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Weak lensing of the CMB: Cumulants of the probability distribution function

Michael Kesden, Asantha Cooray, and Marc Kamionkowski
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
(Received 16 August 2002; published 29 October 2002

We discuss the real-space moments of temperature anisotropies in the cosmic microwave background
(CMB) due to weak gravitational lensing by intervening large-scale structure. We show that if the probability
distribution function of primordial temperature anisotropies is Gaussian, then it remains unchanged after
gravitational lensing. With finite resolution, however, nonzero higher-order cumulants are generated both by
lensing autocorrelations and by cross-correlations between the lensing potential and secondary anisotropies in
the CMB such as the Sunayev-Zel'dovith2) effect. Skewness is produced by these lensing-SZ correlations,
while kurtosis receives contributions from both lensing alone and lensing-SZ correlations. We show that if the
projected lensing potential is Gaussian, all cumulants of higher order than the kurtosis vanish. While recent
results raise the possibility of detection of the skewness in upcoming data, the kurtosis will likely remain

undetected.
DOI: 10.1103/PhysRevD.66.083007 PACS nuni®er98.70.Vc, 98.35.Ce, 98.80.Es
[. INTRODUCTION unlikely to be optimal and only provide limited knowledge

of the full non-Gaussian aspect of the temperature distribu-

Weak gravitational lensing deflects the paths of cosmidion. The first attempts to measure non-Gaussianity in the
microwave backgroundCMB) photons propagating from Cosmic Background ExploreifCOBE) data relied on real-
the surface of last scattering. One result of this lensing is thepace cumulantgl0], as will attempts using data from its
transfer of power from large angular scales associated witBuccessor experiments such as Microwave Anisotropy Probe
acoustic-peak structures to small angular scales in the dampMAP) and Planck. This motivates our emphasis here on the
ing tail of the anisotropy power spectrurh,2]. This transfer  real-space cumulants such as the skewness and kurtosis; we
only results in a few-percent modification of the power as-make several remarks on higher-order cumulants as well. As
sociated with the acoustic-peak structure, and the increase frart of this calculation, we extend a previous discussion of
power along the damping tail is significantly smaller thanthe kurtosis due to lensing in Rg6] and also consider ef-
that generated by secondary anisotropies due to reionizatidects related to correlations between lensing and secondary
[3]. To identify the effect of gravitational lensing on CMB effects such as the Sunyaev-Zel'dovids2) [11]] effect.
data, it is necessary to consider signatures beyond that in the Real-space moments can be derived from the one-point
angular power spectrum of temperature fluctuations. The exprobability distribution functionPDPF of temperature fluc-
istence of nonvanishing higher order cumulants is one suctuations, and can conversely be used to constrain the form of
non-Gaussian signature lensing can generate. this function. In the case of infinite angular resolution, we

Since gravitational lensing conserves surface brightnesgonclude that lensing does not modify the PDF of tempera-
CMB fluctuations from lensing are at the second order inture anisotropies produced at the last scattering surface,
temperature fluctuations and result in non-Gaussian behaviavhich is a reflection on the fact that lensing does not create
through non-linear mode coupling. Though lensing alonenew power but rather transfers power from large to small
does not lead to a three-point correlation function, the correangular scales. The higher-order moments are only generated
lation between lensing and other secondary anisotropies can a temperature map by finite-resolution effects such as
lead to such a contribution. This three-point correlation hadeam smoothing introduced either experimentally or artifi-
been widely discussed in the literature in terms of its Fourier<ially by explicit filtering.
space analogue, the bispectri#i. Weak lensing of the pri- The paper is organized as follows. In Sec. Il, we introduce
mary anisotropies can produce a four-point correlation due téormalism concerning the weak-lensing approximation and
its non-linear mode-coupling natuf&—7], as can correla- define the bispectrum, trispectrum, and corresponding
tions between lensing and secondary effeft$ When  higher-order quantities. The bispectrum and trispectrum in-
probed appropriately through quadratic statistics such as thduced in the CMB by lensing and secondary anisotropies are
power spectrum of the squared-temperature map, the trispederived in Sec. lll, and some remarks are made concerning
trum due to lensing alone can be used for a modelhigher-order cumulants as well. The nonzero bispectrum and
independent recovery of the projected mass distribution outrispectrum yield a skewness and kurtosis, respectively, in
to the last scattering surfad®,9]. Though these statistics the one-point distribution function of the CMB as shown in
have been shown to be interesting and potentially detectabl§ec. IV. We refer the reader to R¢@] for additional details
measurement of these Fourier-based statistics is challengimglated to the effect of lensing on CMB anisotropies. Though
and techniques are still underdeveloped for this purpose. we present a general discussion, we illustrate our results in

