently different Ar retentivity can compositions be expected to lie along binary mixing lines over even part of the trajectory and only if such binary mixing lines are found can ages of events be calculated. The differences in retentivity cannot be known in advance of the analysis. In fact, the efficacy of stepwise heating in isolating binary compositions can only be inferred from the observed trajectory.

5. RESULTS

Results are summarized in Tables 1 and 2. Ages are summarized as total ages, plateau ages, and isochron ages. Uncertainties in the tables and discussion are σ; error bars plotted in the figures are 1σ. Complete tabulations of data and details of argon analysis are found in appendices to this article or in Gillespie [1982].

5.1 Basalt and Subjacent Country Rock From Site A

We analyzed a sample of quartz monzonite found 2 m below a ~15-m-thick basalt flow. This was done (1) to illustrate the simplicity of trends in isotopic composition of Ar from partially degassed ancient rocks, (2) to illustrate the extreme range of apparent ages calculated from Ar released in different steps, and (3) to help establish guidelines for the selection of xenoliths that have been degassed in the magma sufficiently to permit determination of the eruption age. We also analyzed the overlying basalt, which was free of granitic fragments. This analysis was used to determine the basalt's eruption age and thus the time of degassing of the underlying quartz monzonite.

In Figure 4, trends in the isotopic composition of Ar from the thermally undisturbed basalt are contrasted to those from the subjacent bedrock. Ar from the basalt was extracted in four steps at temperatures from 300°C to 1175°C. The compositions were colinear, indicating a binary mixture of a well-defined Ar, with K-derived Ar of constant 39Ar/40Ar*. Little Ar, was released from the basalt (3.3 \times 10^{-10} cm^3 STP 39Ar per gram), and even at 300°C the 40Ar was about one-third radiogenic. As the temperature was increased to 900°C, the fraction of 40Ar increased. This trend was reversed for the 1175°C extraction. The small amount of Ar present in the basalt minimized the uncertainty in the age of the basalt due to ill-defined Ar composition. The trapped component may have been slightly enriched in 40Ar compared with air Ar since an isochron fit to these data intersected the ordinate at 39Ar/40Ar's 0.00324 ± 0.00014. The abcissa intercept of 0.382 ± 0.022 corresponded to an age of 1.13 ± 0.07 m.y., less than the total age of 1.19 ± 0.03 m.y.

The composition of Ar released from the country rock followed a more complicated trajectory. Ar was extracted in eight steps from 300°C to 1700°C. The composition of the first step was near 'AIR.' Subsequent steps plotted near the origin. In the context of Figure 3, the entire trajectory appeared to lie between A and B, with A close to T ('AIR' in Figure 4) and B close to A. A' and B' are shown in Figure 4 for reference.

The progressive dominance by 40Ar* of Ar extracted at increasingly higher temperatures from the poorly degassed quartz monzonite is clearly shown in its age spectrum (Figure 5). The apparent ages monotonically rise with the cumulative fraction of 39Ar released, from ~4 m.y. to 75 m.y. More than 90% of the 39Ar is associated with apparent ages exceeding 50 m.y. The minimum apparent age of ~4 m.y. is an upper limit to the age of the lava; the maximum apparent age of ~75 m.y. is a lower limit to the age of the Cretaceous sample.

5.2 Degassed Xenoliths and Host Basalt From Site B

Granitic xenoliths were analyzed to determine if eruption-age plateaus were developed in age spectra of strongly degassed material. Samples for this purpose were taken from the base of
the basalt flow south of Oak Creek (site B, Figure 1). Two samples from each of two xenoliths found only a few cm apart were analyzed. Three whole-rock basalt samples from the same block (NF0C-1) were analyzed to establish the eruption age. The basalt samples from site B (1-3 and 6-12) agreed at 1.19 ± 0.03 m.y., but the model age of the third sample (1-2) was older at 1.41 ± 0.03 m.y. Because these samples were of the same true age, this discrepancy must be explained either by a variable composition of Ar, by local degassing results on individual basalts from site B. In general, the compositions are distributed around a 1.18 m.y. reference line drawn through 'AIR.' (1.18 m.y. was chosen because it is the midrange value of isochron ages of the xenoliths in this study (Table 2)). This was due to different concentrations of Ar, which varied from 3.3 x 10^{-18} to 2.9 x 10^{-9} cm² STP 36Ar per gram of basalt (Table 1). Even among the three samples from site B (6-12, 1-2, 1-3), the concentration of 36Ar varied by a factor of 4. Sample 2-15 was powdered before analysis, presumably accounting for its large amount of nonradiogenic Ar (1.4 x 10^{-8} cm² STP 36Ar per gram).

