Angular analysis and branching fraction measurement of the decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

The CMS Collaboration *

Abstract

The angular distributions and the differential branching fraction of the decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ are studied using a data sample corresponding to an integrated luminosity of 5.2 fb$^{-1}$ collected with the CMS detector at the LHC in pp collisions at $\sqrt{s} = 7$ TeV. From more than 400 signal decays, the forward-backward asymmetry of the muons, the K^{*0} longitudinal polarization fraction, and the differential branching fraction are determined as a function of the square of the dimuon invariant mass. The measurements are in good agreement with standard model predictions.

Published in Physics Letters B as [doi:10.1016/j.physletb.2013.10.017].

*See Appendix A for the list of collaboration members
1 Introduction

It is possible for new phenomena (NP) beyond the standard model (SM) of particle physics to be observed either directly or indirectly, i.e., through their influence on other physics processes. Indirect searches for NP generally proceed by comparing experimental results with theoretical predictions in the production or decay of known particles. The study of flavor-changing neutral-current decays of b hadrons such as $B^0 \rightarrow K^{*0}\mu^+\mu^-$ (K^{*0} indicates the $K^{*}(892)^0$ and charge conjugate states are implied in what follows, unless explicitly stated otherwise) is particularly fertile for new phenomena searches, given the modest theoretical uncertainties in the predictions and the low rate as the decay is forbidden at tree level in the SM. On the theoretical side, great progress has been made since the first calculations of the branching fraction [1–4], the forward-backward asymmetry of the muons, A_{FB} [5], and the longitudinal polarization fraction of the K^{*0}, F_L [6–11]. Robust calculations of these variables [12–19] are now available for much of the phase space of this decay, and it is clear that new physics could give rise to readily observable effects [8, 16, 20–34]. Finally, this decay mode is relatively easy to select and reconstruct at hadron colliders.

The quantities A_{FB} and F_L can be measured as a function of the dimuon invariant mass squared (q^2) and compared to SM predictions [14]. Deviations from the SM predictions can indicate new physics. For example, in the minimal supersymmetric standard model (MSSM) modified with minimal flavor violation, called flavor blind MSSM (FBMSSM), effects can arise through NP contributions to the Wilson coefficient C_7 [16]. Another NP example is the MSSM with generic flavor-violating and CP-violating soft SUSY-breaking terms (GMSSM), in which the Wilson coefficients C_7, C'_7, and C_{10} can receive contributions [16]. As shown there, these NP contributions can dramatically affect the A_{FB} distribution (note that the variable S_6^c defined in Ref. [16] is related to A_{FB} measured in this paper by $S_6^c = -\frac{4}{3}A_{FB}$), indicating that precision measurements of A_{FB} can be used to identify or constrain new physics.

While previous measurements by BaBar, Belle, CDF, and LHCb are consistent with the SM [35–38], these measurements are still statistically limited, and more precise measurements offer the possibility to uncover physics beyond the SM.

In this Letter, we present measurements of A_{FB}, F_L, and the differential branching fraction $d\mathcal{B}/dq^2$ from $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decays, using data collected from pp collisions at the Large Hadron Collider (LHC) with the Compact Muon Solenoid (CMS) experiment in 2011 at a center-of-mass energy of 7 TeV. The analyzed data correspond to an integrated luminosity of 5.2 ± 0.1 fb$^{-1}$ [39]. The K^{*0} is reconstructed through its decay to $K^+\pi^-$ and the B^0 is reconstructed by fitting the two identified muon tracks and the two hadron tracks to a common vertex. The values of A_{FB} and F_L are measured by fitting the distribution of events as a function of two angular variables: the angle between the positively charged muon and the B^0 in the dimuon rest frame, and the angle between the kaon and the B^0 in the K^{*0} rest frame. All measurements are performed in q^2 bins from 1 to 19 GeV2. The q^2 bins 8.68 < q^2 < 10.09 GeV2 and 12.90 < q^2 < 14.18 GeV2, corresponding to the $B^0 \rightarrow K^{*0}J/\psi$ and $B^0 \rightarrow K^{*0}\psi'$ decays (ψ' indicates the $\psi(2S)$ in what follows), respectively, are both used to validate the analysis, and the former is used to normalize the branching fraction measurement.

2 CMS detector

A detailed description of the CMS detector can be found elsewhere [40]. The main detector components used in this analysis are the silicon tracker and the muon detection systems. The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.4$, where
The data were collected with triggers that required single-muon pseudorapidity of $\eta < 2.4$ and $|\eta| < 2.4$ and varies from $\approx 95\%$ at $|\eta| = 0$ to $\approx 85\%$ at $|\eta| = 2.4$ for hadrons. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers, all of which are sandwiched between the solenoid flux return steel plates. Events are selected with a two-level trigger system. The first level is composed of custom hardware processors and uses information from the calorimeters and muon systems to select the most interesting events. The high-level trigger processor farm further decreases the event rate from nearly 100 kHz to around 350 Hz before data storage.