Here, we discuss real-space moments of the lensed CMBec. V using the currently favored cold dark matter with a
temperature anisotropies. Real-space statistics are easitpsmological constant modéACDM) with ,=0.05, O,
measurable from data. The only drawbacks are that they are 0.35, (1, =0.65, h=0.65 and 0g=0.9. Results for a
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model withog= 1.2 as suggested by the Cosmic Background <@(|1)(|2)>: (27)28p(11,) TP
Imager(CBI) are also considered. 1’

(O(1) ... 0(I3))e=(2m)25p(1129BO (11,15, 13),
II. LENSING CONTRIBUTION TO CMB FLUCTUATIONS (4)

@ e _ 2 J0
In order to derive the effects of weak lensing on the CMB, (011 ... O(12)c=(2m) 6p(l123d T"(I1, 12,13, 14),
we follow Refs.[2,6] and adopt a flat sky approximation. As ~ ~ ) =0
discussed in prior papef®,4], weak lensing remaps tem- Oy ... 00n)e=(2m) (. )Ty, ... ln).

perature through angular deflections along the photon path\:/vherell__.nslﬁ ...+, and the subscript denotes the

connected portion of the correlation function. We make the
O(A)=0(A+V¢) assumption that primary anisotropies at the last scattering
surface are Gaussian implying that all cumulants higher than
the power spectrum vanisk®(l,) ...0(l,)).=0, whenn
>2.
1 o The power spectra for lensing autocorrelations and
+t5 V(Y Hp(MV'VIO(A)+ .... (1) lensing-secondary cross-correlations are defined analo-
gously:

=0(f)+Vi¢(A)V'O(A)

Here, ®(f) is the unlensed primary component of the CMB (¢(Il)¢(lz)>=(27r)25D(I12)C(‘1¢,

in direction i at the last-scattering surfac€(f) is the (5)
lensed mapg () is the projected gravitational potential, and ((11)0%1,))=(27)28p(l12)CPS.

V ¢ is the lensing deflection angle. It should be understood '

that in the presence of low-redshift contributions to CMB Primary CMB anisotropie® (i) are generated at the surface
fluctuations resulting from large-scale structure, the totabf last scatter az=1,100, while the lensing potentigi(f)
map includes secondary contributions which we denote bynd secondary contribution®S(A) arise from large-scale
®%(A). Since the weak-lensing deflection angleg also  structure at much lower redshiftg€3). As such, correla-
trace the large-scale structure at low redshifts, secondary efons between these quantities vanisk® (I;)¢(l,))
fects which are first order in density fluctuations correlate=(@(1,)®(l,))=0.

with the lensing deflection angles. These secondary effects The nth cumulant of the temperature anisotropies is de-
include the integrated Sachs-WolfesW) [12]] and the SZ  fined in the usual manner,

[11] effects[4]. In all real cases, a noise component denoted 5 5

by ®"(A)) due to finite experimental sensitivity must be in- C”(0)=f d<ly d<l, (©'(1,) ... 01,))

cluded as well. Thus the total observed CMB anisotropy will (2m? (em? YT ne

be ®(A) =0 (A)+ OA)+O"(A). In the following discus-

sion, secondary anisotropig€33(A) will be neglected until XW(10) ... W(lh0), ©)

Sec. Il B while the effects of instrumental noi€¥'(R) on  \yhere g is the smoothing scale of the map from which the

the PD.F are diSCU.SSEd in Sec. IV. _ cumulants are determined, aWé(l #) is the smoothing win-
Taking the Fourier transform, as appropriate for a flat skyqoy, function. We will use Gaussian window functions
we write throughout this paper. In general, the finite resolution of real

CMB anisotropy experiments induces Gaussian smoothing at
~ = o _ia the angular scale of the experimental beam size. For infinite
®(|):f dne(nhe resolution, we také&— 0 such thaw(l ) — 1. The variance,

skewness, and kurtosis defined later in this paper can all be

expressed in terms of cumulants

d2’
—oi- [ ——edLin, @ L. c(0) c'(0)
(2m)? o(0)=C=(0), S(0)= , K(O)=—.
[C?(6)1%? [C*(0))
(7
where
IIl. POWER SPECTRUM, BISPECTRUM
1 dal” AND TRISPECTRUM
L(LIY)y=o(=1")[=1")-1" +—f I
()=l & )] 2 (277)2¢( ) Using the formalism introduced in the previous section,
.1 b e , we can calculate the moments of the CMB fluctuations gen-
X (1" =D IO+ =DV ]+ ... (3 erated by lensing assuming Gaussian fluctuations at the sur-

face of last scatter. Becaugk is a small parameter, terms
We define the power spectrum, bispectrum, trispectrum anbdeyond linear order ir(:,""’5 are neglected in these calcula-
the n-point correlator in Fourier space in the usual way:  tions. The power spectrum for the lensed maplig]
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basic expectation that lensing only results in a transfer of
C|® power from large angular scales to small angular scales. With
finite resolution at levels considered here, the variance of the
2 lensed temperature field differs from that of the unlensed
dh e b 2 fiel f
+J' ——Cf_ P (=1 1112 (8) ield byg ew percent at most. .
(2m)? S We will now discuss higher-order correlations of tempera-
_ ture due to gravitational lensing. We consider first contribu-
The variance, or the second moment of the temperaturgions due to lensing alone, and then discuss additional con-
can be obtained following Eq6): tributions created by lensing-secondary correlations.

