A new crystal: layer-structured rhombohedral \(\text{In}_3\text{Se}_4 \)

Guang Han, a Zhi-Gang Chen, ad Chenghua Sun, a, b Lei Yang, a Lina Cheng, a Zhifeng Li, e Wei Lu, e Zachary M. Gibbs, f G. Jeffery Snyder, d Kevin Jack, c John Drennan e and Jin Zou a,c

A new layer-structured rhombohedral \(\text{In}_3\text{Se}_4 \) crystal was synthesized by a facile and mild solvothermal method. Detailed structural and chemical characterizations using transmission electron microscopy, coupled with synchrotron X-ray diffraction analysis and Rietveld refinement, indicate that \(\text{In}_3\text{Se}_4 \) crystallizes in a layered rhombohedral structure with lattice parameters of \(a = 3.964 \pm 0.002 \) Å and \(c = 39.59 \pm 0.02 \) Å, a space group of \(R3m \), and with a layer composition of \(\text{Se}-(\text{In}_2\text{Se}_3)\text{InSe} \) and \(\text{Se}-(\text{In}_2\text{Se}_3)\text{InSe} \), respectively. These anisotropic bonding characteristics, including strong intralayer covalent bonding and weak interlayer van der Waals interactions, give rise to highly anisotropic optical, electrical, and thermal properties.10,11,15,16 In particular, the layered indium selenide nanostructures in the next-generation layered indium selenide nanostructures in the next-generation

1. Introduction

Layer-structured indium selenides, such as \(\text{In}_4\text{Se}_3 \), \(\alpha/\beta\text{In}_2\text{Se}_3 \), and \(\beta/\gamma\text{InSe} \), have attracted extensive attention in recent years due to their potential applications in thermoelectrics,1–5 solar cells,6 Li-ion batteries,7,8 photodetectors,9–12 and memory devices.13,14 Specifically, \(\text{In}_4\text{Se}_3 \) forms a layered structure of \((\text{In}_3)^{2}\) multivalent clusters bonded to \(\text{Se} \) ions,9 while for \(\alpha/\beta\text{In}_2\text{Se}_3 \) and \(\beta/\gamma\text{InSe} \), atomic layers consisting of \(\text{Se}-(\text{In}_2\text{Se}_3)\text{InSe} \) and \(\text{Se}-(\text{In}_2\text{Se}_3)\text{InSe} \), respectively, are formed. These anisotropic bonding characteristics, including strong intralayer covalent bonding and weak interlayer van der Waals interactions, give rise to highly anisotropic optical, electrical, and thermal properties.10,11,15,16 In particular, the layered indium selenide nanomaterials are anticipated to exhibit superior physical properties, owing to their anisotropic photon geometries and large surface-to-volume ratios, together with photon and carrier confinement effects.10 Once realized, such excellent properties will open up an opportunity for the application of layered indium selenide nanostructures in the next-generation nanoscale optical, electrical, and optoelectronic devices.

The bandgap is a key characteristic of the physical properties of materials that in turn affect their practical applications. Fig. 1 summarizes the reported bandgaps for various indium selenides and indium tellurides. While most compositions, including \(\text{InSe/InTe, In}_2\text{Se}_3/\text{In}_2\text{Te}_3 \), and tetragonal (t-) \(\text{In}_3\text{Te}_4 \), show gaps greater than 1 eV, only \(\text{In}_3\text{Se}_3 \) and \(\text{In}_4\text{Se}_3 \) exhibit relatively narrow bandgaps of ~0.65 eV and ~0.5 eV, respectively.17,18 In contrast, the bandgaps of rhombohedral (r-) \(\text{In}_3\text{Te}_4 \) and \(\text{In}_3\text{Se}_4 \) are not known. Furthermore, although \(\text{In}_3\text{Te}_4 \) can exist in rhombohedral or tetragonal crystal structures,16,19 the crystal structure of \(\text{In}_3\text{Se}_4 \) has not been found. In the case of r-\(\text{In}_3\text{Te}_4 \) with a layer structure consisting of \(\text{Te}-(\text{In}_2\text{Te}_3)\text{Te} \), superconductivity at 1.25 K has been observed,20 indicating that r-\(\text{In}_3\text{Se}_4 \), if it could be synthesized, might possess new physical properties. Hence, it is highly desirable to synthesize r-\(\text{In}_3\text{Se}_4 \) and to explore its physical properties. The fact that its analogous structure, r-\(\text{In}_3\text{Te}_4 \), can only be synthesized under extreme conditions (high pressure of ~3.5 GPa)21 suggests that the synthesis of a pure r-\(\text{In}_3\text{Se}_4 \) phase might be extremely difficult. Among all the available synthetic methods, solution-phase synthesis is a powerful approach to synthesize inorganic nanostructures of stable and metastable phases,22–27 and several new and metastable In- and/or Se-containing phases28–34 have been successfully synthesized recently through this approach by controlling the growth kinetics.