3 Reconstruction, event selection, and efficiency

The signal ($B^0 \rightarrow K^{*0} \mu^+ \mu^-$) and normalization/control samples ($B^0 \rightarrow K^{*0} J/\psi$ and $B^0 \rightarrow K^{*0} \psi'$) were recorded with the same trigger, requiring two identified muons of opposite charge to form a vertex that is displaced from the pp collision region (beamspot). The beamspot position and size were continuously measured from Gaussian fits to reconstructed vertices as part of the online data quality monitoring. Five dimuon trigger configurations were used during 2011 data taking with increasingly stringent requirements to maintain an acceptable trigger rate as the instantaneous luminosity increased. For all triggers, the separation between the beamspot and the dimuon vertex in the transverse plane was required to be larger than three times the sum in quadrature of the distance uncertainty and the beamspot size. In addition, the cosine of the angle between the dimuon momentum vector and the vector from the beamspot to the dimuon vertex in the transverse plane was required to be greater than 0.9. More than 95% of the data were collected with triggers that required single-muon pseudorapidity of $|\eta(\mu)| < 2.2$ for both muons, dimuon transverse momentum of $p_T(\mu\mu) > 6.9$ GeV, single-muon transverse momentum for both muons of $p_T(\mu) > 3.0, 4.0, 4.5, 5.0$ GeV (depending on the trigger), and the corresponding vertex fit probability of $\chi^2_{\text{prob}} > 5\%$, 15\%, 15\%, 15\%. The remaining data were obtained from a trigger with requirements of $|\eta(\mu)| < 2.5, \chi^2_{\text{prob}} > 0.16\%$, and $p_T(\mu\mu) > 6.5$ GeV. The events used in this analysis passed at least one of the five triggers.

The decay modes used in this analysis require two reconstructed muons and two charged hadrons, obtained from offline reconstruction. The reconstructed muons are required to match the muons that triggered the event readout and to pass several muon identification requirements, namely a track matched with at least one muon segment, a track fit χ^2 per degree of freedom less than 1.8, at least 11 hits in the tracker with at least 2 from the pixel detector, and a transverse (longitudinal) impact parameter less than 3 cm (30 cm). The reconstructed dimuon system is further required to satisfy the same requirements as were used in the trigger. In events where multiple trigger configurations are satisfied, the requirements associated with the loosest trigger are used.

While the muon requirements are based on the trigger and a CMS standard selection, most of the remaining selection criteria are optimized by maximizing $S/\sqrt{S+B}$, where S is the expected signal yield from Monte Carlo (MC) simulations and B is the background estimated from invariant-mass sidebands in data, defined as $>3\,\sigma_{m(B^0)}$ and $<5.5\,\sigma_{m(B^0)}$ from the B^0 mass [41], where $\sigma_{m(B^0)}$ is the average B^0 mass resolution of 44 MeV. The optimization is performed on

\[\eta = -\ln[\tan(\theta/2)] \] and θ is the polar angle of the track relative to the beam direction. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid. The reconstructed tracks have a transverse impact parameter resolution ranging from $\approx 100 \mu m$ to $\approx 20 \mu m$ as the transverse momentum of the track (p_T) increases from 1 GeV to 10 GeV. In the same p_T regime, the momentum resolution is better than 1% in the central region, increasing to 2% at $\eta \approx 2$, while the track reconstruction efficiency is nearly 100% for muons with $|\eta| < 2.4$ and varies from $\approx 95\%$ at $\eta = 0$ to $\approx 85\%$ at $|\eta| = 2.4$ for hadrons. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers, all of which are sandwiched between the solenoid flux return steel plates. Events are selected with a two-level trigger system. The first level is composed of custom hardware processors and uses information from the calorimeters and muon systems to select the most interesting events. The high-level trigger processor farm further decreases the event rate from nearly 100 kHz to around 350 Hz before data storage.

3 Reconstruction, event selection, and efficiency

The signal ($B^0 \rightarrow K^{*0} \mu^+ \mu^- \rightarrow K^{*0} e^+ e^- \rightarrow K^{*0} J/\psi e^+ e^-$) and normalization/control samples ($B^0 \rightarrow K^{*0} J/\psi$ and $B^0 \rightarrow K^{*0} \psi'$) were recorded with the same trigger, requiring two identified muons of opposite charge to form a vertex that is displaced from the pp collision region (beamspot). The beamspot position and size were continuously measured from Gaussian fits to reconstructed vertices as part of the online data quality monitoring. Five dimuon trigger configurations were used during 2011 data taking with increasingly stringent requirements to maintain an acceptable trigger rate as the instantaneous luminosity increased. For all triggers, the separation between the beamspot and the dimuon vertex in the transverse plane was required to be larger than three times the sum in quadrature of the distance uncertainty and the beamspot size. In addition, the cosine of the angle between the dimuon momentum vector and the vector from the beamspot to the dimuon vertex in the transverse plane was required to be greater than 0.9. More than 95% of the data were collected with triggers that required single-muon pseudorapidity of $|\eta(\mu)| < 2.2$ for both muons, dimuon transverse momentum of $p_T(\mu\mu) > 6.9$ GeV, single-muon transverse momentum for both muons of $p_T(\mu) > 3.0, 4.0, 4.5, 5.0$ GeV (depending on the trigger), and the corresponding vertex fit probability of $\chi^2_{\text{prob}} > 5\%$, 15\%, 15\%, 15%. The remaining data were obtained from a trigger with requirements of $|\eta(\mu)| < 2.5, \chi^2_{\text{prob}} > 0.16\%$, and $p_T(\mu\mu) > 6.5$ GeV. The events used in this analysis passed at least one of the five triggers.