d?l; b 2
1—f 2mz s (D

2
o?(0)= f d—lzér)wz(l 6). 9
(2m) A. Lensing correlations

Substituting Eq(8) in here, we find that in the case of infi- We will first discuss the temperature bispectrum and show
nite resolution W(I ) =1], the variance of the lensed tem- that it is zero in the absence of secondary anisotropies. To
perature map coincides with that of the unlensed map. Thusinderstand why there is no contribution to the bispectrum,
as expected, lensing conserves the total power associatednsider the moments involving three temperature terms in
with the temperature fluctuations. This is consistent with ourlFourier space:

2|!

o d2; a2}
®(1B(B (1)~ |00~ | P LdL) o)~ | 0L )

2|é
o)~ | Sz @ L a1

w

X

d?l!
=(0(11)0(1,)0(l3))— < ®(|1)®(|2)< f ﬁ(a('s/)u's,'s/)) >

d2 d2}
+Perm+{ O(l,) JWG)(IZ’)L(IZ,IZ’) JW®(I3’)L(I3,I3’) +Perm.

d?l; a2l 21
_<(J (277;2@“1’)"('1"1,))“ (27;2@('2')'—('2,'2'))(J (2W§2®(|3')|_(|3,|3r))>_

(10

All these terms, and the necessary permutations, involve an We can generalize our discussion of the power spectrum,
expectation value of three primary temperature anisotropiedispectrum, and trispectrum to that of thgpoint correlation
Under our assumption of Gaussian primary temperature fludunction in Fourier space. In the absence of secondary
tuations, such expectation values vanish and thus there is ranisotropies that correlate directly with the lensing potential,
contribution to the bispectrum or the skewness. the n-point correlation function will vanish for odd for the

The trispectrum due to lensing alone can be calculated i§&me reason that lensing alone did not generate a bispectrum.
a similar fashion. Introducing the power spectrum of lensing”ll such terms would involve the expectation value of an

potentials, following Refd.6,9], we obtain the CMB trispec- ©0dd number of temperature fluctuations, and under the as-
trum due to gravitational lensing as sumption of Gaussian primary anisotropies, such expectation

values must vanish. This statement applies in particular to
=g B ~@ the case when measurements of non-Gaussianity are made
TO(1.12,13,1) = _Cgca{cﬁfﬂgl[(llﬂﬁ'|3][(|1+|3)'|4] using CMB maps which have been clearsegriori 0>1: sec-
b ondary fluctuations using information such as the nonthermal
+Cllzﬂa\[(lz+ l3)-13][(I2+13) - 1a]} frequency dependence of these fluctuations. We will discuss
4 Perm (11) the case of secondary anisotropies in the _next sectio_n.

" The lowest evemth correlator after the trispectrum is the
six-point correlation function in Fourier space. We can write
where the permutations now contain five additional termghe portion of the connected part of this correlation function
with the replacement ofl ¢,1,) by any other pair. containing the lowest-order contribution i as
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~ ~ dl; d2l;
(O(1) ... 0(g))c= ®(I1)—J (ZT)2®(I1’)L(I1,I1’) ®(I3)—J 2—)2®(I3’)L(I3,I3’) 0(12)0(15)O(lg)

(27
+Perm.

2|/

d2l!
:—<J Py ;2®(|1')L(|1,|1')---J (277?2®(|3’)|_(|3,|3')®(|4)®(|5)®(|6)>+Perm. (12)

(27

Simplifying further, we see that the lowest order contributionsmoothing, a kurtosis. The non-Gaussianity associated with

in ¢ thus involves the large-scale structure, however, will induce non-Gaussian
contributions to the distribution of projected potentials such
(Ol ...0(g))c that T(l;, ... |,)#0 for somen. Since large-scale struc-

O 6~ ture most efficiently lenses the CMB at redshifts close to 3,

=C,Ci.Ci (@it p(la+15) p(I3+16))[(11+1a)-1a]  \where the non-Gaussianity is mild, we ignore the higher-
order correlations of lensing potentials and only consider the

X[(2+15)-Is]L(I3+ ) -l6]+ Perm. 13 Gominant power spectrunG{’?, which contributes to the
trispectrum only.
_ Although theoretical predictions are made in terms of
ensemble-averaged correlation functions, observationally we
have access to only one realization of the CMB and one
realization of the large-scale structure. The arbitrariness of
the observed realization of the large-scale structure induces