In this study, we demonstrate our successful synthesis of layered r-\(\text{In}_3\text{Se}_4 \) flower-like nanostructures assembled in nanosheets using a mild and controllable solvothermal method.
Through detailed characterization and theoretical modeling, it has been found that our synthesized In$_3$Se$_4$ is a new rhombohedral phase with lattice parameters of $a = 3.964 \pm 0.002$ Å and $c = 39.59 \pm 0.02$ Å, and a space group of $R\overline{3}m$, and it is a self-doped n-type semiconductor with an optical gap of ~0.55 eV.

2. Experimental section

2.1 Materials synthesis

For a typical preparation of the nanostructured In$_3$Se$_4$, a certain amount of a diluted NaHSe solution (0.1 mol L$^{-1}$, 3–6 ml) was swiftly injected into a mixed solvent (~40 ml) of ethylene glycol and deionised water with dissolved InCl$_3$·4H$_2$O (0.01 mol L$^{-1}$) and ethylenediaminetetraacetic acid (EDTA) (~0.043 mol L$^{-1}$). After stirring for ~2 min, the solution was transferred into a Teflon-lined autoclave which was sealed and annealed at 200–230 °C for 24 h. The reacted product was collected by centrifuge, washed with deionised water and absolute ethanol several times, and then dried for 12 h at 60 °C.

2.2 Materials characterizations

The morphology of the synthesized products was investigated by scanning electron microscopy (SEM, JEOL 6300, operated at 5 kV), and their structural and chemical characteristics were characterized by transmission electron microscopy (TEM, Philips FEI Tecnai F20, operated at 200 kV and equipped with energy-dispersive spectroscopy (EDS) for compositional analysis). Phase identification of the synthesized products (loaded in a quartz capillary) at room temperature and elevated temperatures was performed by synchrotron powder diffraction using X-rays with a wavelength of 0.999977 Å on the powder diffraction beamline at the Australian Synchrotron. To determine the crystal structure of the synthesized products, Rietveld refinements on the synchrotron XRD pattern were carried out using the DIFFRACplus TOPAS 4.1 software. The optical absorption spectrum of the synthesized products was measured by a Nicolet 6700 FTIR spectrometer at room temperature. The electrical resistivity and Hall coefficient of a cold-pressed disc of the synthesized products were measured by the Van der Pauw method, and the Hall carrier density was then calculated based on the measured Hall coefficient.

2.3 Computational methods

Spin-polarized density functional theory (DFT) calculations were carried out to optimize the lattice of In$_3$Se$_4$ within the generalized-gradient approximation, together with the exchange-correlation functional of Perdew–Burke–Ernzerhof. This was implemented in the Vienna ab initio simulation package, in which the reciprocal space was spanned with a plane-wave basis with a kinetic energy cutoff of 550 eV.