The decay modes used in this analysis require two reconstructed muons and two charged hadrons, obtained from offline reconstruction. The reconstructed muons are required to match the muons that triggered the event readout and to pass several muon identification requirements, namely a track matched with at least one muon segment, a track fit χ^2 per degree of freedom less than 1.8, at least 11 hits in the tracker with at least 2 from the pixel detector, and a transverse (longitudinal) impact parameter less than 3 cm (30 cm). The reconstructed dimuon system is further required to satisfy the same requirements as were used in the trigger. In events where multiple trigger configurations are satisfied, the requirements associated with the loosest trigger are used.

While the muon requirements are based on the trigger and a CMS standard selection, most of the remaining selection criteria are optimized by maximizing $S/\sqrt{S+B}$, where S is the expected signal yield from Monte Carlo (MC) simulations and B is the background estimated from invariant-mass sidebands in data, defined as $>3\,\sigma_{m(B^0)}$ and $<5.5\,\sigma_{m(B^0)}$ from the B^0 mass [41], where $\sigma_{m(B^0)}$ is the average B^0 mass resolution of 44 MeV. The optimization is performed on
one trigger sample, corresponding to an integrated luminosity of 2.7 fb$^{-1}$, requiring $1.0 < q^2 < 7.3$ GeV2 or $16 < q^2 < 19$ GeV2 to avoid J/ψ and ψ' contributions. The hadron tracks are required to fail the muon identification criteria, and have $p_T(h) > 0.75$ GeV and an extrapolated distance of closest approach to the beamspot in the transverse plane greater than 1.3 times the sum in quadrature of the distance uncertainty and the beamspot transverse size. The two hadrons must have an invariant mass within 80 MeV of the nominal K^0 mass for either the $K^+\pi^-$ or $K^-\pi^+$ hypothesis. To remove contamination from ϕ decays, the hadron-pair invariant mass must be greater than 1.035 GeV when the charged K mass is assigned to both hadron tracks. The B^0 candidates are obtained by fitting the four charged tracks to a common vertex and applying a vertex constraint to improve the resolution of the track parameters. The B^0 candidates must have $p_T(B^0) > 8$ GeV, $|\eta(B^0)| < 2.2$, vertex fit probability $\chi^2_{\text{prob}} > 9\%$, vertex transverse separation from the beamspot greater than 12 times the sum in quadrature of the separation uncertainty and the beamspot transverse size, and $\cos \alpha_{xy} > 0.9994$, where α_{xy} is the angle, in the transverse plane, between the B^0 momentum vector and the line-of-flight between the beamspot and the B^0 vertex. The invariant mass of the four-track vertex must also be within 280 MeV of the world-average B^0 mass for either the $K^-\pi^+\mu^+\mu^-$ or $K^+\pi^-\mu^+\mu^-$ hypothesis. This selection results in an average of 1.06 candidates per event in which at least one candidate is found. A single candidate is chosen from each event based on the best B^0 vertex fit χ^2.

The four-track vertex candidate is identified as a $B^0(\bar{B}^0)$ if the $K^+\pi^-(K^-\pi^+)$ invariant mass is closest to the nominal K^0 mass. In cases where both $K\pi$ combinations are within 50 MeV of the nominal K^0 mass, the event is rejected since no clear identification is possible owing to the 50 MeV natural width of the K^0. The fraction of candidates assigned the incorrect state is estimated from simulations to be 8\%.

From the retained events, the dimuon invariant mass q and its corresponding calculated uncertainty σ_q are used to distinguish between the signal and normalization/control samples. The $B^0 \rightarrow K^{*0}J/\psi$ and $B^0 \rightarrow K^{*0}\psi'$ samples are defined as $m_{J/\psi} - 5\sigma_q < q < m_{J/\psi} + 3\sigma_q$ and $|q - m_{\psi'}| < 3\sigma_q$, respectively, where $m_{J/\psi}$ and $m_{\psi'}$ are the world-average mass values. The asymmetric selection of the J/ψ sample is due to the radiative tail in the dimuon spectrum, while the smaller signal in the ψ' mode made an asymmetric selection unnecessary. The signal sample is the complement of the J/ψ and ψ' samples.

