ENRICHMENT OF HEAVY NUCLEI IN 3He-RICH FLARES

G. J. HURFORD, R. A. MEWALDT, E. C. STONE, AND R. E. VOGT

California Institute of Technology

Received 1975 July 7

ABSTRACT

Five 3He-rich solar-flare particle events were observed in 1973-1974 with 3He/4He ranging from 0.2 to \sim8 at 2.9-12.7 MeV per nucleon. In all five events the $(Z \geq 6)/^2$H ratio at \sim3 MeV per nucleon was enriched by \sim10 to \sim100 times and the $(Z \geq 6)/^4$He ratio was enriched by \sim3 to \sim30 times, when compared with average solar-particle abundances measured over this 2-year period. It is suggested that the simultaneous enhancement of $Z \geq 6$ and 3He nuclei and the absence of 2H and 3H may be partly due to a preferential acceleration process which depends on the Z^2/A of the nuclei.

Subject headings: abundances, solar — cosmic rays — flares, solar

I. INTRODUCTION

Observations of the isotopic compositions of hydrogen and helium nuclei in solar cosmic rays have shown that the energetic particles accelerated in some solar flares are extraordinarily rich in the normally rare isotopes 3He with no corresponding enrichment in 2H or 3H (Garrard et al. 1973; Anglin et al. 1974; Hurford 1974; Serlemitsos and Balasubrahmanyan 1975). While the ratio 3He/4He in the solar wind and prominences is $\sim 4 \times 10^{-4}$ (Geiss and Reeves 1972; Hall 1975), in 3He-rich flares the solar cosmic-ray 3He/4He ratio typically exceeds 0.2, and in some cases is greater than 1. In this Letter we present observations which show that such 3He-rich events are also enriched in $Z \geq 6$ nuclei. The implications of this result are then briefly considered.

II. OBSERVATIONS

The observations were made with the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft. The instrumentation is described elsewhere (Hurford et al. 1974). Nuclei with $Z > 2$ in the energy interval ~ 2 to 6 MeV per nucleon penetrate a 2.4 mg cm$^{-2}$ Mylar window and stop in a single 50-μ solid state detector (D2) which is actively collimated with a geometrical factor of 0.2 cm2sr. These nuclei can be distinguished from the more numerous hydrogen and helium nuclei by an energy loss in D2 which exceeds ~ 10 per nucleon. These daily average fluxes are plotted in Figure 1.

In order to minimize the effects of selection criteria on our data base, the daily average flux of $Z \geq 6$ nuclei and of 2.4-6.0 MeV per nucleon 3H and 4He were determined for each day between 1972 September 30 and 1974 October 22 for which there were more than 10 3He or 5 4He nuclei detected. In calculating the $Z \geq 6$ fluxes we assumed a nominal energy interval of 2-5 MeV per nucleon. These daily average fluxes are plotted in Figure 1. Note that large solar-flare particle events may last for several days. This figure also includes an indication of the average quiet-time flux of 1H and 4He, and the 2σ upper limit to the average quiet-time $Z \geq 6$ flux. During this period five 3He-rich events, summarized in Table 2, were identified with this experiment (see, e.g., Hurford 1974; Hurford et al. 1975). There were no other events in which more than three 3He were identified and the 3He/4He ratio was greater than 0.1. Data acquired on the six days during which these five flares occurred are shown in Figure 1 by the filled circles (solar cosmic rays from the 1974 February 20 event were observed for two successive days). Note that because of the more restricted time intervals, the data in Table 2 cannot be compared directly with the daily averages in Figure 1.

The top panel in Figure 1 shows the correlation between the $Z \geq 6$ and 3H fluxes. While the average $(Z \geq 6)/^3$H ratio for this data is $\sim 2 \times 10^{-3}$ (see Table 2),

TABLE 1

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Energy Interval (MeV per nucleon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Li</td>
<td>1.9-2.7</td>
</tr>
<tr>
<td>11B</td>
<td>1.9-3.6</td>
</tr>
<tr>
<td>13C</td>
<td>2.0-4.2</td>
</tr>
<tr>
<td>14N</td>
<td>2.2-4.8</td>
</tr>
<tr>
<td>28Si</td>
<td>2.1-5.6</td>
</tr>
<tr>
<td>56Fe</td>
<td>1.7-6.0</td>
</tr>
</tbody>
</table>

