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Weak lensing of the CMB: Cumulants of the probability distribution function
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We discuss the real-space moments of temperature anisotropies in the cosmic microwave background
~CMB! due to weak gravitational lensing by intervening large-scale structure. We show that if the probability
distribution function of primordial temperature anisotropies is Gaussian, then it remains unchanged after
gravitational lensing. With finite resolution, however, nonzero higher-order cumulants are generated both by
lensing autocorrelations and by cross-correlations between the lensing potential and secondary anisotropies in
the CMB such as the Sunayev-Zel’dovich~SZ! effect. Skewness is produced by these lensing-SZ correlations,
while kurtosis receives contributions from both lensing alone and lensing-SZ correlations. We show that if the
projected lensing potential is Gaussian, all cumulants of higher order than the kurtosis vanish. While recent
results raise the possibility of detection of the skewness in upcoming data, the kurtosis will likely remain
undetected.
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I. INTRODUCTION

Weak gravitational lensing deflects the paths of cosm
microwave background~CMB! photons propagating from
the surface of last scattering. One result of this lensing is
transfer of power from large angular scales associated
acoustic-peak structures to small angular scales in the da
ing tail of the anisotropy power spectrum@1,2#. This transfer
only results in a few-percent modification of the power a
sociated with the acoustic-peak structure, and the increas
power along the damping tail is significantly smaller th
that generated by secondary anisotropies due to reioniza
@3#. To identify the effect of gravitational lensing on CM
data, it is necessary to consider signatures beyond that in
angular power spectrum of temperature fluctuations. The
istence of nonvanishing higher order cumulants is one s
non-Gaussian signature lensing can generate.

Since gravitational lensing conserves surface brightn
CMB fluctuations from lensing are at the second order
temperature fluctuations and result in non-Gaussian beha
through non-linear mode coupling. Though lensing alo
does not lead to a three-point correlation function, the co
lation between lensing and other secondary anisotropies
lead to such a contribution. This three-point correlation h
been widely discussed in the literature in terms of its Four
space analogue, the bispectrum@4#. Weak lensing of the pri-
mary anisotropies can produce a four-point correlation du
its non-linear mode-coupling nature@5–7#, as can correla-
tions between lensing and secondary effects@7#. When
probed appropriately through quadratic statistics such as
power spectrum of the squared-temperature map, the tris
trum due to lensing alone can be used for a mod
independent recovery of the projected mass distribution
to the last scattering surface@8,9#. Though these statistic
have been shown to be interesting and potentially detecta
measurement of these Fourier-based statistics is challen
and techniques are still underdeveloped for this purpose

Here, we discuss real-space moments of the lensed C
temperature anisotropies. Real-space statistics are e
measurable from data. The only drawbacks are that they
0556-2821/2002/66~8!/083007~9!/$20.00 66 0830
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unlikely to be optimal and only provide limited knowledg
of the full non-Gaussian aspect of the temperature distri
tion. The first attempts to measure non-Gaussianity in
Cosmic Background Explorer~COBE! data relied on real-
space cumulants@10#, as will attempts using data from it
successor experiments such as Microwave Anisotropy Pr
~MAP! and Planck. This motivates our emphasis here on
real-space cumulants such as the skewness and kurtosi
make several remarks on higher-order cumulants as well
part of this calculation, we extend a previous discussion
the kurtosis due to lensing in Ref.@5# and also consider ef
fects related to correlations between lensing and secon
effects such as the Sunyaev-Zel’dovich@~SZ! @11## effect.

Real-space moments can be derived from the one-p
probability distribution function~PDF! of temperature fluc-
tuations, and can conversely be used to constrain the form
this function. In the case of infinite angular resolution, w
conclude that lensing does not modify the PDF of tempe
ture anisotropies produced at the last scattering surf
which is a reflection on the fact that lensing does not cre
new power but rather transfers power from large to sm
angular scales. The higher-order moments are only gener
in a temperature map by finite-resolution effects such
beam smoothing introduced either experimentally or art
cially by explicit filtering.

The paper is organized as follows. In Sec. II, we introdu
formalism concerning the weak-lensing approximation a
define the bispectrum, trispectrum, and correspond
higher-order quantities. The bispectrum and trispectrum
duced in the CMB by lensing and secondary anisotropies
derived in Sec. III, and some remarks are made concern
higher-order cumulants as well. The nonzero bispectrum
trispectrum yield a skewness and kurtosis, respectively
the one-point distribution function of the CMB as shown
Sec. IV. We refer the reader to Ref.@9# for additional details
related to the effect of lensing on CMB anisotropies. Thou
we present a general discussion, we illustrate our result
Sec. V using the currently favored cold dark matter with
cosmological constant model~LCDM! with Vb50.05, Vm
50.35, VL50.65, h50.65 and s850.9. Results for a
©2002 The American Physical Society07-1
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model withs851.2 as suggested by the Cosmic Backgrou
Imager~CBI! are also considered.