The global efficiency, ϵ, is the product of the acceptance and the trigger, reconstruction, and selection efficiencies, all of which are obtained from MC simulations. The pp collisions are simulated using PYTHIA [42] version 6.424, the unstable particles are decayed by EVTGEN [43] version 9.1 (using the default matrix element for the signal), and the particles are traced through a detailed model of the detector with GEANT4 [44]. The reconstruction and event selection for the generated samples proceed as for the data events. Three simulation samples were created in which the B^0 was forced to decay to $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu^+\mu^-$, $B^0 \rightarrow K^{*0}(K^+\pi^-)J/\psi(\mu^+\mu^-)$, or $B^0 \rightarrow K^{*0}(K^+\pi^-)\psi'(\mu^+\mu^-)$. The acceptance is calculated as the fraction of events passing the single-muon cuts of $p_T(\mu) > 2.8$ GeV and $|\eta(\mu)| < 2.3$ relative to all events with a B^0 in the event with $p_T(B^0) > 8$ GeV and $|\eta(B^0)| < 2.2$. The acceptance is obtained from the generated events before the particle tracing with GEANT4. To obtain the reconstruction and selection efficiency, the MC simulation events are divided into five samples, appropriately sized to match the amount of data taken with each of the five triggers. In each of the five samples, the appropriate trigger and matching offline event selection is applied. Furthermore, each of the five samples is reweighted to obtain the correct distribution of pileup events (additional pp collisions in the same bunch crossing as the collision that produced the B^0 candidate), corresponding to the data period during which the trigger was active. The reconstruction and
selection efficiency is the ratio of the number events that pass all the selections and have a reconstructed B^0 compatible with the generated B^0 in the event relative to the number of events that pass the acceptance criteria. The compatibility of generated and reconstructed particles is enforced by requiring the reconstructed $K^+\pi^-\mu^+\mu^-$ to have $\sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3$ for hadrons and 0.004 for muons, where $\Delta\eta$ and $\Delta\phi$ are the differences in η and ϕ between the reconstructed and generated particles, and ϕ is the azimuthal angle in the plane perpendicular to the beam direction. The efficiency and purity of this compatibility requirement are greater than 99%.

4 Analysis method

The analysis measures A_{FB}, F_L, and $d\mathcal{B}/dq^2$ of the decay $B^0 \to K^{*0}\mu^+\mu^-$ as a function of q^2. Figure 1 shows the relevant angular observables needed to define the decay: θ_K is the angle between the kaon momentum and the direction opposite to the B^0 (\bar{B}^0) in the K^{*0} (\bar{K}^{*0}) rest frame, θ_l is the angle between the positive (negative) muon momentum and the direction opposite to the B^0 (\bar{B}^0) in the dimuon rest frame, and ϕ is the angle between the plane containing the two muons and the plane containing the kaon and pion. Since the extracted angular parameters A_{FB} and F_L and the acceptance times efficiency do not depend on ϕ, ϕ is integrated out. Although the $K^+\pi^-$ invariant mass must be consistent with a K^{*0}, there can be contributions from a spinless (S-wave) $K^+\pi^-$ combination [45-47]. This is parametrized with two terms related to the S-wave fraction, F_S, and the interference amplitude between the S-wave and P-wave decays, A_S. Including this component, the angular distribution of $B^0 \to K^{*0}\mu^+\mu^-$ can be written as [47]:

$$
\frac{1}{\Gamma} \frac{d^3\Gamma}{dcos\theta_K dcos\theta_l dq^2} = \frac{9}{16} \left\{ \left[\frac{2}{3} F_S + \frac{4}{3} A_S \cos\theta_K \right] (1 - \cos^2 \theta_l) + (1 - F_S) \left[2F_L \cos^2 \theta_K (1 - \cos^2 \theta_l) \right. \\
\left. + \frac{1}{2} (1 - F_L) (1 - \cos^2 \theta_K) (1 + \cos^2 \theta_l) \right. \\
\left. + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos\theta_l \right\}.
$$

(1)

Figure 1: Sketch showing the definition of the angular observables for the decay $B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$. The main results of the analysis are extracted from unbinned extended maximum-likelihood fits in bins of q^2 to three variables: the $K^+\pi^-\mu^+\mu^-$ invariant mass and the two angular variables
\(\theta_K \) and \(\theta_l \). For each \(q^2 \) bin, the probability density function (PDF) has the following expression:

\[
\text{PDF}(m, \cos \theta_K, \cos \theta_l) = Y_S \cdot S(m) \cdot S(\cos \theta_K, \cos \theta_l) \cdot e(\cos \theta_K, \cos \theta_l) \\
+ Y_{Bc} \cdot B_c(m) \cdot B_c(\cos \theta_K) \cdot B_c(\cos \theta_l) \\
+ Y_{Bp} \cdot B_p(m) \cdot B_p(\cos \theta_K) \cdot B_p(\cos \theta_l).
\]

(2)