A. MEWALDT, E. C. STONE, AND R. E. VOGT
California Institute of Technology

Received 1975 July 7

ABSTRACT

Five 3He-rich solar-flare particle events were observed in 1973-1974 with 3He/4He ranging from 0.2 to \sim8 at 2.9-12.7 MeV per nucleon. In all five events the $(Z \geq 6)/^2$H ratio at \sim3 MeV per nucleon was enriched by \sim10 to \sim100 times and the $(Z \geq 6)/^4$He ratio was enriched by \sim3 to \sim30 times, when compared with average solar-particle abundances measured over this 2-year period. It is suggested that the simultaneous enhancement of $Z \geq 6$ and 3He nuclei and the absence of 2H and 3H may be partly due to a preferential acceleration process which depends on the Z^2/A of the nuclei.

Subject headings: abundances, solar — cosmic rays — flares, solar

I. INTRODUCTION

Observations of the isotopic composition of hydrogen and helium nuclei in solar cosmic rays have shown that the energetic particles accelerated in some solar flares are extraordinarily rich in the normally rare isotopes 3He with no corresponding enrichment in 2H or 3H (Garrard et al. 1973; Anglin et al. 1974; Hurford 1974; Serlemitsos and Balasubrahmanyan 1975). While the ratio 3He/4He in the solar wind and prominences is $\sim 4 \times 10^{-4}$ (Geiss and Reeves 1972; Hall 1975), in 3He-rich flares the solar cosmic-ray 3He/4He ratio typically exceeds 0.2, and in some cases is greater than 1. In this Letter we present observations which show that such 3He-rich events are also enriched in $Z \geq 6$ nuclei. The implications of this result are then briefly considered.

II. OBSERVATIONS

The observations were made with the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft. The instrumentation is described elsewhere (Hurford et al. 1974). Nuclei with $Z > 2$ in the energy interval ~ 2 to 6 MeV per nucleon penetrate a 2.4 mg cm$^{-2}$ Mylar window and stop in a single 50-μ solid state detector (D2) which is actively collimated with a geometrical factor of 0.2 cm2sr. These nuclei can be distinguished from the more numerous hydrogen and helium nuclei by an energy loss in D2 which exceeds ~ 10 per nucleon. These daily average fluxes are plotted in Figure 1. Note that large solar-flare particle events may last for several days. This figure also includes an indication of the average quiet-time flux of 1H and 4He, and the 2σ upper limit to the average quiet-time $Z \geq 6$ flux. During this period five 3He-rich events, summarized in Table 2, were identified with this experiment (see, e.g., Hurford 1974; Hurford et al. 1975). There were no other events in which more than three 3He were identified and the 3He/4He ratio was greater than 0.1. Data acquired on the six days during which these five flares occurred are shown in Figure 1 by the filled circles (solar cosmic rays from the 1974 February 20 event were observed for two successive days). Note that because of the more restricted time intervals, the data in Table 2 cannot be compared directly with the daily averages in Figure 1.

The top panel in Figure 1 shows the correlation between the $Z \geq 6$ and 3H fluxes. While the average $(Z \geq 6)/^3$H ratio for this data is $\sim 2 \times 10^{-3}$ (see Table 2),

TABLE 1

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Energy Interval (MeV per nucleon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Li</td>
<td>1.9-2.7</td>
</tr>
<tr>
<td>11B</td>
<td>1.9-3.6</td>
</tr>
<tr>
<td>13C</td>
<td>2.0-4.2</td>
</tr>
<tr>
<td>14N</td>
<td>2.2-4.8</td>
</tr>
<tr>
<td>28Si</td>
<td>2.1-5.6</td>
</tr>
<tr>
<td>56Fe</td>
<td>1.7-6.0</td>
</tr>
</tbody>
</table>
days on which there are 3He-rich flares have ratios that are ~ 10 to ~ 100 times higher. Similarly, the center panel shows that the $(Z \geq 6)/^4$He ratio is enhanced by ~ 3 to ~ 30 times its average value of ~ 0.05. In the bottom panel we see that the 4He/1H ratio tends to be enhanced in such flares as well, although not always as strikingly as the heavy nuclei.

Table 2 and the correlations in Figure 1 show that heavy nuclei are significantly enhanced in all five 4He-rich flares, with respect to both 1H and 3He. There are, however, heavy-nuclei enhancements which do not show corresponding 4He enrichments. For example, there is one day in Figure 1 with fluxes of 1H = 0.09, 4He = 0.008, and $Z \geq 6 = 0.006$, for which we find 3He/4He ≤ 0.08. It is interesting that this event occurred only 5 days after the 3He-rich event of 1974 May 9 and was during a period of iron-rich solar-particle emission identified by Gloeckler et al. (1975).