The connected part of the six-point correlation function in
Fourier space is thus proportional to the bispectrum of lens
ing potentials. We can write

F0
T6(|11|2!|31|41|5!|6)

=CPCPCP[BA(I,+ 14,15+ 15, I3+ 1) [ (11+14) - 14] additional cosmic variance beyond that normally associated
45 6 with the surface of last-scatter. One consequence is that when
X[(I,+1g) - 15[ (I3+1g) - 1g]]+ Perm. (149  measured on a small patch of the sky, the observed two-point

correlation function of the lensed map is more anisotropic
There are in total 120 such terms appearing in the six-pointhan that of the unlensed map, though isotropy holds when a
correlator when we include all permutations, coming fromsufficiently large region of the sky is considered. The excess
the 20 different triplets|I(,l;,l,) and the 6 permutations of anisotropy is induced by cosmic shear, and allows us to re-
each triplet. construct the lensing deflection angle from quadratic maps

We can generalize these derivations to thpoint tem-  involving the CMB temperature and polarizatif®]. While

perature correlation in Fourier space under gravitational lenssye emphasize one-point statistics in this paper, a more de-
ing. In the following, note that contributions tepoint tem-  tailed account of how higher-order statistics probe the local
perature correlations in Fourier space come fronf2)-point  anisotropy induced by lensing may prove fruitful in the fu-
correlations in the lensing potential. We can thus write thelure.

connected part of the-point temperature correlator, when
n>2, as B. Lensing-secondary correlations

~6 The above discussion applies to the case where other sec-
To(ly, oo ln) ondary fluctuations do not contribute to temperature
_ce COLTS (1, +1 Lot anisotropies. In practice, s_uch a situation can be achjeved
laga =00 It T2V () + 10 - in/2 T when thermal CMB fluctuations are separated from dominant
secondary effects like the SZ contribution. In experiments
X1tz + 1) lyea - - (o) - In] + Perm., where thi); is not possible, say due to a lack ofpmultifre-
(15 quency data, additional non-Gaussianities will be present in
the CMB map due to correlations between lensing potentials
whereT/(ly, ... ly) is then-point correlator of the lensing and the secondary anisotropies. The most significant of these
potential in Fourier space. The permutations here now incontributions is to the three-point correlation function. We
volve n!/(n/2)! terms corresponding to the replacement of .o, calculate this by replacing tH@(l) terms in Eq.(10)
()1, - - - In) with one of the othem!/[(n/2)!(n/2)!]  \ith @(1). By assumption, Gaussian instrumental noise can-
combinations and then(2)! permutations of each combina- ot generate a bispectrum, and as shown above neither does
tion. As we have discussed, note tH&{(l;,...l,)=0 lensing alone. The total observed bispectrum is therefore that
whenn is odd. due to lensing-secondary correlatidds6]
In the limit that the lensing potentials are Gaussian dis-
tributed, T?(l;, ... l,)=0 whenn>2. Thus, lensing of BO(I1,15,13) = —Cf/f[CUz' I1)+C|G;(I3-I1)]+Perm,,
CMB anisotropies can only generate a trispectrum and, with (16
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where permutations involve two additional terms with thement with no noise and all-sky observations. We expect this
replacement of; with I, andl;. Here, C‘ZSS is the power to hold true even when considering higher-order moments

spectrum describing  correlations between secondarfeyond the kurtosis.

anisotropies and the lensing potential generated by large-

scale structure. These correlations were discussed in detail in IV. SKEWNESS AND KURTOSIS
Ref. [4] where it was found that the most significant corre-
lation is the one between lensing potentials and the SZ ef“fec{h
We will use this correlation in illustrating our results.

The presence of secondary effects also modifies th
trispectrum and generates an additional contribution beyon
the one discussed in Eqll). Following Ref.[9], we can
write this contribution as

A simple way to identify the non-Gaussianity induced in

e CMB by gravitational lensing is to measure the higher-

order cumulants of its one-point probability distribution
nction P, ®'; ) smoothed with beam width. This ob-
erved one-point probability distribution functidDF) is

actually a convolution of the signal PDII-‘fs,g(OS'g #) with

the noise PDFP,,;s{®"; §) as described below, whef@s9

TO(Iy,15,15,14) =0+ 03 s the total of both lensed primary and secondary
S5 b5y O o contributions to the signal. The signal PDF can be expressed
=CCIXC (5 1) (g 1) + C (13- 1) (I4-12) in terms of its cumulants, which we now proceed to calcu-
late. The third and fourth cumulants are proportional to the
+13- (I +19) 1[4~ (2 +12)1CF g e (it )] dimensionless quantities known as the skewn8sand the
® kurtosis,K, respectively:
X[13- (I2+13) JCJf 1, } + Perm. (17)
where permutations involve five additional terms involving S(0)=[o( ‘9)]_3f (®SIQ)3Psig(Slg; 0)d®>s,
the pairings of [3,1,). (18)
Due to an increase in terms as one goes to higher order, _ . .
we failed to obtain a general expression for thpoint cor- K()=[o( 9)]_4f (®S'g)4psig(®S'g; 0)dO*9-3.