The signal yield is given by the free parameter \(Y_S \). The signal shape is described by the product of a function \(S(m) \) of the invariant mass variable, the theoretical signal shape as a function of two angular variables, \(S(\cos \theta_K, \cos \theta_l) \), and the efficiency as a function of the same two variables, \(e(\cos \theta_K, \cos \theta_l) \). The signal mass shape \(S(m) \) is the sum of two Gaussian functions with a common mean. While the mean is free to float, the two resolution parameters and the relative fraction are fixed to the result from a fit to the simulated events. The signal angular variables, \(\epsilon_S \) and \(|A_S| \), are constrained to lie in the physical region of 0 to 1. In addition, penalty terms are added to ensure that \(|A_{FB}| < \frac{1}{4} (1 - F_L) \) and \(|A_S| < \frac{1}{2} [F_S + 3F_L (1 - F_S)] \), which are necessary to avoid a negative decay rate.

The differential branching fraction, \(\frac{d\mathcal{B}}{dq^2} \), is measured relative to the normalization channel \(B^0 \to K^{*0}/\psi \) using

\[
\frac{d\mathcal{B} \left(B^0 \to K^{*0}\mu^+\mu^- \right)}{dq^2} = Y_S \epsilon_S \frac{d\mathcal{B} \left(B^0 \to K^{*0}/\psi \right)}{dq^2}
\]

(3)

where \(Y_S \) and \(Y_N \) are the yields of the signal and normalization channels, respectively, \(\epsilon_S \) and \(\epsilon_N \) are the efficiencies of the signal and normalization channels, respectively, and \(B \left(B^0 \to K^{*0}/\psi \right) \) are the branching fractions of the signal and normalization channels, respectively.
Systematic uncertainties

The world-average branching fraction for the normalization channel $[41]$. The yields are obtained with fits to the invariant-mass distributions and the efficiencies are obtained by integrating over the angular variables using the values obtained from the previously described fits.

Three methods are used to validate the fit formalism and results. First, 1000 pseudo-experiment samples are generated in each q^2 bin using the PDF in Eq. (2). The log-likelihood values obtained from the fits to the data are consistent with the distributions from the pseudo-experiments, indicating an acceptable goodness of fit. The pull distributions obtained from the pseudo-experiments indicate the uncertainties returned by the fit are generally overestimated by 0–10%. No attempt is made to correct the experimental uncertainties for this effect. Second, a fit is performed to a sample of MC simulation events that approximated the data sample in size and composition. The MC simulation sample contains a data-like mixture of four types of events. Three types of events are generated and simulated events from $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B^0 \rightarrow K^{*0}/\psi$, and $B^0 \rightarrow K^{*0}/\psi'$ decays. The last event type is the combinatorial background, which is generated based on the PDF in Eq. (2). Third, the fit is performed on the normalization/control samples and the results compared to the known values. Biases observed from these three checks are treated as systematic uncertainties, as described in Section 5.

5 Systematic uncertainties

A variety of systematic effects are investigated and the impacts on the measurements of F_L, A_{FB}, and $d\mathcal{B}/dq^2$ are evaluated.

The finite sizes of the MC simulation samples used to measure the efficiency introduce a systematic uncertainty of a statistical nature. Alternative efficiency functions are created by randomly varying the parameters of the efficiency polynomials within the fitted uncertainties for the MC samples. The alternative efficiency functions are applied to the data and the root-mean-squares of the returned values taken as the systematic uncertainty.

The fit algorithm is validated by performing 1000 pseudo-experiments, generated and fit with the PDF of Eq. (2). The average deviation of the 1000 pseudo-experiments from the expected mean is taken as the systematic uncertainty associated with possible bias from the fit algorithm. This bias is less than half of the statistical uncertainty for all measurements. Discrepancies between the functions used in the PDF and the true distribution can also give rise to biases. To evaluate this effect, a MC simulation sample similar in size and composition to the analyzed data set is fit using the PDF of Eq. (2). The differences between the fitted values and the true values are taken as the systematic uncertainties associated with the fit ingredients.

Mistagging a B^0 as a \bar{B}^0 (and vice versa) worsens the measured B^0 mass resolution. A comparison of resolutions for data and MC simulations (varying the mistag rates in the simulation) indicates the mistag rate may be as high as 12%, compared to the value of 8% determined from simulation. The systematic uncertainty in the mistag rate is obtained from the difference in the final measurements when these two values are used.

The systematic uncertainty related to the contribution from the $K\pi$ S-wave (and interference with the P-wave) is evaluated by taking the difference between the default results, obtained by fitting with a function accounting for the S-wave (Eq. (1)), with the results from a fit performed with no S-wave or interference terms ($F_S = A_S = 0$ in Eq. (1)).

Variations of the background PDF shapes, versus mass and angles, are used to estimate the effect from the choice of PDF shapes. The mass-shape parameters of the peaking background,
normally taken from a fit to the simulation, are left free in the data fit and the difference adopted as a systematic uncertainty. The degree of the polynomials used to fit the angular shapes of the combinatorial background are increased by one and the difference taken as a systematic uncertainty. In addition, the difference in results obtained by fitting the mass-shape parameters using the data, rather than using the result from simulations, is taken as the signal mass-shape systematic uncertainty.