II. LENSING CONTRIBUTION TO CMB FLUCTUATIONS

In order to derive the effects of weak lensing on the CM
we follow Refs.@2,6# and adopt a flat sky approximation. A
discussed in prior papers@2,4#, weak lensing remaps tem
perature through angular deflections along the photon pa

Q̃~ n̂!5Q~ n̂1¹f!

5Q~ n̂!1¹if~ n̂!¹ iQ~ n̂!

1
1

2
¹if~ n̂!¹jf~ n̂!¹ i¹ jQ~ n̂!1 . . . . ~1!

Here,Q(n̂) is the unlensed primary component of the CM
in direction n̂ at the last-scattering surface,Q̃(n̂) is the
lensed map,f(n̂) is the projected gravitational potential, an
¹f is the lensing deflection angle. It should be understo
that in the presence of low-redshift contributions to CM
fluctuations resulting from large-scale structure, the to
map includes secondary contributions which we denote
Qs(n̂). Since the weak-lensing deflection angles¹f also
trace the large-scale structure at low redshifts, secondar
fects which are first order in density fluctuations correl
with the lensing deflection angles. These secondary eff
include the integrated Sachs-Wolfe@~SW! @12## and the SZ
@11# effects@4#. In all real cases, a noise component deno
by Qn(n̂) due to finite experimental sensitivity must be i
cluded as well. Thus the total observed CMB anisotropy w
be Q t(n̂)5Q̃(n̂)1Qs(n̂)1Qn(n̂). In the following discus-
sion, secondary anisotropiesQs(n̂) will be neglected until
Sec. III B while the effects of instrumental noiseQn(n̂) on
the PDF are discussed in Sec. IV.

Taking the Fourier transform, as appropriate for a flat s
we write

Q̃~ l!5E dn̂Q̃~ n̂!e2 i l•n̂

5Q~ l!2E d2l8

~2p!2
Q~ l8!L~ l,l8!, ~2!

where

L~ l,l8!5f~ l2 l8!@~ l2 l8!• l8#1
1

2E d2l9

~2p!2
f~ l9!

3f* ~ l91 l82 l!~ l9• l8!@~ l91 l82 l!• l8#1 . . . . ~3!

We define the power spectrum, bispectrum, trispectrum
the n-point correlator in Fourier space in the usual way:
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^Q̃~ l1!Q̃~ l2!&5~2p!2dD~ l12!C̃l 1
Q ,

^Q̃~ l1! . . . Q̃~ l3!&c5~2p!2dD~ l123!B̃
Q~ l1 ,l2 ,l3!,

~4!
^Q̃~ l1! . . . Q̃~ l4!&c5~2p!2dD~ l1234!T̃

Q~ l1 ,l2 ,l3 ,l4!,

^Q̃~ l1! . . . Q̃~ ln!&c5~2p!2dD~ l1 . . .n!T̃n
Q~ l1 , . . . ,ln!.

where l1 . . .n[ l11 . . . 1 ln , and the subscriptc denotes the
connected portion of the correlation function. We make
assumption that primary anisotropies at the last scatte
surface are Gaussian implying that all cumulants higher t
the power spectrum vanish:^Q( l1) . . . Q( ln)&c50, whenn
.2.

The power spectra for lensing autocorrelations a
lensing-secondary cross-correlations are defined an
gously:

^f~ l1!f~ l2!&5~2p!2dD~ l12!Cl 1
ff ,

~5!
^f~ l1!Qs~ l2!&5~2p!2dD~ l12!Cl 1

fs.

Primary CMB anisotropiesQ(n̂) are generated at the surfac
of last scatter atz.1,100, while the lensing potentialf(n̂)
and secondary contributionsQs(n̂) arise from large-scale
structure at much lower redshifts (z.3). As such, correla-
tions between these quantities vanish:^Q( l1)f( l2)&
5^Q( l1)Qs( l2)&50.