Model ages calculated for the total Ar compositions of two of the basalt samples from site B (1-3 and 6-12) agreed at 1.18 ± 0.04 m.y. and 1.25 ± 0.08 m.y., but the model age of the third sample (1-2) was older at 1.41 ± 0.20 m.y. Because these samples were of the same true age, this discrepancy must be explained either by a variable composition of Ar, by local concentrations of 40Ar, or by loss of 39Ar. Because of the small fraction of 40Ar in basalts 6-12 and 1-2, the model ages were sensitive to minor errors in the assigned (36Ar/39Ar). The model age of basalt 8-12 (1.19 ± 0.03 m.y.) was similar to the model age of basalt 1-3, although each was from a different flow. The fact that 40Ar from 8-12 and 1-3 was rather radiogenic increased our confidence that their model ages gave the actual times of eruption.

The three lower diagrams of Figure 6 show the stepwise degassing results on individual basalts from site B. In general,
Gillespie et al.: 40Ar-39Ar Analysis of Xenoliths in Basalts

Fig. 6. Ar composition trajectories for basalt samples from NFOC-L at site B show ternary mixing among two trapped Ar components and a single K-derived Ar component. The top figure shows the composition of all the Ar released from each basalt sample. Failure of the trajectories to cluster about a single point reflects variability in the ratio of trapped Ar to K-derived Ar. Differences in trajectories are best attributed to variable amounts of trapped Ar of different compositions. Approximate temperatures (°C) are shown for selected steps.

These trajectories began near ‘AIR’ and proceeded down the 1.18-m.y. reference line, returning towards ‘AIR’ at fusion temperatures, as observed for the basalt from site A.

Although total ages and general patterns of isotopic variation were similar for the three basalt samples from site B, each of the trajectories differed in detail. Sample 6-12 was unusual because the most radiogenic Ar was released during the first step (275°C), which accounted for more than 37% of the 39Ar. Ar released in six of the seven steps had colinear compositions close to the reference line. The six colinear steps defined an isochron intersecting the abscissa at an age of 1.11 ± 0.04 m.y. and the ordinate at (36Ar/40Ar) = 0.00336 ± 0.00001. Inclusion of the remaining step changed the isochron age to 1.10 ± 0.06 m.y., but raised S/(n − 2) and increased from ~75% to >97% the confidence that the scatter in compositions about the fitted line was nonrandom. The trajectory was similar to that expected for a sample containing only two well-defined constituents. There is no evidence for Ar, of non-atmospheric composition. The single deviant step may reflect recoil redistribution of 39Ar, but because it released only 3% of the 39Ar, it probably does not preclude interpretation of the rest of the trajectory as an isochron.

Ar compositions for sample 1-3 likewise followed a well-behaved trajectory. Ar was released in 12 steps, and 7 of these defined a 1.20 ± 0.02-m.y. isochron intercepting the 36Ar/40Ar axis near ‘AIR’ at 0.00342 ± 0.00003. Ar for the first four steps (<250°C) contained very little 39Ar but ranged from 36Ar/40Ar = 0.00302 to 0.00304, possibly indicating the presence of a second Ar component released without accompanying 39Ar. During the final two steps, Ar was extracted from the molten sample. Compositions from these steps, which together contributed half the Ar, plotted near ‘AIR’ in Figure 6 (the 1650°C post-fusion step is not shown). In the context of Figure 3, compositions ranged within the triangle T'A'T2. The component T2 was present only in small quantities in unretentive sites degassed at low temperatures. Only ~1% of the 36Ar was released in these steps. Compositions of Ar from higher-temperature steps suggested simple mixing between T and A'. Because of the separability of T and T2, the highly radiogenic content of several of the steps, and the colinearity of compositions at temperatures above 250°C, the isochron age was accepted as the eruption age of the basalt.