The effect of the experimental resolution of \(\cos \theta_K \) and \(\cos \theta_l \) is estimated as the difference, when significant, of the returned values for \(A_{FB} \) and \(F_L \) when the reconstructed or generated values of \(\cos \theta_K \) and \(\cos \theta_l \) are used. The effect of the dimuon mass resolution is found to be negligible.

A possible difference between the efficiency computed with the simulation and the true efficiency in data is tested by comparing the measurements of known observables between data and simulation using the control channels. The differences in the measurements of \(F_L \) and \(A_{FB} \) are computed using the \(B^0 \to K^{*0}J/\psi \) decay. For the differential branching fraction measurement, the systematic uncertainty is estimated using the ratio of branching fractions \(B(B^0 \to K^{*0}J/\psi(\mu^+\mu^-))/B(B^0 \to K^{*0}J/\psi'(\mu^+\mu^-)) \), where our measured value of \(15.5 \pm 0.4 \) (statistical uncertainty only) is in agreement with the most-precise previously published value of \(16.2 \pm 0.5 \pm 0.3 \) [48]. We use the difference of 4.3% between these two measurements as an estimate of the systematic uncertainty from possible \(q^2 \)-dependent efficiency mismodeling.

For the branching fraction measurement, a common normalization systematic uncertainty of 4.6% arises from the branching fractions of the normalization mode (\(B^0 \to K^{*0}J/\psi \) and \(J/\psi \to \mu^+\mu^- \)) [41]. Finally, variation of the number of pileup collisions is found to have no effect on the results.

The systematic uncertainties are measured and applied in each \(q^2 \) bin, with the total systematic uncertainty obtained by adding in quadrature the individual contributions. A summary of the systematic uncertainties is given in Table 1; the ranges give the variation over the \(q^2 \) bins.

Table 1: Systematic uncertainty contributions for the measurements of \(F_L \), \(A_{FB} \), and \(dB/dq^2 \). The \(F_L \) and \(A_{FB} \) uncertainties are absolute values, while the \(dB/dq^2 \) uncertainties are relative to the measured value. The ranges given refer to the variations over the \(q^2 \) bins.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>(F_L) (10(^{-3}))</th>
<th>(A_{FB}) (10(^{-3}))</th>
<th>(dB/dq^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency statistical uncertainty</td>
<td>5–7</td>
<td>3–5</td>
<td>1</td>
</tr>
<tr>
<td>Potential bias from fit algorithm</td>
<td>3–40</td>
<td>12–77</td>
<td>0–2.7</td>
</tr>
<tr>
<td>Potential bias from fit ingredients</td>
<td>0</td>
<td>0–17</td>
<td>0–7.1</td>
</tr>
<tr>
<td>Incorrect CP assignment of decay</td>
<td>2–6</td>
<td>2–6</td>
<td>0</td>
</tr>
<tr>
<td>Effect of K(\pi) S-wave contribution</td>
<td>5–23</td>
<td>6–14</td>
<td>5</td>
</tr>
<tr>
<td>Peaking background mass shape</td>
<td>0–26</td>
<td>0–8</td>
<td>0–15</td>
</tr>
<tr>
<td>Background shapes vs. (\cos \theta_{L,K})</td>
<td>3–180</td>
<td>4–160</td>
<td>0–3.3</td>
</tr>
<tr>
<td>Signal mass shape</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>0–19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Efficiency shape</td>
<td>16</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Normalization to (B^0 \to K^{*0}J/\psi)</td>
<td>—</td>
<td>—</td>
<td>4.6</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>31–190</td>
<td>18–180</td>
<td>8.6–17</td>
</tr>
</tbody>
</table>

6 Results

The \(K^+\pi^-\mu^+\mu^- \) invariant-mass, \(\cos \theta_K \), and \(\cos \theta_l \) distributions for the \(q^2 \) bin corresponding to the \(B^0 \to K^{*0}J/\psi \) decay are shown in Fig. 2 along with the projection of the maximum-
likelihood fit described in Section 4. The results are used to validate the fitting procedure and obtain the values for F_S and A_S used in the fits to the signal q^2 bins. From 47 000 signal events, the fitted values are $F_L = 0.554 \pm 0.004$, $A_{FB} = -0.004 \pm 0.004$, $F_S = 0.01 \pm 0.01$, and $A_S = -0.10 \pm 0.01$, where the uncertainties are statistical. Considering also the typical systematic uncertainties (Table 1), the result for F_L is compatible with the world-average value of 0.570 ± 0.008 [41], while the value for A_{FB} is consistent with the expected result of no asymmetry. The same fit is performed for the $B^0 \rightarrow K^{*0}\psi' q^2$ bin, where 3200 signal events yield results of $F_L = 0.509 \pm 0.016$ (stat.), which is consistent with the world-average value of 0.46 ± 0.04 [41], and $A_{FB} = 0.013 \pm 0.014$ (stat.), compatible with no asymmetry, as expected in the SM.