The nth cumulant of the temperature anisotropies is d
fined in the usual manner,

Cn~u!5E d2l1

~2p!2
. . .

d2ln

~2p!2
^Q t~ l1! . . . Q t~ ln!&c

3W~ l 1u! . . . W~ l nu!, ~6!

whereu is the smoothing scale of the map from which t
cumulants are determined, andW( lu) is the smoothing win-
dow function. We will use Gaussian window function
throughout this paper. In general, the finite resolution of r
CMB anisotropy experiments induces Gaussian smoothin
the angular scale of the experimental beam size. For infi
resolution, we takeu→0 such thatW( lu)→1. The variance,
skewness, and kurtosis defined later in this paper can a
expressed in terms of cumulants

s2~u!5C2~u!, S~u!5
C3~u!

@C2~u!#3/2
, K~u!5

C4~u!

@C2~u!#2
.

~7!

III. POWER SPECTRUM, BISPECTRUM
AND TRISPECTRUM

Using the formalism introduced in the previous sectio
we can calculate the moments of the CMB fluctuations g
erated by lensing assuming Gaussian fluctuations at the
face of last scatter. Becausef is a small parameter, term
beyond linear order inCl

ff are neglected in these calcula
tions. The power spectrum for the lensed map is@1,2#
7-2
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C̃l
Q5F12E d2l1

~2p!2
Cl 1

ff~ l1• l!2GCl
Q

1E d2l1

~2p!2
Cu l2 l1u

Q Cl 1
ff@~ l2 l1!• l1#2. ~8!

The variance, or the second moment of the temperat
can be obtained following Eq.~6!:

s2~u!5E d2l

~2p!2
C̃l

QW2~ lu!. ~9!

Substituting Eq.~8! in here, we find that in the case of infi
nite resolution@W( lu)51#, the variance of the lensed tem
perature map coincides with that of the unlensed map. T
as expected, lensing conserves the total power assoc
with the temperature fluctuations. This is consistent with
ie
u

is

d
in

m
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basic expectation that lensing only results in a transfer
power from large angular scales to small angular scales. W
finite resolution at levels considered here, the variance of
lensed temperature field differs from that of the unlens
field by a few percent at most.

We will now discuss higher-order correlations of tempe
ture due to gravitational lensing. We consider first contrib
tions due to lensing alone, and then discuss additional c
tributions created by lensing-secondary correlations.

A. Lensing correlations

We will first discuss the temperature bispectrum and sh
that it is zero in the absence of secondary anisotropies
understand why there is no contribution to the bispectru
consider the moments involving three temperature term
Fourier space:
^Q̃~ l1!Q̃~ l2!Q̃~ l3!&c5K S Q~ l1!2E d2l18

~2p!2
Q~ l18!L~ l1 ,l18!D S Q~ l2!2E d2l28

~2p!2
Q~ l28!L~ l2 ,l28!D

3S Q~ l3!2E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!D L

5^Q~ l1!Q~ l2!Q~ l3!&2K Q~ l1!Q~ l2!S E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!D L

1Perm.1K Q~ l1!S E d2l28

~2p!2
Q~ l28!L~ l2 ,l28!D S E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!D L 1Perm.

2K S E d2l18

~2p!2
Q~ l18!L~ l1 ,l18!D S E d2l28

~2p!2
Q~ l28!L~ l2 ,l28!D S E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!D L .

~10!
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All these terms, and the necessary permutations, involve
expectation value of three primary temperature anisotrop
Under our assumption of Gaussian primary temperature fl
tuations, such expectation values vanish and thus there
contribution to the bispectrum or the skewness.

The trispectrum due to lensing alone can be calculate
a similar fashion. Introducing the power spectrum of lens
potentials, following Refs.@6,9#, we obtain the CMB trispec-
trum due to gravitational lensing as

T̃Q~ l1 ,l2 ,l3 ,l4!52Cl 3
QCl 4

Q$Cu l11 l3u
ff @~ l11 l3!• l3#@~ l11 l3!• l4#

1Cu l21 l3u
ff @~ l21 l3!• l3#@~ l21 l3!• l4#%

1Perm., ~11!

where the permutations now contain five additional ter
with the replacement of (l 3 ,l 4) by any other pair.
an
s.
c-
no

in
g

s

We can generalize our discussion of the power spectr
bispectrum, and trispectrum to that of then-point correlation
function in Fourier space. In the absence of second
anisotropies that correlate directly with the lensing potent
the n-point correlation function will vanish for oddn for the
same reason that lensing alone did not generate a bispec
All such terms would involve the expectation value of
odd number of temperature fluctuations, and under the
sumption of Gaussian primary anisotropies, such expecta
values must vanish. This statement applies in particula
the case when measurements of non-Gaussianity are m
using CMB maps which have been cleaneda priori of sec-
ondary fluctuations using information such as the nonther
frequency dependence of these fluctuations. We will disc
the case of secondary anisotropies in the next section.