relator of temperature fluctuations in Fourier space due to

lensing-secondary correlations. As we will soon discuss, cuThey can be expressed as integrals over the bispectrum and
mulants beyond the skewness are unlikely to be important asispectrum derived in the preceding section according to
we find kurtosis to be undetectable even for a perfect experieq. (6):

d2, d3, d2,

(2m)? (2m)? (2m)?

5(0)=[0(0)]_3f (27)%8p(l129B' (11,12, 13)W(I 1 O)W(1 ,0)W(136),

(19
d2, d%, d; d2,
(2m)% (2m)* (2m)? (2m)?

K(8)=[o( 0)]_4f (27)26p(l128d T (11,12, 13, 1) W(I L O)W(1 ,0) W(1 560)W(1 46).

Inserting Eqs(16), (11), and (17) into the above expressions, and adopting a Gaussian window funtiibs) =e~ (702
with o= 6//8In2, we obtain

6
8(0)=mf |§d|1|§d|ZC|Gin¢;S| 1(U§|1|2)e_‘fﬁ(|i+|§)’
aa g
2
0 o] et [ autefotune .
ar

2
K?S(9)=— | dl |3C cbl [ dl, |2C S| allyl,)e ﬁlg}
(0) 2 )3[0(0)]4f 1 Iy { f a( Opl1 2)

1 241 12 bs~dbs 2 2,2 — 02012412414 | cosg+IscoSe
-— |2d|2|3d|3d<pc|;c|3|1(ab|2\/|1+|3+2|1|3c03¢)e op(lz 15 +11l5c08¢) . (20
2 V1241242141 5c080
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Herel,(x) is a modified Bessel function of the first kind. =~ These power series can be convolved with a Gaussian noise
In the presence of instrumental noise, the observed oneRDF of varianceo?,{6) to obtain the observed PDF

point probability distribution functiofPDF) will be a con- P, (®"). To linear order in the true skewness and kurtosis,

volution of the signal PDF characterized by the skewnessve find

and kurtosis given above, and a Gaussian noise PDF:

Popd ") = fd7 Pgig( 7) Proisd ©'= 7). In order to perform o2(6) 812
this convolution we must first determine the explicit form of Sopd ) =S(0)) ————F
the signal PDF that will have nonzero skewness or kurtosis, o(0)+ Tnoisd 0)

but vanishing higher cumulants. To do this, we follow the
formalism discussed in Reff13] and references therein. The Kobd 0)

PDF of a random variablé with zero mean and varianee a 4 5 2
can be expressed as a Gram-Charlier series in the normalized _ K(8) | 57(6) = 30 noisd ) ~60°(6) Tisd 6) +3
variable v= 8/ o: 8 [0(6)+ ooisd )]
(27)
c c
p(1)=Cod () + 776D (1) 576D (0)+ ..., (2D)

As expected, the observed skewness and kurtosis converge to
5 the signal values in the absence of noise and to zero in the
where¢(v)=(27) Y% *"2is a Gaussian distribution. The case when the Gaussian noise is dominant. To actually ob-
#"(v) are derivatives of the Gaussian distribution with re-serve skewness or kurtosis in an experimental sky map, we
spect tov: must construct estimators for these quantities using our data
points, theN=47rfsky/7-r(0/2)2 pixels in the map. We can

0 d' | write estimators for the skewness and kurtosis as
Y (v)=—=(-1)H((v)p(v), (22
dv 1 N
§\ 3 ___3,
and theH,(v) are Hermite polynomials with the unconven- 77N 21 (=)
tional normalization, (29
1 X _ 10 _J
o Kot=— Xi—X)*—3| — xi—x)2| ,
f H(»)H(v) () dv=118,,. (23) =R 03 2 )}

where x=(1/N)EiN:1xi is the traditional estimator for the
mean of a distribution. For a distribution like that of the
CMB anisotropies which is priori defined to have a zero
mean, we find

The central moments of the PDF are defined as

w=o fiop(v)v'dv, (29

while the cumulants or “connected” portions of these mo-
ments can be derived from the relation

3
N So°,

—~, 3 2
(SO’ >: 1_—+m
29

d'In(e'®) 9
M=—".