In contrast to basalt samples 1-3 and 6-12, compositions of Ar released from basalt 1-2 did not appear to define an isochron. The trajectory of compositions at steps below 800°C was somewhat erratic, with compositions falling well below the isochrons of samples 6-12 and 1-3. However, all fell within the same triangle (T'A'T2) defined by sample 1-3. The first six steps appeared to release Ar enriched in 40Ar and together accounted for ~40% of the 39Ar. Only at high temperatures (above 1100°C) did Ar compositions plot on the isochrons of samples 6-12 and 1-3. A line fitted to all nine compositions gave an apparent age of 1.39 ± 0.15 m.y., significantly greater than isochron ages for the other two basalts.

5.2.2 Xenolith analyses. Three-isotope diagrams for each of the four xenolith samples from site B are shown in Figure 7. Samples 1-7 and 1-8 are from one xenolith, and samples 1-11 and 1-12 are from an adjacent xenolith. As for the basalt samples, compositions appear to range within the triangle T'A'T2 (Figure 3). The trajectories for the xenoliths proceeded at low temperatures from an approximately atmospheric

Fig. 7. Ar composition trajectories for granitic xenoliths from site B show ternary mixing. Two Ar components are a trapped Ar near ‘AIR’ and a K-derived Ar created since degassing in the magma. Compositions of Ar extracted at ~1000°C or less are colinear and define an isochron giving the age of degassing of the xenoliths. Compositions of Ar extracted at higher temperatures probably reflect contributions from 40Ar, not degassed during magmatic heating. Approximate temperatures (°C) are shown for selected steps.
trapped component \((T)\) to the K-derived component \((A')\), and returned to the ordinate along \(A'T_2\) at high temperatures. Ar released from the xenoliths at high temperatures appeared to be enriched by excess \(^{40}\text{Ar}\). Although observed compositions for xenoliths departed from trajectories expected for simple binary systems \((T'A')\), it was not possible from the three-isotope diagrams alone to infer whether the departure at high extraction temperatures was due to the presence of a second Ar component \((T_2)\) or to the admixture of \(^{40}\text{Ar}_{\ast}\) from retentive sites. In this latter case, mixing would have occurred within \(T'A'B'\) rather than \(T'A'T_2\), but compositions would be restricted to the lines \(T'A\) and \(AB\), with \(B\) plotting close to \(T\).

The four trajectories for site B xenoliths were not identical. Measured compositions for 1-7 were colinear, and Ar, was released at 1700°C, which was not statistically distinct from air Ar. Ar released from 1-8 at 450°C may have been enriched in \(^{40}\text{Ar}\) (or depleted in \(^{39}\text{Ar}\)), and Ar released at temperatures above 1250°C was clearly enriched in \(^{40}\text{Ar}\). The trajectory for 1-11 was somewhat erratic but began and ended virtually at 'AIR' and showed no sign of \(^{40}\text{Ar}_{\ast}\). The initial composition of Ar from 1-12 was excessively radiogenic, while the next seven fractions defined an isochron passing through 'AIR.' As was the case for 1-8, the final several steps were distinctly enriched in \(^{40}\text{Ar}\), defining a mixing line intersecting the ordinate at ~0.003.

Total ages for the xenoliths were 6.5 m.y. or less, probably corresponding to degassing of 94% or more by the lava. Although the xenolith total ages exceeded the ages for the basalt samples by as much as a factor of 5, it was possible to fit isochrons with small values of \(S(n - 2)\) to the Ar compositions by excluding those high-temperature steps that appeared to contain \(^{40}\text{Ar}_{\ast}\). The abscissa intercepts gave ages clustered around 1.18 m.y. (Table 2). These ages are in excellent agreement both among themselves and with the isochron age of 1.20 ± 0.02 m.y. for basalt 1-3. The different uncertainties in the isochrons reflect the different number of steps free of \(^{40}\text{Ar}_{\ast}\) and also disturbances in the linearity of the Ar compositions. The mean of the isochron ordinate intercepts (weighted by the reciprocal of the variances) indicated \((^{40}\text{Ar}/^{40}\text{Ar}_\ast) = 0.00333 ± 0.00003\), perhaps enriched slightly in \(^{40}\text{Ar}\) compared with air Ar.