The lowest evennth correlator after the trispectrum is th
six-point correlation function in Fourier space. We can wr
the portion of the connected part of this correlation functi
containing the lowest-order contribution inf as
7-3
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^Q̃~ l1! . . . Q̃~ l6!&c5K S Q~ l1!2E d2l18

~2p!2
Q~ l18!L~ l1 ,l18!D . . . S Q~ l3!2E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!D Q~ l4!Q~ l5!Q~ l6!L

1Perm.

52K E d2l18

~2p!2
Q~ l18!L~ l1 ,l18! . . . E d2l38

~2p!2
Q~ l38!L~ l3 ,l38!Q~ l4!Q~ l5!Q~ l6!L 1Perm. ~12!
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Simplifying further, we see that the lowest order contributi
in f thus involves

^Q̃~ l1! . . . Q̃~ l6!&c

5Cl 4
QCl 5

QCl 6
Q^f~ l11 l4!f~ l21 l5!f~ l31 l6!&@~ l11 l4!• l4#

3@~ l21 l5!• l5#@~ l31 l6!• l6#1Perm. ~13!

The connected part of the six-point correlation function
Fourier space is thus proportional to the bispectrum of le
ing potentials. We can write

T̃6
Q~ l1 ,l2 ,l3 ,l4 ,l5 ,l6!

5Cl 4
QCl 5

QCl 6
Q@Bf~ l11 l4 ,l21 l5 ,l31 l6!@~ l11 l4!• l4#

3@~ l21 l5!• l5#@~ l31 l6!• l6##1Perm. ~14!

There are in total 120 such terms appearing in the six-p
correlator when we include all permutations, coming fro
the 20 different triplets (l i ,l j ,l k) and the 6 permutations o
each triplet.

We can generalize these derivations to then-point tem-
perature correlation in Fourier space under gravitational le
ing. In the following, note that contributions ton-point tem-
perature correlations in Fourier space come from (n/2)-point
correlations in the lensing potential. We can thus write
connected part of then-point temperature correlator, whe
n.2, as

T̃n
Q~ l1 , . . . ,ln!

5Cl n/211

Q . . . Cl n
Q@Tn/2

f ~ l11 l(n/2)11 , . . . ,ln/21 ln!

3~ l11 l(n/2)11!• l(n/2)11 . . . ~ ln/21 ln!• ln#1Perm.,

~15!

whereTn
f( l1 , . . . ,ln) is then-point correlator of the lensing

potential in Fourier space. The permutations here now
volve n!/(n/2)! terms corresponding to the replacement
( l (n/2)11 , . . . ,l n) with one of the othern!/ @(n/2)!(n/2)!#
combinations and the (n/2)! permutations of each combina
tion. As we have discussed, note thatT̃n

Q( l1 , . . . ,ln)50
whenn is odd.

In the limit that the lensing potentials are Gaussian d
tributed, Tn

f( l1 , . . . ,ln)50 when n.2. Thus, lensing of
CMB anisotropies can only generate a trispectrum and, w
08300
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smoothing, a kurtosis. The non-Gaussianity associated
the large-scale structure, however, will induce non-Gauss
contributions to the distribution of projected potentials su
that Tn

f( l1 , . . . ,ln)Þ0 for somen. Since large-scale struc
ture most efficiently lenses the CMB at redshifts close to
where the non-Gaussianity is mild, we ignore the high
order correlations of lensing potentials and only consider
dominant power spectrum,Cl

ff , which contributes to the
trispectrum only.

Although theoretical predictions are made in terms
ensemble-averaged correlation functions, observationally
have access to only one realization of the CMB and o
realization of the large-scale structure. The arbitrariness
the observed realization of the large-scale structure indu
additional cosmic variance beyond that normally associa
with the surface of last-scatter. One consequence is that w
measured on a small patch of the sky, the observed two-p
correlation function of the lensed map is more anisotro
than that of the unlensed map, though isotropy holds whe
sufficiently large region of the sky is considered. The exc
anisotropy is induced by cosmic shear, and allows us to
construct the lensing deflection angle from quadratic m
involving the CMB temperature and polarization@9#. While
we emphasize one-point statistics in this paper, a more
tailed account of how higher-order statistics probe the lo
anisotropy induced by lensing may prove fruitful in the f
ture.