= (25 (Ko%=

17+12 6K46114
N e KRR

Using the expansio(21) and the orthogonality relatiof23), = These are biased estimators, as has been noted elsewhere
the coefficients of the Gram-Charlier series can be expressathder a different contextl4], but in the largeN limit they

in terms of the central moments. By inverting E85), the  converge to the desired quantities. Assuming that the under-
central moments can then be reexpressed in terms of cumiying PDF is Gaussian, the variance of these estimators to
lants. As discussed in the previous section, the assumptidowest order in IN is given by

that the lensing potential is Gaussian implies that all cumu-
lants of higher order than the kurtosis must vanish. Using

—~ —~ 3!
2 — 312y _ (S 32— 3
this result, we can rewrite the Gram-Charlier expansion as a & 3=((So7)%)—( )= N

power series in the skewneSsor kurtosisK, which in the (30)

case of lensing will be small quantities,

1 10,
1+ 37 SHy(1) + 5 SPHe(1) + .. | (),
(26)

1 35 ,
1+ 27 KHa(v) + 57 K?Hg(1) + . | ().

p(v)=

p(v)=

— — 4!
0’%;4E<(K0'4)2>—<K0'4>2= WO'A'.

An alternate derivation of these variances can be obtained

from the explicit form of the PDFs following Eq26). If N
pixels or data points are collected and binned suchhét
the probability that a data point will fall within binand o;
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107 p—r 10 guency channels to form one estimate of temperature with an
. . 3 overall noise given by inversely weighting individual noise
contributions.

The skewness as shown has signal-to-noise ratios slightly
less than unity suggesting that its detection may be hard and
potentially affected by noise. However, recent small-scale
excess-power detections by experiments such as [Cg]l
; ; raise the possibility that we may have underestimated the
T T — lensing-SZ correlation and thus the skewness. The

Opwa (in arcmin) Oewa (in arcmin) lensing-SZ power spectrur@?S is roughly proportional to

FIG. 1. Left: The skewness due to lensing-SZ correlations for athe f'fth' powe.r qf"'B' the standard deviation of linear mass
perfect(no-noise experimentsolid ling), Planck(dashed ling and  fluctuations within an 8~* Mpc sphere. If we adopt the CBI
MAP (dotted line for 03=0.9. The CBI Ir upper bound ofrg 1o upper bound ofog=<1.2 [19] as opposed to the value
=<1.2 leads to a higher value for the skewness as indicated by theg= 0.9 suggested by previous studies, our signal increases
dot-dashed line. Right: The signal-to-noise ratio for the detection oby a factor of 4.21. In this case, Planck could conceivably
skewness in CMB data with curves labeled as in the left figure. Wedetect skewness with a signal-to-noise ratio of 2.5. The po-
assume full sky coverage; for partial sky coverage the signal-totential for detection of the temperature skewness is consis-
noise ratio scales agf 4, wheref g is the fraction of sky covered. tent with previous expectations that the temperature anisot-

ropy bispectrum due to lensing-SZ correlation can be
is the standard deviation of that probability, then the besHetected in future datpd]. The cumulative signal-to-noise
variance of a parametercharacterizing the PDF is given by ratio for skewness, however, is significantly smaller than that

CBI FCBI
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the CrameRao bound15], for the full bispectrum because the skewness is a single num-
ber while the bispectrum contains all information related to

1 api\? 1 non-Gaussianities at the three-point level. As described be-
;:Ei Je O-_i. (3D low, we find a similar reduction in the signal-to-noise ratio

for kurtosis when compared to the full trispectrum.

The frequency dependence of the SZ effect allows us to
construct an SZ map of the sky as well as a temperature map
with the SZ effect removed. This provides us a unique op-
portunity to test our understanding of non-Gaussianity at the
5 three-point level. If skewness is purely a consequence of
f(ip p~ldv 32) lensing-SZ correlations as posited in this paper, then the

de ' skewness obtained by combining one measurement of the SZ
map with two measurements of the SZ-cleaned temperature
Inserting Eq.(26) into Eq. (32) under the Gaussian null hy- Map at the same location using the estimator in &8
pothesisS=K =0, we find lowest attainable errors a§ should be precisely one-t_hlrd that produced by three mea-
=31/N,4!/N for e=S,K in agreement with the explicit cal- surements of the total anisotropy map. This corresponds to
culation of the variance of our estimators noted in ). e fact that the composite map will sample only one of the

Further discussion of the variance associated with differentr€€ permutations appearing in Eg6).
estimators for the skewness and kurtosis is included in the
Appendix. B. Kurtosis

Both lensing kurtosiK#? and the kurtosiK?S due to

V. RESULTS AND DISCUSSION lensing-SZ correlations are undetectable even for a perfect
no-noise experiment as illustrated in Fig. 2. Since the cumu-
lative signal-to-noise ratio foK?S is well below one, we