3. Results and discussion

Fig. 2a and b are typical SEM and TEM images of the synthesized products, and clearly reveal that hierarchical flower-like structures with an overall diameter of 1–3 μm are assembled from nanosheets with a thickness of 20–40 nm. EDS analysis showed that these flower-like structures are composed of In and Se with an In:Se atomic ratio close to 3:4. Fig. 2c shows a schematic illustration of the morphological characteristics of the nanostructures, and indicates the possibility of determining their crystal structure using selected area electron diffraction (SAED) patterns.
electron diffractions (SAED) taken along the normal to the nanosheet (beam direction 1) and along the nanosheet (beam direction 2). Fig. 2d and e are typical SAED patterns with the incident electron beam normal to a nanosheet (beam direction 1) and parallel to a nanosheet (beam direction 2), respectively. Fig. 2f and g are their respective corresponding schematic SAED patterns, from which typical rhombohedral diffraction patterns can be clearly demonstrated. Based on this, the diffraction spots in the two SAED patterns can be indexed (the reflections satisfy the condition of $-h + k + l = 3n$ with n = integer), and their zone axes can be determined as [0001] and [0110], respectively. To precisely determine the lattice parameters using SAED, a ~20 nm thick polycrystalline Au (with a well-known lattice parameter) thin film was coated on the TEM specimen as a reference, which allows $d_{1120} = 2.0 \pm 0.1 \text{ Å}$ and $d_{0003} = 13.2 \pm 0.1 \text{ Å}$ to be determined. Therefore, the lattice parameters of the synthesized indium selenide can be determined as $a = 4.0 \pm 0.2 \text{ Å}$ and $c = 39.7 \pm 0.3 \text{ Å}$. Fig. 2h and i are the corresponding high-resolution TEM images, in which the lattice spacings of 3.4 Å (d_{011}) and 13.2 Å (d_{0003}) can be observed. It should be noted that the determined lattice parameters of our indium selenide structure are similar to those of r-X3Y4 compounds, including In2Te4 (space group R3m, $a = 4.26 \text{ Å}$, $c = 40.6 \text{ Å}$) and Bi2Se4 (space group R3m, $a = 4.23 \text{ Å}$, $c = 40.5 \text{ Å}$). This similarity strongly indicates that the synthesized indium selenide belongs to In3Se4, with a space group of R3m.

To further confirm the crystal structure of the synthesized indium selenide, synchrotron XRD was performed and the result is shown as the red plot in Fig. 3a. In Fig. 3b, several standard diffraction profiles of different In3Se4 phases, including α-In2Se3, β-In2Se3, and δ-In2Se3 phases, are shown and none of them fit with the synchrotron XRD pattern. It is of interest to note that this synchrotron XRD pattern cannot be indexed by any other existing phase, but can be well indexed by a rhombohedral structure with lattice parameters of $a = 4.0 \pm 0.2 \text{ Å}$ and $c = 39.7 \pm 0.3 \text{ Å}$. Using this set of lattice parameters and the crystal system determined from the TEM characterization, together with the atomic coordinates and symmetry of the analogous r-In2Te4, the crystal structure of the r-In3Se4 crystal can be optimized and simulated using spin-polarized density functional theory, and the theoretical XRD pattern can be simulated. The green plot shown in Fig. 3a is such a simulated XRD pattern, which shows an excellent agreement with the synchrotron XRD pattern (refer to the positions of the diffraction peaks). To further determine the atomic coordinates and refine its lattice parameters, Rietveld refinement on the synchrotron XRD pattern was carried out using the simulated crystal structure of In3Se4 as the starting model. The refined XRD pattern and the discrepancy profile (generated by comparing the experimental XRD pattern and refined XRD pattern) are shown in Fig. 3a as, respectively, blue and gray plots, and the refined atomic coordinates are listed in Table 1. The relatively low Rwp of 4.75% indicates the high reliability of the refinement, which in turn supports a rhombohedral structure with lattice parameters of $a = 3.964 \pm 0.002 \text{ Å}$ and $c = 39.59 \pm 0.02 \text{ Å}$, as well as a space group of R3m for the synthesized In3Se4.

Based on the above experimental evidence, the atomic model of r-In3Se4 can be built, as illustrated in Fig. 4a, which shows that In3Se4 belongs to a layered structure with layers consisting of Se–In–Se–In–Se–In–Se and each unit cell being constructed by three such layers along its [0001] direction. We note that the In–Se distances in our r-In3Se4 crystals are close to those of semiconducting β-In2Se3 (lattice parameters: $a = 4.05 \text{ Å}$, $c = 29.41 \text{ Å}$, space group: R3m, and the In atoms locate in the center of octahedral cages – formed by 6 adjacent Se atoms, as illustrated in Fig. 4b), indicating In$^{3+}$ for the octahedrally coordinated In in our r-In3Se4.

It should be noted that similar solvothermal syntheses have produced In2Se3 phases. In our experiments, EDTA was used to synthesize the indium selenide nanomaterials, from which In3Se4 nanostructures were secured. Therefore, the addition of EDTA has played a key role in the formation of In3Se4. We anticipate that EDTA can act as the template for the growth of two-dimensional In–Se layers in our solvothermal system.
To explore the intrinsic properties of this new indium selenide phase, the electronic structure of a perfect In$_3$Se$_4$ crystal was calculated. Given the fact that the standard DFT may fail to describe the bandgap, state-of-the-art calculations with the hybrid functional HSE06 were performed. The Fermi energy (dash line) is across several bands, indicating that the In$_3$Se$_4$ crystal may be metallic or a heavily doped n-type semiconductor. Since, as mentioned earlier, In$^{+3}$ should be the case for the octahedrally coordinated In in r-In$_3$Se$_4$, stoichiometric In$_3$Se$_4$ should have one extra electron per formula unit, resulting in a heavily self-doped n-type semiconductor, which is similar to the case of La$_3$Te$_4$.