B. Lensing-secondary correlations

The above discussion applies to the case where other
ondary fluctuations do not contribute to temperatu
anisotropies. In practice, such a situation can be achie
when thermal CMB fluctuations are separated from domin
secondary effects like the SZ contribution. In experime
where this is not possible, say due to a lack of multifr
quency data, additional non-Gaussianities will be presen
the CMB map due to correlations between lensing potent
and the secondary anisotropies. The most significant of th
contributions is to the three-point correlation function. W
can calculate this by replacing theQ̃( l) terms in Eq.~10!
with Q t( l). By assumption, Gaussian instrumental noise c
not generate a bispectrum, and as shown above neither
lensing alone. The total observed bispectrum is therefore
due to lensing-secondary correlations@4,6#

BQt~ l1 ,l2 ,l3!52Cl 1
fs@Cl 2

Q~ l2• l1!1Cl 3
Q~ l3• l1!#1Perm.,

~16!
7-4
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where permutations involve two additional terms with t
replacement ofl 1 with l 2 and l 3. Here, Cl 1

fs is the power

spectrum describing correlations between second
anisotropies and the lensing potential generated by la
scale structure. These correlations were discussed in det
Ref. @4# where it was found that the most significant corr
lation is the one between lensing potentials and the SZ eff
We will use this correlation in illustrating our results.

The presence of secondary effects also modifies
trispectrum and generates an additional contribution bey
the one discussed in Eq.~11!. Following Ref. @9#, we can
write this contribution as

TQs~ l1 ,l2 ,l3 ,l4!

5Cl 3
fsCl 4

fs$Cl 1
Q~ l3• l1!~ l4• l1!1Cl 2

Q~ l3• l2!~ l4• l2!

1@ l3•~ l11 l3!#@ l4•~ l21 l4!#Cu l11 l3u
Q 1@ l4•~ l11 l4!#

3@ l3•~ l21 l3!#Cu l11 l4u
Q %1Perm. ~17!

where permutations involve five additional terms involvi
the pairings of (l 3 ,l 4).

Due to an increase in terms as one goes to higher or
we failed to obtain a general expression for then-point cor-
relator of temperature fluctuations in Fourier space due
lensing-secondary correlations. As we will soon discuss,
mulants beyond the skewness are unlikely to be importan
we find kurtosis to be undetectable even for a perfect exp
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ment with no noise and all-sky observations. We expect
to hold true even when considering higher-order mome
beyond the kurtosis.

IV. SKEWNESS AND KURTOSIS

A simple way to identify the non-Gaussianity induced
the CMB by gravitational lensing is to measure the high
order cumulants of its one-point probability distributio
function Pobs(Q

t;u) smoothed with beam widthu. This ob-
served one-point probability distribution function~PDF! is
actually a convolution of the signal PDFPsig(Q

sig;u) with
the noise PDFPnoise(Q

n;u) as described below, whereQsig

5Q̃1Qs is the total of both lensed primary and seconda
contributions to the signal. The signal PDF can be expres
in terms of its cumulants, which we now proceed to calc
late. The third and fourth cumulants are proportional to
dimensionless quantities known as the skewness,S, and the
kurtosis,K, respectively:

S~u![@s~u!#23E ~Qsig!3Psig~Qsig;u!dQsig,

~18!

K~u![@s~u!#24E ~Qsig!4Psig~Qsig;u!dQsig23.

They can be expressed as integrals over the bispectrum
trispectrum derived in the preceding section according
Eq. ~6!:
S~u!5@s~u!#23E d2l1

~2p!2

d2l2

~2p!2

d2l3

~2p!2
~2p!2dD~ l123!B

t~ l1 ,l2 ,l3!W~ l 1u!W~ l 2u!W~ l 3u!,

~19!

K~u!5@s~u!#24E d2l1

~2p!2

d2l2

~2p!2

d2l3

~2p!2

d2l4

~2p!2
~2p!2dD~ l1234!T

t~ l1 ,l2 ,l3 ,l4!W~ l 1u!W~ l 2u!W~ l 3u!W~ l 4u!.

Inserting Eqs.~16!, ~11!, and ~17! into the above expressions, and adopting a Gaussian window functionW( lu)5e2( lsb)2/2

with sb5u/A8ln2, we obtain

S~u!5
6

~2p!2@s~u!#3E l 1
2dl1l 2

2dl2Cl 1
QCl 2

fsI 1~sb
2l 1l 2!e2sb

2( l 1
2
1 l 2

2),

Kff~u!5
12

~2p!3@s~u!#4E dl1l 1
3Cl 1

ffe2sb
2l 1

2F E dl2l 2
2Cl 2

QI 1~sb
2l 1l 2!e2sb

2l 2
2G2

,

Kfs~u!5
12

~2p!3@s~u!#4
E dl1l 1

3Cl 1
Qe2sb

2l 1
2H F E dl2l 2

2Cl 2
fsI 1~sb

2l 1l 2!e2sb
2l 2

2G2

2
1

2p
E l 2

2dl2l 3
2dl3dwCl 2

fsCl 3
fsI 1~sb

2l 2Al 1
21 l 3

212l 1l 3cosw!e2sb
2( l 2

2
1 l 3

2
1 l 1l 3cosw)