Figure 8 demonstrates the remarkable agreement among age plateaus from the two different xenoliths and the host basalt. Model ages from xenolith sample 1-7 and from basalt 1-3 agreed within 1σ over more than 90% of the spectrum. Ar released during fusion of 1-7 was not measured, and abscissa values were calculated assuming that step contained no \(^{39}\text{Ar}\). By comparison with other xenolith samples, it would appear that only ~5% of the \(^{39}\text{Ar}\) was released during the fusion step.) Model ages from xenolith 1-12 were within 1σ of model ages of the basalt over the first 60% of the spectrum. Ages calculated from Ar released at temperatures above 1000°C rose rapidly to ~30 m.y. The complete spectrum is shown in the inset, at reduced scale.

Fig. 8. Age spectra for basalt and two different granitic xenoliths from site B show remarkable agreement for first half of \(^{39}\text{Ar}\) released. Plateaus for basalt 1-3 and xenolith 1-7 agree in age over more than 90% of the \(^{39}\text{Ar}\) released. Inset shows age spectrum of xenolith 1-12 at reduced scale to include the high-temperature steps. The rapid increase in age for 1-12 at high temperatures is due to extraction of the \(^{40}\text{Ar}_{\ast}\) remaining after magmatic degassing. Selected approximate extraction temperatures (°C) are shown for sample 1-12. Error bars are ±1σ.

Fig. 9. Ar composition trajectories for xenoliths from site C show the presence of only new \(^{40}\text{Ar}\) at low temperatures but show the clear admixture of residual \(^{40}\text{Ar}_{\ast}\) at temperatures above ~850°C. This admixture is responsible for the trend of the trajectories toward the origin for extractions above 1000°C. Sample 8-3 was etched in HF, and quartz was removed. Approximate temperatures (°C) are shown for selected steps.
5.3 Degassed Xenoliths from Site C

A final set of 40Ar-39Ar analyses performed on a xenolith from site C to demonstrate that the appearance of plateaus in the 40Ar-39Ar age spectra of extensively degassed xenoliths was not exceptional. Three fragments were taken from xenolith NFSC-103. From one of these samples (8-3), ~1-mm feldspar grains were handpicked and etched in HF to reduce the amount of altered material analyzed. Other samples were not etched.

39Ar trajectories for the three analyses are plotted in Figure 9. Overall, the patterns were distinct from those for all other samples, but closely resembled the predicted trajectory for degassed xenoliths shown in Figure 3. Compositions of Ar released at temperatures below ~1100°C described patterns like those in Figure 7, proceeding from an atmospheric Ar, toward a K-derived component and returning toward an ordinate intercept somewhat lower than the air value. However, Ar released at the highest temperatures was increasingly radiogenic. In the context of Figure 3, the trajectories seemed to follow a path from T to A, then returned toward B (located close to T) before ranging from B toward T and back. Despite the similarity to the model trajectory, compositions of Ar released at high temperatures did not define isochrons. Instead, as for partially degassed country rock (8-10), lines projected from 'AIR' through measured compositions intersected the abscissa increasingly closer to the origin as extraction progressed. The age spectrum of such a pattern resembled curve c of Figure 2. Subsequent fractions included some 40Ar$_0$ and corresponded to a region of mixed age.

No trajectory for xenoliths from site C had more than four colinear points. In part, this was because less than 46% of the 39Ar was released before 40Ar$_0$ became significant compared with more than 58% from xenoliths from site B. However, isochrons fit to these points gave apparent ages of about 1.17 m.y., close to those from site B.