To clarify the physical features of our r-In$_3$Se$_4$, we performed optical absorption analysis and electrical property measurements. Fig. 6a is an infrared optical absorption profile of our In$_3$Se$_4$ nanostructures which increases with energy above ~0.55 eV, which is a characteristic of a semiconductor. Fig. 6b is the measured electrical resistivity of a typical cold-pressed In$_3$Se$_4$ disc as a function of temperature, and shows a decreasing resistivity on increasing the temperature, indicating again its semiconducting nature. Based on the measured Hall efficient, the carrier density (n_e) of our In$_3$Se$_4$ nanostructures can be determined to be $n_e \approx -1 \times 10^{17}$ cm$^{-3}$, dominated by electrons, at room temperature, so that our In$_3$Se$_4$ nanostructures are n-type semiconductors.

Table 1 Crystallographic data of In$_3$Se$_4$ obtained by Rietveld refinement of the synchrotron XRD pattern

<table>
<thead>
<tr>
<th>Site</th>
<th>Wyckoff symbol</th>
<th>Symmetry</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>3a</td>
<td>3m</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1</td>
</tr>
<tr>
<td>In2</td>
<td>6c</td>
<td>3m</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4150(1)</td>
<td>1</td>
</tr>
<tr>
<td>Se1</td>
<td>6c</td>
<td>3m</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1242(1)</td>
<td>1</td>
</tr>
<tr>
<td>Se2</td>
<td>6c</td>
<td>3m</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3012(1)</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 4 Crystal structure models of (a) r-In$_3$Se$_4$ and (b) β-In$_2$Se$_3$ with In-Se bond lengths labelled.

Fig. 5 Calculated (a) band structures and (b) density of states, both for r-In$_3$Se$_4$ (the dashed line shows the Fermi level at $E - E_F = 0$ eV).

Fig. 6 (a) Optical absorption spectrum of the In$_3$Se$_4$ flower-like nanostructures. (b) resistivity of the cold-pressed In$_3$Se$_4$ disc.

Fig. 7 In situ synchrotron XRD patterns of In$_3$Se$_4$ heated at various temperatures.
Since the stability of a material is an important parameter for its applications, it is necessary to evaluate the stability of our synthesized In₃Se₄ nanostructures. In this regard, in situ high-temperature synchrotron XRD analysis was performed and it has been found that the structure of our In₃Se₄ remains stable up to 800 °C (Fig. 7), indicating that our In₃Se₄ has a high thermal stability, much higher than other layered indium selenide structures. Therefore, our In₃Se₄ nanostructures can be used in high temperature environments.

4. Conclusions

In summary, a mild and controllable solvothermal method has been developed for the synthesis of r-In₃Se₄ with high thermal stability. This new phase is confirmed to belong to a layered rhombohedral crystal structure (lattice parameters of \(a = 3.964 \pm 0.002 \, \text{Å} \) and \(c = 39.59 \pm 0.02 \, \text{Å}\), and a space group of \(R3m\), in which layers consist of alternating Se-In-Se-In-Se-In-Se and stack along the [0001] direction. The detailed computational calculations and experimental measurements reveal that our r-In₃Se₄ is a self-doped n-type semiconductor with an optical gap of \(\sim 0.55 \, \text{eV}\). This study has deepened the understanding on the crystallography of indium selenides and provided a new way for searching out new semiconducting compounds.

Acknowledgements

This study is supported by the Australian Research Council, the QLD smart state future fellowship (Z.-G. C) and international fellowships (Z.-G. C./J. Z.), a UQ research foundation excellent award (Z.-G. C) and the CAS/SAFEA international partnership program for creative research teams. The Australian Microscopy & Microanalysis Research Facility and Australian Synchrotron are acknowledged for providing characterization facilities for this study. We also appreciate the generous grants of CPU time from The University of Queensland and the Australian National Computational Infrastructure Facility.

Notes and references