l 1cosw1 l 3cos2w

Al 1
21 l 3

212l 1l 3cosw
J . ~20!
7-5
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Here I 1(x) is a modified Bessel function of the first kind.
In the presence of instrumental noise, the observed o

point probability distribution function~PDF! will be a con-
volution of the signal PDF characterized by the skewn
and kurtosis given above, and a Gaussian noise P
Pobs(Q

t)5*dt Psig(t)Pnoise(Q
t2t). In order to perform

this convolution we must first determine the explicit form
the signal PDF that will have nonzero skewness or kurto
but vanishing higher cumulants. To do this, we follow t
formalism discussed in Ref.@13# and references therein. Th
PDF of a random variabled with zero mean and variances2

can be expressed as a Gram-Charlier series in the norma
variablen[d/s:

p~n!5c0f~n!1
c1

1!
f (1)~n!1

c2

2!
f (2)~n!1 . . . , ~21!

wheref(n)[(2p)21/2e2n2/2 is a Gaussian distribution. Th
f ( l )(n) are derivatives of the Gaussian distribution with r
spect ton:

f ( l )~n![
dlf

dn l
5~21! lHl~n!f~n!, ~22!

and theHl(n) are Hermite polynomials with the unconve
tional normalization,

E
2`

`

Hl~n!Hm~n!f~n!dn5 l !d lm . ~23!

The central moments of the PDF are defined as

m l[s lE
2`

`

p~n!n ldn, ~24!

while the cumulants or ‘‘connected’’ portions of these m
ments can be derived from the relation

Ml[
dl ln^etd&

dtl
. ~25!

Using the expansion~21! and the orthogonality relation~23!,
the coefficients of the Gram-Charlier series can be expre
in terms of the central moments. By inverting Eq.~25!, the
central moments can then be reexpressed in terms of cu
lants. As discussed in the previous section, the assump
that the lensing potential is Gaussian implies that all cum
lants of higher order than the kurtosis must vanish. Us
this result, we can rewrite the Gram-Charlier expansion a
power series in the skewnessS or kurtosisK, which in the
case of lensing will be small quantities,

p~n!5F11
1

3!
SH3~n!1

10

6!
S2H6~n!1 . . . Gf~n!,

~26!

p~n!5F11
1

4!
KH4~n!1

35

8!
K2H8~n!1 . . . Gf~n!.
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These power series can be convolved with a Gaussian n
PDF of variancesnoise

2 (u) to obtain the observed PDF
Pobs(Q

t). To linear order in the true skewness and kurtos
we find

Sobs~u!5S~u!H s2~u!

s2~u!1snoise
2 ~u!

J 3/2

,

Kobs~u!

5
K~u!

8 H 5s4~u!23snoise
4 ~u!26s2~u!snoise

2 ~u!

@s2~u!1snoise
2 ~u!#2

13J .

~27!

As expected, the observed skewness and kurtosis conver
the signal values in the absence of noise and to zero in
case when the Gaussian noise is dominant. To actually
serve skewness or kurtosis in an experimental sky map,
must construct estimators for these quantities using our
points, theN54p f sky/p(u/2)2 pixels in the map. We can
write estimators for the skewness and kurtosis as

Sŝ 3[
1

N (
i 51

N

~xi2 x̄!3,

~28!

Kŝ 4[
1

N (
i 51

N

~xi2 x̄!423F 1

N (
i 51

N

~xi2 x̄!2G2

,

where x̄5(1/N)( i 51
N xi is the traditional estimator for the

mean of a distribution. For a distribution like that of th
CMB anisotropies which isa priori defined to have a zero
mean, we find

^Sŝ 3&5S 12
3

N
1

2

N2D Ss3,

~29!

^Kŝ 4&5S 12
7

N
1

12

N2
2

6

N3D Ks42
6

N S 12
1

NDs4.

These are biased estimators, as has been noted elsew
under a different context@14#, but in the large-N limit they
converge to the desired quantities. Assuming that the un
lying PDF is Gaussian, the variance of these estimator
lowest order in 1/N is given by

sSŝ 3
2

[^~Sŝ 3!2&2^Sŝ 3&25
3!

N
s3,

~30!

sKŝ 4
2

[^~Kŝ 4!2&2^Kŝ 4&25
4!

N
s4.