The $K^+\pi^-\mu^+\mu^-$ invariant mass distributions for each q^2 bin of the signal sample $B^0 \rightarrow K^{*0}\mu^+\mu^-$ are shown in Fig. 3 along with the projection of the unbinned maximum-likelihood fit described in Section 4. Clear signals are seen in each bin, with yields ranging from 23 \pm 6 to 103 \pm 12 events. The fitted results for F_L and A_{FB} are shown in Fig. 4 along with the SM predictions. The values of A_{FB} and F_L obtained for the first q^2 bin are at the physical boundary, which is enforced by a penalty term. This leads to statistical uncertainties, obtained from MINOS [49], of zero for the (negative) uncertainty for F_L (A_{FB}).

The SM predictions are taken from Ref. [14] and combines two calculational techniques. In the low-q^2 region, a QCD factorization approach [10] is used, which is applicable for $q^2 < 4m_c^2$, where m_c is the charm quark mass. In the high-q^2 region, an operator product expansion in the inverse b-quark mass and $1/\sqrt{q^2}$ [50, 51] is combined with heavy quark form factor relations [52]. This is valid above the open-charm threshold. In both regions, the form factor calcu-

Figure 2: The $K^+\pi^-\mu^+\mu^-$ invariant-mass (top left), $\cos \theta_l$ (top right), and $\cos \theta_K$ (bottom) distributions for the q^2 bin associated with the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay, along with results from the projections of the overall unbinned maximum-likelihood fit (solid line), the signal contribution (dashed line), and the background contribution (dot-dashed line).
Figure 3: The $K^+\pi^-\mu^+\mu^-$ invariant-mass distributions for each of the signal q^2 bins. Overlaid on each mass distribution is the projection of the unbinned maximum-likelihood fit results for the overall fit (solid line), the signal contribution (dashed line), the combinatorial background contribution (dot-dashed line), and the peaking background contribution (dotted line).
lations are taken from Ref. [53], and a dimensional estimate is made of the uncertainty from the expansion corrections [27]. Other recent SM calculations [15, 17–19] give similar results, with the largest variations found in the uncertainty estimates and the differential branching fraction value. Between the J/ψ and ψ′ resonances, reliable theoretical predictions are not available.

Using the efficiency corrected yields for the signal and normalization modes (B^0 → K^*0μ^+μ^− and B^0 → K^0J/ψ) and the world-average branching fraction for the normalization mode [41], the branching fraction for B^0 → K^*0μ^+μ^− is obtained as a function of q^2, as shown in Fig. 5, together with the SM predictions. The results for A_{FB}, F_L, and d\mathcal{B}/dq^2 are also reported in Table 2.

The angular observables can be theoretically predicted with good control of the relevant form-factor uncertainties in the low dimuon invariant-mass region. It is therefore interesting to
perform the measurements of the relevant observables in the $1 < q^2 < 6\text{ GeV}^2$ region. The experimental results in this region, along with the fit projections, are shown in Fig. 6. The values obtained from this fit for F_L, A_{FB}, and $d\mathcal{B}/dq^2$ are shown in the bottom row of Table 2. These results are consistent with the SM predictions of $F_L = 0.74_{-0.07}^{+0.06}$, $A_{FB} = -0.05 \pm 0.03$, and $d\mathcal{B}/dq^2 = (4.9_{-1.0}^{+1.0}) \times 10^{-8}\text{ GeV}^{-2}$.

The results of A_{FB}, F_L, and the branching fraction versus q^2 are compared to previous measurements that use the same q^2 binning [35,36,54,55,56] in Fig. 7. The CMS measurements are more precise than all but the LHCb values, and in the highest-q^2 bin, the CMS measurements have the smallest uncertainty in A_{FB} and F_L. Table 3 provides a comparison of the same quantities in the low dimuon invariant-mass region: $1 < q^2 < 6\text{ GeV}^2$.

Table 3: Measurements from CMS (this paper), LHCb [38], BaBar [56], CDF [37, 55], and Belle [36] of F_L, A_{FB}, and $d\mathcal{B}/dq^2$ in the region $1 < q^2 < 6\text{ GeV}^2$ for the decay $B \rightarrow K^*\ell^+\ell^-$. The first uncertainty is statistical and the second is systematic. The SM predictions are also given [14].