Plateau ages for the two untreated fragments (Table 2), calculated for Ar released at temperatures of 850°C or less, averaged 1.17 ± 0.04 m.y. This agreed well with ages from the xenoliths and basalt of site B. Although the plateau age of the treated sample (8-3) was 1.29 ± 0.06 m.y., an isochron fit to the first four compositions gave a lower age of 1.17 ± 0.16 m.y., which agreed better with other estimates of the eruption age. Otherwise, the isotopic variation pattern showed no striking differences from the patterns of the untreated samples.

6. DISCUSSION

6.1 Granitic Xenoliths and Bedrock

Argon isotopic variation trajectories for the two 1-cm-diameter granitic xenoliths from site B (Figure 8) resembled those for the basalt samples, except that the steps giving the highest apparent ages were taken at the highest temperatures. In contrast, Ar extracted at low temperatures from the basalt was enriched in 40Ar and gave anomalously high ages. Thus, the trajectories were fundamentally different. The excess 40Ar released from the xenoliths at high temperatures above ~1000°C may be explained either by the presence in retentive lattice sites of Ar, enriched in 40Ar or by the release of 40Ar$_0$. Because the poorly degassed sample of country rock from the same pluton as the xenoliths unmistakably showed the presence of 40Ar$_0$, and because of the clear evidence for 40Ar$_0$ in the trajectories of the site C xenolith, we attribute to the release of 40Ar$_0$ the departure from binary mixing of the site B xenolith trajectories. Nevertheless, there is an obvious tendency of the trajectories to return to a composition near that of air Ar. The large amounts of 36Ar released during fusion clearly demonstrate the presence of Ar, in retentive sites in the xenoliths. The amounts of 36Ar, released are 2 orders of magnitude larger than the blank contributions. If the xenoliths indeed contained multiple Ar components of different compositions, then their isochrons would have to be interpreted cautiously. More work is needed to resolve this problem, but it does not obviate the dramatic agreement between xenolith degassing ages and basalt eruption ages.

In each of the four xenolith samples from site B more than half of the 39Ar was released in steps with colinear compositions that defined isochrons of the same age (Table 2), even though in the magma was as little as ~94% complete and even though two of the samples (1-8 and 1-12) showed contributions of 40Ar$_0$ in steps above 1000°C sufficiently large to raise apparent ages to more than 20 m.y. The isochrons of sample 1-7 and 1-12 (Figure 7) provided the best estimates from xenoliths of the actual age of eruption. Sample 1-7 showed no evidence of 40Ar$_0$ at temperatures below fusion, but with a value of $S(n - 2) = 2.33$ may have had scatter in excess of measurement errors. Sample 1-12 had less scatter but a smaller plateau. At 1.15 ± 0.02 m.y. and 1.19 ± 0.02 m.y., these ages were distinct but neither was greatly different from the isochron age of 1.20 ± 0.02 m.y. for basalt sample 1-3.

The age spectrum for xenolith 1-7 demonstrates that if degassing in the magma was nearly complete, the eruption age may be measured from analysis of xenoliths as well as from analysis of the basalt itself. The age spectrum for xenolith 1-12 shows that even if ~6% of the original 40Ar$_0$ was retained after degassing by the lava, 40Ar* accumulated since the time of degassing may be completely separated from 40Ar$_0$ by stepwise heating and that the eruption age may still be confidently determined.

6.2 Model Ages and Isochron Ages

The mean plateau age for all seven xenoliths was 1.22 ± 0.10 m.y. The uncertainty in the mean was almost twice the uncertainty of any individual age. The mean isochron age was 1.17 ± 0.04 m.y., with less than half the uncertainty of the mean plateau age. Only two individual isochron ages had uncertainties smaller than the uncertainty of the mean. Since the xenoliths were degassed in the magma at about the same time, the reduced scatter in isochron ages is perhaps best explained by different compositions of Ar$_0$.

Ordinate intercepts of the seven xenolith isochrons indicate that the mean (36Ar/40Ar) was 0.00335 ± 0.00018. This value is not statistically different from atmospheric Ar (0.00338), but at the 95% confidence level four of the isochrons did have nonatmospheric ordinate intercepts. If Ar$_0$ had a nonatmospheric composition, then model ages are inaccurate and isochron ages must be used to determine the actual age of events.