An alternate derivation of these variances can be obtai
from the explicit form of the PDFs following Eq.~26!. If N
pixels or data points are collected and binned such thatpi is
the probability that a data point will fall within bini ands i
7-6
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is the standard deviation of that probability, then the b
variance of a parametere characterizing the PDF is given b
the Crame´r-Rao bound@15#,

1

se
2

5(
i

S ]pi

]e D 2 1

s i
2

. ~31!

If the error on each bin is assumed to be Poisson, thens i
2

5pi /N. In the limit of a continuous PDF,pi→p(n)dn and
the discrete sum~31! becomes an integral

1

se
2

5NE S ]p

]e D 2

p21dn. ~32!

Inserting Eq.~26! into Eq. ~32! under the Gaussian null hy
pothesisS5K50, we find lowest attainable errors asse

2

53!/N,4!/N for e5S,K in agreement with the explicit cal
culation of the variance of our estimators noted in Eq.~30!.
Further discussion of the variance associated with differ
estimators for the skewness and kurtosis is included in
Appendix.

V. RESULTS AND DISCUSSION

A. Skewness

We illustrate in Fig. 1 our results for skewness due to
correlation between lensing and the SZ effect. We calcu
this correlation following Ref.@17# using the halo approac
to large-scale structure@18#. The skewness approaches ze
at small values of the smoothing scale, consistent with
conclusion that no non-Gaussian signatures exist in the P
in the limit of infinite resolution. As shown, skewness due
the lensing-SZ correlation peaks at an angular scale of
of arcminutes, which is in the range of interest to upcom
experiments such as MAP and Planck. When calculating
pected signal-to-noise ratios for these experiments, we
detector sensitivities and resolutions tabulated in Ref.@16#.
For simplicity, we combine information from individual fre

FIG. 1. Left: The skewness due to lensing-SZ correlations fo
perfect~no-noise! experiment~solid line!, Planck~dashed line!, and
MAP ~dotted line! for s850.9. The CBI 1s upper bound ofs8

<1.2 leads to a higher value for the skewness as indicated by
dot-dashed line. Right: The signal-to-noise ratio for the detection
skewness in CMB data with curves labeled as in the left figure.
assume full sky coverage; for partial sky coverage the signa
noise ratio scales asAf sky, wheref sky is the fraction of sky covered
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quency channels to form one estimate of temperature with
overall noise given by inversely weighting individual nois
contributions.

The skewness as shown has signal-to-noise ratios slig
less than unity suggesting that its detection may be hard
potentially affected by noise. However, recent small-sc
excess-power detections by experiments such as CBI@19#
raise the possibility that we may have underestimated
lensing-SZ correlation and thus the skewness. T
lensing-SZ power spectrumCl

fs is roughly proportional to
the fifth power ofs8, the standard deviation of linear mas
fluctuations within an 8h21 Mpc sphere. If we adopt the CB
1s upper bound ofs8<1.2 @19# as opposed to the valu
s850.9 suggested by previous studies, our signal increa
by a factor of 4.21. In this case, Planck could conceiva
detect skewness with a signal-to-noise ratio of 2.5. The
tential for detection of the temperature skewness is con
tent with previous expectations that the temperature ani
ropy bispectrum due to lensing-SZ correlation can
detected in future data@4#. The cumulative signal-to-noise
ratio for skewness, however, is significantly smaller than t
for the full bispectrum because the skewness is a single n
ber while the bispectrum contains all information related
non-Gaussianities at the three-point level. As described
low, we find a similar reduction in the signal-to-noise rat
for kurtosis when compared to the full trispectrum.

The frequency dependence of the SZ effect allows us
construct an SZ map of the sky as well as a temperature
with the SZ effect removed. This provides us a unique o
portunity to test our understanding of non-Gaussianity at
three-point level. If skewness is purely a consequence
lensing-SZ correlations as posited in this paper, then
skewness obtained by combining one measurement of the
map with two measurements of the SZ-cleaned tempera
map at the same location using the estimator in Eq.~28!
should be precisely one-third that produced by three m
surements of the total anisotropy map. This correspond
the fact that the composite map will sample only one of
three permutations appearing in Eq.~16!.

B. Kurtosis

Both lensing kurtosisKff and the kurtosisKfs due to
lensing-SZ correlations are undetectable even for a per
no-noise experiment as illustrated in Fig. 2. Since the cum
lative signal-to-noise ratio forKfs is well below one, we
expect it to remain undetectable despite any uncertainty
our calculation of the SZ effect. Note our prediction of th
lensing kurtosisKff is likely to be more certain since it only
depends on the matter power spectrum, with contributi
coming mainly from the linear regime. Thus, uncertainties
non-linear aspects of clustering are unlikely to affect o
conclusion.