We illustrate in Fig. 1 our results for skewness due to theexpect it to remain undetectable despite any uncertainty in
correlation between lensing and the SZ effect. We calculateur calculation of the SZ effect. Note our prediction of the
this correlation following Ref[17] using the halo approach lensing kurtosik #¢ is likely to be more certain since it only
to large-scale structurgl8]. The skewness approaches zerodepends on the matter power spectrum, with contributions
at small values of the smoothing scale, consistent with oucoming mainly from the linear regime. Thus, uncertainties in
conclusion that no non-Gaussian signatures exist in the PDRon-linear aspects of clustering are unlikely to affect our
in the limit of infinite resolution. As shown, skewness due toconclusion.
the lensing-SZ correlation peaks at an angular scale of tens The signal-to-noise value fd¢?¢ can be compared to the
of arcminutes, which is in the range of interest to upcomingcumulative signal-to-noise ratio for the direct detection of
experiments such as MAP and Planck. When calculating exthe full trispectrum due to lensing, which in the case of
pected signal-to-noise ratios for these experiments, we udelanck can be as high as55 [6]. Consequently, although
detector sensitivities and resolutions tabulated in RE].  the lensing kurtosis cannot be detected directly from the
For simplicity, we combine information from individual fre- data, lensing effects associated with this kurtosis can be used

If the error on each bin is assumed to be Poisson, #fen
=p;/N. In the limit of a continuous PDRy;— p(v)dv and
the discrete suni31) becomes an integral

L N
ot

A. Skewness
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APPENDIX: VARIANCE OF SKEWNESS
AND KURTOSIS ESTIMATORS

A question arose during the composition of this paper as
to the appropriate variance for estimates of the skewness and
kurtosis of a Gaussian distribution. The true skewness and
Opwyy (In arcmin) Opyuy (in arcmin) kurtosis of a Gaussian distribution are necessarily zero, but
given N data pointsx; drawn from this distribution even
unbiased estimators will yield results distributed about zero
with some variance. Some sourdesg.,[20]) indicate vari-
sis due to lensing-SZ correlations is negative at smoothing scal nces of 130 and 96N, respectively, for the skewness and

below the kink at~8 arcmin and positive thereafter; its absolute kurtosis estimators deflned_ in _E(Q8) as opposed to our
value is shown here. Right: The signal-to-noise ratio for the detec¥@lues of 6N and 24N. This discrepancy prompted us to
tion of kurtosis in CMB data with curves labeled as in the left Investigate further. The estimators of E@8) differ from

figure. We assume full sky coverage; for partial sky coverage thdhose given in Ref[20] in that they are estimators for the

signal-to-noise ratio scales d$,, wheref, is the fraction of sky third and fourth cumulants rather than the dimensionless
covered. skewness and kurtosis to which they are proportional. As-

suming an underlying Gaussian distribution with a variance
.of unity, standard propagation of errors reveals that the two

to reconstruct _the _Iensmg deflectlpn angle as des.crlbe.d IBairs of estimators have the same variances to lowest order in
Refs.[8,9], again with cumulative signal-to-noise ratios sig- 1/N. However. the nae estimators

nificantly greater than that for the kurtosis itself. The higher
signal-to-noise ratio in lensing reconstruction is possible for

FIG. 2. Left: The kurtosik *? due to lensing autocorrelations
and K#® due to lensing-SZ cross-correlations for a perféu-
noise experiment(solid line) and Planckdashed ling The kurto-

two reasons. Unlike the kurtosis, which averages indiscrimi- —~, 1 N 3

nately over all configurations of the trispectrum as shown in Sa N ;1 X'

Eqg. (19), lensing reconstruction is sensitive to certain con- (A1)
figurations of the trispectrum, mainly those that contribute to

the power spectrum of squared temperature. This avoids se- - 1 N 1 N 2

vere positive-negative cancellations that significantly reduce KU4'EN “~ Xi“_s{ﬁ “~ Xt

the signature of non-Gaussianity. Secondly, the noise contri-
bution associated with lensing reconstruction is agwiori

reduced through a filter which is designed to extract infor-do indeed have variances of Noand 96N for skewness and
mation on the lensing potentials optimally. kurtosis, respectively. We show this explicitly for the vl

The low Signal-tO'nOise ratio associated with the kUrtOSiSskewneSS estimat(80-3’_ The ensemble average of this es-
is also consistent with the fact that real-space moments, ifimator is simplySc? so it is truly an unbiased estimator for

general, suffer from excess noise. Though such statistics atge skewness. However, taking the ensemble average of
easily measurable in data, they do not provide the most op;Z

timal methods to search for the existence of non-Gaussial So°")* we find

signatures. While we recommend construction of cumulants

such as skewness and kurtosis as a first step in understanding — 1

non-Gaussianity from effects such as lensing, we suggest ((503')2>=N[M6+(N—l)SZUG], (A2)
that full measures of quantities such as bispectrum and

trispectrum will be necessary to fully understand the non-

Gaussian behavior of lensing. If measurement of such statideading to a variance

tics are still cumbersome, we suggest the use of quadratic
statistics in real space, such as the squared-temperature— ,\ A 1
temperature [7] and the squared-temperature—squared- o =((S0?")2)—(So¥' V2= (ug—S2c%). (A3)
temperaturd9] power spectra which probe certain configu- So¥ N

rations of the bispectrum and trispectrum.