The best estimate of the age of degassing of the xenoliths is probably the mean of the individual isochron ages weighted by their variances. The mean ages are 1.17 ± 0.01 m.y. and 1.17 ± 0.05 m.y. for the xenoliths from sites B and C, respectively, and are indistinguishable both from each other and from the weighted mean age of 1.18 ± 0.02 m.y. found for basalt samples 1-3 and 6-12. Thus, these ages may be pooled. Including Student's t factor and the systematic uncertainty for the Bern 4M monitor, the weighted mean age of degassing for all nine samples from sites B and C is 1.18 ± 0.05 m.y.
6.3 Recoil Redistribution of 39Ar

Recoil of 39Ar during neutron irradiation does not appear to have upset the correlation of 40Ar* and 39Ar in any of the samples. Huneke and Smith [1976] observed significant recoil of 39Ar from μm-sized grains, and because most K in basalts probably resides in crystals and shreds of glass less than 50 μm in diameter, at least some effects were anticipated. Because of the larger potassic grains, recoil distribution should be minor in the granitic xenoliths. Although the possible distortions of the composition trajectories are numerous, one commonly observed effect of recoil is a deficiency of 39Ar in Ar extracted at low temperatures and an excess at high temperatures. Ar released from basalt 8-12 at both low and high temperatures was less radiogenic than Ar released at intermediate temperatures. Thus, the effect of recoil redistribution of 39Ar could have been a reduction in the colinearity of compositions rather than a systematic change in the slope of the trajectory. Too few steps were taken in the analysis of basalt 8-12 to rule out recoil redistribution, but the observed colinearity of compositions suggests that any effects were minor. The apparently high model age of the 1175°C step could imply a deficiency of 39Ar in Ar extracted at high temperatures and is therefore not readily explained by recoil. A more satisfactory explanation is the 40Ar-rich composition of Ar, indicated by the isochron or the presence of 40Ar* from undetected xenocrysts (Figure 4, Table 2).

6.4 Trapped Argon

Interpreting Ar composition variations in terms of isochrons depends on the assumption that the measured Ar is a mixture of only one trapped and one K-derived end member. We found that appreciable quantities of 39Ar were released at all temperatures during analyses of both basalts and granitic xenoliths and interpreted this to mean that Ar was trapped within mineral lattices during crystallization [Frechen and Lippolt, 1965; Musset and Dalrymple, 1968; Lanphere and Dalrymple, 1971] as well as adsorbed onto grain surfaces. While the latter was presumably atmospheric in composition, Ar, in the lattice need not have been. Thus, it is possible that more than two end-member compositions were present. However, our results and the theoretical considerations of Gillespie et al. [1982] suggest that even in the presence of multiple end members reliable ages may be deduced, as long as within some temperature range only one trapped and one K-derived Ar reservoir are tapped.

In basalts with negligible 40Ar*, the Ar isotopic compositions during stepwise release might begin at one Ar end member, proceed toward the single K-derived end member, and return to a different Ar end member. The release of Ar, after reservoirs of K-derived Ar are largely depleted appears to be common for many different rocks and minerals [cf. Jessberger et al., 1974; Brereoton, 1972]. Inference of an eruption age requires the Ar end members to be thermally separable, so that the trajectory of Ar compositions contains linear segments. Basalt 1-2 released Ar whose compositions appeared to result from ternary mixing; however, the requisite linear arrays of compositions were not observed, and a reliable age could not be determined.