The signal-to-noise value forKff can be compared to th
cumulative signal-to-noise ratio for the direct detection
the full trispectrum due to lensing, which in the case
Planck can be as high as;55 @6#. Consequently, although
the lensing kurtosis cannot be detected directly from
data, lensing effects associated with this kurtosis can be u
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to reconstruct the lensing deflection angle as describe
Refs.@8,9#, again with cumulative signal-to-noise ratios si
nificantly greater than that for the kurtosis itself. The high
signal-to-noise ratio in lensing reconstruction is possible
two reasons. Unlike the kurtosis, which averages indiscri
nately over all configurations of the trispectrum as shown
Eq. ~19!, lensing reconstruction is sensitive to certain co
figurations of the trispectrum, mainly those that contribute
the power spectrum of squared temperature. This avoids
vere positive-negative cancellations that significantly red
the signature of non-Gaussianity. Secondly, the noise co
bution associated with lensing reconstruction is alsoa priori
reduced through a filter which is designed to extract inf
mation on the lensing potentials optimally.

The low signal-to-noise ratio associated with the kurto
is also consistent with the fact that real-space moments
general, suffer from excess noise. Though such statistics
easily measurable in data, they do not provide the most
timal methods to search for the existence of non-Gaus
signatures. While we recommend construction of cumula
such as skewness and kurtosis as a first step in understa
non-Gaussianity from effects such as lensing, we sug
that full measures of quantities such as bispectrum
trispectrum will be necessary to fully understand the n
Gaussian behavior of lensing. If measurement of such st
tics are still cumbersome, we suggest the use of quad
statistics in real space, such as the squared-temperat
temperature @7# and the squared-temperature–squar
temperature@9# power spectra which probe certain config
rations of the bispectrum and trispectrum.
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APPENDIX: VARIANCE OF SKEWNESS
AND KURTOSIS ESTIMATORS

A question arose during the composition of this paper
to the appropriate variance for estimates of the skewness
kurtosis of a Gaussian distribution. The true skewness
kurtosis of a Gaussian distribution are necessarily zero,
given N data pointsxi drawn from this distribution even
unbiased estimators will yield results distributed about z
with some variance. Some sources~e.g.,@20#! indicate vari-
ances of 15/N and 96/N, respectively, for the skewness an
kurtosis estimators defined in Eq.~28! as opposed to ou
values of 6/N and 24/N. This discrepancy prompted us t
investigate further. The estimators of Eq.~28! differ from
those given in Ref.@20# in that they are estimators for th
third and fourth cumulants rather than the dimensionl
skewness and kurtosis to which they are proportional.
suming an underlying Gaussian distribution with a varian
of unity, standard propagation of errors reveals that the
pairs of estimators have the same variances to lowest ord
1/N. However, the naı¨ve estimators

Sŝ 38[
1

N (
i 51

N

xi
3 ,

~A1!

Kŝ 48[
1

N (
i 51

N

xi
423F 1

N (
i 51

N

xi
2G2

do indeed have variances of 15/N and 96/N for skewness and
kurtosis, respectively. We show this explicitly for the naı¨ve

skewness estimatorSs 3̂8. The ensemble average of this e
timator is simplySs3 so it is truly an unbiased estimator fo
the skewness. However, taking the ensemble average

(Ss 3̂8)2 we find

^~Ss 3̂8!2&5
1

N
@m61~N21!S2s6#, ~A2!

leading to a variance

s
Ss 3̂8

2
[^~Ss 3̂8!2&2^Ss 3̂8&25

1

N
~m62S2s6!. ~A3!

For a Gaussian distribution,m6515s6 and S50, implying
that this estimator measures skewness with a varianc

15/N and is therefore less sensitive thanSs 3̂ defined in Eq.
~28! which was shown to have a variance of 6/N. An entirely
analogous calculation shows that the naı¨ve kurtosis estimator
in Eq. ~A1! has a variance of 96/N, not 24/N.
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Why do the estimators of Eq.~28! outperform those of
Eq. ~A1!? Although the true mean of the underlying Gau
ian distribution has been chosen to be zero, the estim
meanx̄5(1/N)( i 51

N xi of N data points will not necessaril
vanish. The more sophisticated estimators of Eq.~28! take
:

f.

08300
-
ed

this into account by subtracting the estimated mean fr
each data point, and are therefore able to provide low
variance estimates of the skewness and kurtosis. These l
values for the variances are adopted for all results concer
signal-to-noise ratios mentioned in this paper.
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