<table>
<thead>
<tr>
<th>Experiment</th>
<th>F_L</th>
<th>A_{FB}</th>
<th>$d\mathcal{B}/dq^2$ $(10^{-8}\text{ GeV}^{-2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>$0.68 \pm 0.10 \pm 0.02$</td>
<td>$-0.07 \pm 0.12 \pm 0.01$</td>
<td>$4.4 \pm 0.6 \pm 0.4$</td>
</tr>
<tr>
<td>LHCb</td>
<td>$0.65 \pm 0.08 \pm 0.07$</td>
<td>$-0.17 \pm 0.06 \pm 0.01$</td>
<td>$3.4 \pm 0.3 \pm 0.4$</td>
</tr>
<tr>
<td>BaBar</td>
<td>-0.23 ± 0.11</td>
<td>$-0.17 \pm 0.06 \pm 0.01$</td>
<td>$4.1 \pm 1.1 \pm 0.1$</td>
</tr>
<tr>
<td>CDF</td>
<td>$0.69 \pm 0.21 \pm 0.08$</td>
<td>$0.29 \pm 0.23 \pm 0.02$</td>
<td>$3.2 \pm 1.1 \pm 0.3$</td>
</tr>
<tr>
<td>Belle</td>
<td>$0.67 \pm 0.23 \pm 0.05$</td>
<td>$0.26 \pm 0.32 \pm 0.07$</td>
<td>$3.0 \pm 0.9 \pm 0.2$</td>
</tr>
<tr>
<td>SM</td>
<td>$0.74_{-0.07}^{+0.06}$</td>
<td>-0.05 ± 0.03</td>
<td>$4.9_{-1.1}^{+1.0}$</td>
</tr>
</tbody>
</table>

7 Summary

Using a data sample recorded with the CMS detector during 2011 and corresponding to an integrated luminosity of 5.2 fb$^{-1}$, an angular analysis of the decay $B^0 \rightarrow K^{\ast0}\mu^+\mu^-$ has been carried out. The data used for this analysis include more than 400 signal decays and 50 000 normalization/control mode decays ($B^0 \rightarrow K^{\ast0}\psi$ and $B^0 \rightarrow K^{\ast0}\phi$). Unbinned maximum-likelihood fits have been performed in bins of the square of the dimuon invariant mass (q^2) with three independent variables, the $K^+\pi^-\mu^+\mu^-$ invariant mass and two decay angles, to obtain values of the forward-backward asymmetry of the muons, A_{FB}, and the fraction of longitudinal polarization of the $K^{\ast0}$, F_L. Using these results, unbinned maximum-likelihood fits to the $K^+\pi^-\mu^+\mu^-$ invariant mass in q^2 bins have been used to extract the differential branching fraction $d\mathcal{B}/dq^2$.
Figure 6: The $K^+\pi^-\mu^+\mu^-$ invariant-mass (top left), $\cos \theta_l$ (top right), and $\cos \theta_K$ (bottom) distributions for $1 < q^2 < 6 \text{ GeV}^2$, along with results from the projections of the overall unbinned maximum-likelihood fit (solid line), the signal contribution (dashed line), and the background contribution (dot-dashed line).
Figure 7: Measurements versus q^2 of F_L (top left), A_{FB} (top right), and the branching fraction (bottom) for $B \to K^* \ell^+ \ell^-$ from CMS (this paper), Belle [36], CDF [37, 55], BaBar [56], and LHCb [38]. The error bars give the total uncertainty. The vertical shaded regions correspond to the J/ψ and ψ' resonances. The other shaded regions are the result of rate-averaging the SM prediction across the q^2 bins to allow direct comparison to the data points. Reliable theoretical predictions between the J/ψ and ψ' resonances ($10.09 < q^2 < 12.86 \text{GeV}^2$) are not available.
The results are consistent with the SM predictions and previous measurements. Combined with other measurements, these results can be used to rule out or constrain new physics.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GRS (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

References

[1] N. G. Deshpande and J. Trampetic, “Improved estimates for processes $b \rightarrow s \ell^+ \ell^−$, $B \rightarrow K \ell^+ \ell^−$, and $B \rightarrow K^* \ell^+ \ell^−$”, Phys. Rev. Lett. 60 (1988) 2583, doi:10.1103/PhysRevLett.60.2583

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Belly, T. Caebbergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista, São Paulo, Brazil
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina8, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9, Y. Assran10, S. Elgammal9, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain22

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty2, L.M. Pant, P. Shukla, A. Topkar
Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbricatore, F. Ferro, M. Lo Vetere, R. Musenich, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, M. Bellato, D. Bisello, A. Branca, R. Carlin, P. Checchia,
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Çankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, Santa Barbara, Santa Barbara, USA

University of California, San Diego, La Jolla, USA

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, Y. Ma, A. Mott,

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Joint Institute for Nuclear Research, Dubna, Russia
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at The University of Kansas, Lawrence, USA
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
23: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Sharif University of Technology, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Cag University, Mersin, Turkey
44: Also at Mersin University, Mersin, Turkey
45: Also at Izmir Institute of Technology, Izmir, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Kafkas University, Kars, Turkey
48: Also at Suleyman Demirel University, Isparta, Turkey
49: Also at Ege University, Izmir, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
52: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
53: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
54: Also at Utah Valley University, Orem, USA
55: Also at Institute for Nuclear Research, Moscow, Russia
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Yıldız Technical University, Istanbul, Turkey
60: Also at Texas A&M University at Qatar, Doha, Qatar
61: Also at Kyungpook National University, Daegu, Korea