In xenoliths with significant amounts of 40Ar*, and multiple Ar reservoirs, Ar compositions would range within a quadrilateral in the three-isotope diagram. It is unlikely that the isotopic variation pattern could be clearly interpreted over its whole course. Identification of an eruption-age isochron would depend upon thermal release characteristics of 40Ar* as well as separation of the trapped components. Multiple reservoirs of Ar, of whatever composition, were indicated by the 36Ar release patterns for the xenoliths. This is clearly displayed in Figure 10, which contrasts the release patterns of 36Ar to those of 37Ar, 39Ar, and 40Ar* for xenolith

Fig. 10. Ar release patterns for xenolith sample 1-12. The fraction of Ar (ΔF) released at each extraction temperature was normalized by the change in temperature (ΔT) between extraction steps. (Temperatures are effective temperatures compensated for extraction time irregularities and for recorded fluctuations in the induction furnace current.) The dashed curve shows $\Delta F/\Delta T$ for 40Ar* retained during degassing in the lava. Ar was released from at least three distinct reservoirs. The prominent rise in $\Delta F/\Delta T$ for 40Ar* and 40Ar compared with 36Ar and 39Ar in reservoir C is attributable to Ar not lost from retentive sites during heating in the host lava. Apparent activation energies Q shown in the box below the curves were calculated from Ar released in each peak.
energies exceed those cited for feldspars [e.g., energies calculated for these two isotopes are largest for the during original crystallization was probably also partially re­tained in the xenolith upon cooling of the host lava. 36 Ar trapped from the measured amounts so that only extraction step have been normalized by the total amount of different amounts of degassing but treated as if none had oc­

larities in the heating schedule on the release patterns. The temperature range of major Ar release from a reservoir during analysis is controlled by an activation energy Q and diffusion parameter D_0/a^2, where a is characteristic radius for Ar diffu­sion. A curve describing gas released from uniform grains rises with extraction temperature until the reservoir begins to de­plete significantly, whereupon the curve reverses slope. Each reservoir in a system is characterized by its own peak, although separation of the peaks need not be sufficient to permit unambigu­ous identification of each.

In sample 1-12 (Figure 10) there appear to be three separate reservoirs, characterized by different Q and D_0/a^2, which release Ar over different temperature ranges. The amounts of 39Ar and 39Ar in each reservoir are about the same, while 40Ar* and 39Ar are dominated by gas released from the most retentive reservoir. Because 39Ar exceeded blank levels by an order of magnitude or more in most extraction steps, the 39Ar release pattern clearly reflects a characteristic of the xenolith. We have attributed the increase in 40Ar* to 39Ar* remaining in the xenolith upon cooling of the host lava. 39Ar trapped during original crystallization was probably also partially re­tained.

39Ar and 39Ar are created during neutron irradiation and are not subject to degassing by the magma. Apparent activation energies calculated for these two isotopes are largest for the high-temperature reservoir, but in no case do the activation energies exceed those cited for feldspars [e.g., Gerling and Mo­rozevich, 1962]. In contrast, the activation energy calculated for the high-temperature reservoir `C' of 40Ar* is about 220 kcal/mole. (40Ar* created in the 1.2 m.y. since eruption is subtracted from the measured amounts so that only 40Ar* is considered.) The activation energy for 40Ar* is over three times that of 39Ar from the same reservoir. 39Ar likewise shows a large activation energy of roughly 200 kcal/mole for the high­temperature reservoir `C'. To illustrate one possible explana­tion for these high activation energies, we have generated Arrhenius plots for diffusion from identical spheres subjected to different amounts of degassing but treated as if none had oc­curred, as was done to calculate the activation energies from the experimental data. The results of the model calculation are shown in Figure 11. It is evident that the effect of only 20% degassing is practically to double the apparent activation energy calculated from the Archenius plot. This apparent activa­tion energy is insensitive to changes in the amount of degassing if the reservoir is largely depleted. Thus, the high apparent activation energies for 39Ar and 39Ar calculated for sample 1-12 indicate that both 39Ar and 39Ar released at high temperatures (reservoir `C') were residua from degassing in the lava. Consistent with this, we note that more 39Ar was released at high extraction temperatures from xenolith 1-12, which was 6% retentive of 40Ar*, than from xenolith 1-11, which showed no 40Ar* at all. The existence of xenolith isochrons with air Ar, intercepts defined by Ar released from NFOC-1 at temper­atures below ~1000°C (Figure 7) and from NFOC-103 below ~850°C (Figure 9) demonstrate that if strongly nonatmospheric Ar, components were present in the xenoliths, they oc­cupied only retentive sites, together with 40Ar*, and their influence on the inferred age of eruption was negligible. Ar, released from xenoliths at low temperatures was probably air Ar adhered to surfaces or incorporated during incipient wea­thering or alteration; Ar, released at high temperatures was presumably trapped in the xenolith at the time of original crystallization. The presence of 40Ar* in Ar released at high temperatures masks the composition of Ar, from retentive sites, but we must in general consider the possibility that Ar, released at different temperatures has different compositions. However, the chief opportunities for Ar, complexity in the Ar release patterns occur when the release of 40Ar* already precludes inter­pretation of step ages as dates, and generally only the composition of the Ar, released at low temperatures will have an effect on the apparent eruption age. In all cases, original Ar, should have diffused out of the grains from those sites which also lost 40Ar*. That portion of the Ar composition trajectory corresponding to the eruption-age plateau in the age spectrum should generally lie on a mixing line connecting 40Ar* to Ar, introduced into the xenolith since cooling of the lava.

