Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2014 | Supplemental Material
Journal Article Open

The rise and fall of methanotrophy following a deepwater oil-well blowout

Abstract

The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico.

Additional Information

© 2014 Macmillan Publishers Limited. Received 14 January 2014; Accepted 04 April 2014; Published online 11 May 2014. We thank C. Mann, A. Vossmeyer, J. Slaughter, C. Comerford, L. Potter, V. Samarkin and S. Cummings for assistance at sea and/or in the laboratory; M. Chistoserdova for providing advice on constructing qPCR primers and for providing pure cultures of methanotrophs; I. MacDonald, T. Treude and M. Chistoserdova provided constructive feedback on a previous version of this manuscript. Finally we thank the science parties and ship's crews of RV Pelican, RV Nancy Foster, RVWalton Smith, RV Oceanus, RV Cape Hatteras, MY Arctic Sunrise and RV Atlantis. This work was supported by the NOAA Award NA07AR4300464 to the National Institute for Undersea Science and Technology (V.L.A., A.R.D. and S.B.J.), the Department of Energy (Gulf of Mexico Gas Hydrate Research Consortium, 07-11-036 to J.P.C.), the National Science Foundation (OCE-1043225 to S.B.J., OCE-0926699 to T.A.V. and OCE-1042934 to A.M.S.), the Gulf of Mexico Research Initiative (ECOGIG (S.B.J., V.L.A., A.B., J.P.C., A.R.D, J.P.M., C.D.M. and T.A.V.) and DEEP-C (J.P.C.)) and the Northern Gulf Institute (A.M.S.). Greenpeace and Texas A&M at Galveston facilitated the Arctic Sunrise expedition. This is ECOGIG contribution #192 and the data fall under GRIIDC accession number (R1.x132.134:0057).

Attached Files

Supplemental Material - ngeo2156-s1.pdf

Supplemental Material - ngeo2156-s2.xlsx

Files

ngeo2156-s1.pdf
Files (2.6 MB)
Name Size Download all
md5:095c875e43335cbeaec1605fb5ae6c91
2.6 MB Preview Download
md5:46d18d67c51dc26d1647057182f95742
58.5 kB Download

Additional details

Created:
August 22, 2023
Modified:
October 26, 2023