Additional information on the composition of the enhanced heavy nuclei can be obtained from other analysis modes. In the ~ 3-15 MeV per nucleon energy range Li, Be, and B can be individually identified by two-parameter analysis. Combining such data from our similar instruments on both IMP-7 and IMP-8, we find that less than 0.1 of the $Z > 2$ nuclei observed during the 3He-rich flares were Li, Be, or B. There is independent evidence that in at least two of these events iron nuclei comprised a substantial percentage of the $Z \geq 6$ nuclei (Gloeckler 1975).

III. Discussion

The 3He nuclei observed in these events are presumably the result of nuclear reactions of high-energy (≥ 20 MeV per nucleon) solar particles. However, the enhanced abundances of $Z \geq 6$ nuclei is a feature of 3He-rich flares which would require an augmentation of present theoretical models (Ramaty and Kozlovsky 1974; Rothwell 1974) which rely upon nuclear reaction kinematics to explain the 3He enrichment with respect to 1H.

Enhancements of heavy nuclei have been observed in other events (see, e.g., Mogro-Campero and Simpson 1972; Crawford et al. 1975). However, models designed to explain heavy-element enhancements in those solar flares (Price et al. 1971; Cartwright and Mogro-Campero 1972) have not addressed the question of 3He enrichment.

It is possible that such heavy-nucleus enhancements are the result of a preferential acceleration process which depends on the A/Z of the nuclei, since that ratio determines the magnetic rigidity at a given velocity. It has been noted, however, that such a preferential acceleration would not be expected to favor 3He since its A/Z is between that of 1H and 3H, neither of which is enhanced (Garrard et al. 1973). On the other hand, a preferential acceleration process based on Z/A might produce enhancements in 3He and $Z \geq 6$ nuclei with respect to 1H, 3H, and 4He nuclei. Such a Z/A dependence might result if phenomena involving Coulomb collisions were important.

Dr. J. E. Lupton and W. E. Althouse made significant contributions to the design and development of the Electron/Isotope Spectrometer. This work was supported in part by the National Aeronautics and Space Administration under contract NASA-11066 and grant NGR 05-002-160. One of us (G. J. H.) received support from NSF under GA 43200 during part of this work.
TABLE 2

<table>
<thead>
<tr>
<th>TIME INTERVAL</th>
<th>$^3\text{He}/^4\text{He}$</th>
<th>^4He</th>
<th>$^3\text{He}+^4\text{He}$</th>
<th>^5He</th>
<th>^6He</th>
<th>^7He</th>
<th>^8He</th>
<th>^9He</th>
<th>^{10}He</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 Feb. 15 0000-2100...</td>
<td>0.2</td>
<td>12.7</td>
<td>12.7</td>
<td>2.4-6</td>
<td>2.4-6</td>
<td>2.4-6</td>
<td>2.4-6</td>
<td>2.4-6</td>
<td>2.4-6</td>
</tr>
<tr>
<td>1973 June 29 0400-1400...</td>
<td>0.2</td>
<td>9</td>
<td>212</td>
<td>11</td>
<td>12</td>
<td>0.20 ± 0.005</td>
<td>0.11 ± 0.02</td>
<td>0.27 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1973 Sept. 5 0600-1200...</td>
<td>0.5</td>
<td>12</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>0.20 ± 0.005</td>
<td>0.11 ± 0.02</td>
<td>0.27 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1974 Feb. 21 0000-2100...</td>
<td>0.4</td>
<td>14</td>
<td>694</td>
<td>58</td>
<td>61</td>
<td>0.20 ± 0.005</td>
<td>0.35 ± 0.07</td>
<td>0.08 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>1974 May 9 1300-2100...</td>
<td>0.8</td>
<td>15</td>
<td>27</td>
<td>2</td>
<td>19</td>
<td>0.24 ± 0.07</td>
<td>0.35 ± 0.07</td>
<td>0.08 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Average of other days</td>
<td>0.01</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0.0017 ± 0.0001</td>
<td>0.048 ± 0.001</td>
<td>0.032 ± 0.001</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Gloeckler, G. 1975, private communication.

G. J. HURFORD: California Institute of Technology, Mail Code 354-33, Pasadena, CA 91125.