For a Gaussian distributionyg=150° and S=0, implying
ACKNOWLEDGMENTS that this estimator measures skewness with a variance of
15N and is therefore less sensitive th@a® defined in Eq.
This work was supported in part by NSF AST-0096023,(28) which was shown to have a variance dN6/An entirely

NASA NAG5-8506, and DoE DE-FG03-92-ER40701. Kes- analogous calculation shows that théveskurtosis estimator
den acknowledges the support of the NSF Graduate prograrm Eq. (A1) has a variance of 98/, not 24N.
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Why do the estimators of Eq28) outperform those of this into account by subtracting the estimated mean from
Eq. (A1)? Although the true mean of the underlying Gauss-each data point, and are therefore able to provide lower-
ian distribution has been chosen to be zero, the estimateghriance estimates of the skewness and kurtosis. These lower
meanx=(1/N)=.,x; of N data points will not necessarily values for the variances are adopted for all results concerning
vanish. The more sophisticated estimators of &§) take signal-to-noise ratios mentioned in this paper.

[1] A. Blanchard and J. Schneider, Astron. Astrophy84, 1
(1987); A. Kashlinsky, Astrophys. J. LetB31, L1 (1988; E.V.
Linder, Astron. Astrophys206, 1999 (1988; L. Cayon, E.
Martinez-Gonzalez, and J. Sanz, Astrophysi1B 10 (1993;

U. Seljak,ibid. 463 1 (1996. [12] R.K. Sachs and A.M. Wolfe, Astrophys. 347, 73 (1967).
[2] W. Hu, Phys. Rev. D62, 043007(2000. [13] R. Juszkiewiczt al, Astrophys. J442, 39 (1995.
[3] See, for example, A. Cooray2001 Coral Gables Conference: [14] L. Hui and E. Gaztanaga, Astrophys.5L9, 622 (1999.

Cosmology and Elementa.ry Particle Physicedited by B. 15 . G. Kendall and A. StuarfThe Advanced Theory of Statis-
Kursunoglu, Stephan L. Mintz, and A. Perlmutter, AIP Conf. tics (Griffin, London, 1969, \ol. II.

Proc. No. 624(AIP, Melville, NY, 2002, astro-ph/0203048. [16] A. Cooray, W. Hu, and M. Tegmark, Astrophys. 540, 1
[4] D.M. Goldberg and D.N. Spergel, Phys. Rev.59, 103002 (2000 ' ’ '
(1999; M. Zaldarriaga and U. Seljaliid. 59, 123507(1999; [17] A. Coc.)ray Phys. Rev. B4, 043516(2001.

gggrzelgdar\]/s %Eibi?jp%rgjlggsst[gggésﬁl(l 605(2000; A [18] For a recent review, see A. Cooray and R.K. Sheth,
y ' $OS% : astro-ph/0206508.

[5] F. Bernardeau, Astron. Astrophy324, 15 (1997).
[6] M. Zaldarriaga, Phys. Rev. B2, 063510(2000: W. Hu, ibid. [19] B.S. Masonet al., astro-ph/0205384; A. Cooray and A. Mel-
chiorri, Phys. Rev. D66, 083001(2002; E. Komatsu and U.

64, 083005(2001). .
[7] A. Cooray, Phys. Rev. [B5, 063512(2002. Seljak, astro-ph/0205468.

[8] W. Hu, Astrophys. J557, 79 (2001; K. Benabed, F. Ber- [20] W. H. Presset al, Numerical Recipes in C: The Art of Scien-

Kogut, Astrophys. J446, 67 (1995; U. Seljak and M. Zaldar-
riaga, Phys. Rev. LetB2, 2636(1999.

[11] R.A. Sunyaev and Ya.B. Zel'dovich, Mon. Not. R. Astron. Soc.
190, 413(1980.

nardeau, and L. van Waerbeke, Phys. Rev.6® 043501
(2001; W. Hu and T. Okamoto, Astrophys. 974, 566 (2002.
[9] A. Cooray and M. Kesden, astro-ph/0204068.
[10] G. Hinshaw, A.J. Banday, C.L. Bennett, K.M." Bki, and A.

083007-9

tific Computing (Cambridge University Press, New York,
1992. The variances of skewness and kurtosis ofNL&hd
96/, respectively, only appear in the second edition, pp. 612
and 613.