7. Conclusions

We have measured the age of eruption of a Pleistocene basalt by 40Ar-39Ar stepwise analysis of the host basalt and of granitic xenoliths originally crystallized more than 75 m.y. ago. The existence of low-temperature plateaus in age spectra of the xenoliths and the good agreement of these plateau ages with model and isochron ages of the host basalt establishes 40Ar-39Ar analysis of xenoliths as a useful method of dating the eruption of the host lava. The identification of granitic xeno­liths as appropriate material for 40Ar-39Ar dating is significant because it permits measurement of eruption ages for young lavas that would otherwise be difficult to date.

From the excellent agreement between isochron ages derived for these different systems, we conclude that the weighted mean apparent age of 1.18 ± 0.05 (2σ) m.y. is the eruption date of the basalt capping the ridge south of the North Fork of Oak Creek.
Ages obtained from xenoliths from the base and at the eroded top of the basalt flows south of the North Fork of Oak Creek were indistinguishable. Apparently, the ~50-m-thick sequence of flows was erupted within a short period of less than ~0.1 m.y. It was necessary to use isochron ages because of the presence of trapped Ar enriched in \(^{39}\)Ar compared with air Ar.

Multiple reservoirs of trapped Ar were shown to exist in both the basalt and the xenoliths. In the basalt, at least two trapped components of different composition appeared to be present. The resulting disagreement of model total ages of adjacent samples emphasized the unreliability of conventional K/Ar analysis for dating complicated systems. The presence of multiple trapped components of different compositions necessitates dating young samples by the multiple stage, thermal release method of \(^{40}\)Ar-\(^{39}\)Ar analysis.

Only a small fraction of the Ar in the xenoliths was retained after heating in the lava, and the low-temperature plateaus in the age spectra encompassed a large fraction of the \(^{39}\)Ar released. According to Gillespie et al. [1982], if the xenoliths had degassed in the magma as identical spheres, the amount of original \(^{40}\)Ar* that was retained would have been sufficient to preclude the development of low-temperature plateaus; the extensive eruption-age plateaus actually observed are characteristic of diffusion models with two or more sites of different dimensions or activation energies. The behavior of such models coupled with the present results suggests that the technique of dating lavas by analyzing xenoliths can be successfully applied to yet younger lavas.

Acknowledgments. Filippo Radicati di Brozolo assisted during early \(^{40}\)Ar-\(^{39}\)Ar analyses and gave unstinting of his time and advice. Theodore Wen measured K concentrations for several preliminary samples. We thank G. Brent Dalrymple and Derek York for their thoughtful criticisms of the article. This research was supported by NSF grants EAR 78-01787 and EAR 79-19997. Contribution 3506 (364) of the Division of Geological and Planetary Sciences, California Institute of Technology.

References

Darrow, A. C., Origin of the basalts of the Big Pine volcanic field, California, Master's thesis, Univ. of Calif. at Santa Barbara, 1972.

Frechen, J., and H. J. Lippolt, Kalium-Argon Daten zum Alter des Laucher Vulkanismus der Rheinterrassen und der Eiszeitene, Eise­

(Received August 13, 1982; revised March 1, 1983; accepted March 1, 1983.)