Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0–0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 μb$^{-1}$. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from v_2 to v_6, are extracted as a function of particle transverse momentum. At higher transverse momentum, the v_2 harmonic becomes significantly smaller than the higher-order v_n ($n \geq 3$). The p_T-averaged v_2 and v_3 are found to be equal within 2%, while higher-order v_n decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. A comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.

KEYWORDS: Relativistic heavy ion physics, Heavy Ions, harmonic flow

ArXiv ePrint: 1312.1845
1 Introduction

The azimuthal anisotropy of emitted charged particles is an important feature of the hot, dense medium produced in heavy-ion collisions. One of the main goals of studying the azimuthal anisotropies is to understand the collective properties of the medium and extract its transport coefficients, particularly the shear viscosity over entropy density ratio, η/s, using hydrodynamic models [1]. Earlier observations of strong azimuthal anisotropies in collisions of gold nuclei at nucleon-nucleon center-of-mass energies ($\sqrt{s_{NN}}$) up to 200 GeV at the Relativistic Heavy-Ion Collider (RHIC) indicated that a strongly coupled quark-gluon plasma is produced, which behaves as a nearly perfect liquid with a close-to-zero η/s value [2–7]. The azimuthal anisotropies have also been extensively measured at the Large Hadron Collider (LHC) over a wide kinematic range in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [8–17].

In a non-central heavy-ion collision, the overlap region of the two colliding nuclei has a lenticular shape, and the interacting nucleons in this region are known as “participants.” The “participant plane” is defined by the beam direction and the short axis of the participating nucleon distribution. Because of fluctuations that arise from the finite number of nucleons, the impact parameter vector typically does not coincide with the short axis of this lenticular region. Strong rescattering of the partons in the initial state may lead to local thermal equilibrium and the build-up of anisotropic pressure gradients, which drive a collective anisotropic expansion. The expansion is fastest along the largest pressure gradient, i.e.,
along the short axis of the lenticular region. Therefore, the eccentricity of initial-state collision geometry results in an anisotropic azimuthal distribution of the final-state hadrons. In general, the anisotropy can be characterized by the Fourier harmonic coefficient \((v_n)\) in the azimuthal angle \((\phi)\) distribution of the hadron yield, \(dN/d\phi \propto 1 + 2 \sum_n v_n \cos[n(\phi - \Psi_n)]\), where \(\Psi_n\) is the event-by-event azimuthal angle of the participant plane. As the participant plane is not a measurable quantity experimentally, it is often approximated by the “event plane”, defined as the direction of maximum final-state particle density. The second-order Fourier component \((v_2)\) is known as the “elliptic flow”, and its event plane angle \(\Psi_2\) approximately corresponds to the short axis direction of the lenticular region.

Due to event-by-event fluctuations, higher-order deformations or eccentricities of the initial geometry can also be induced, which lead to higher-order Fourier harmonics \((v_n, n \geq 3)\) in the final state with respect to their corresponding event plane angles, \(\Psi_n\) [18–24]. For a given initial-state eccentricity, the finite \(\eta/s\) value of the system tends to reduce the azimuthal anisotropy observed for final-state particles. The higher-order Fourier harmonics are expected to be particularly sensitive to the shear viscosity of the expanding medium.

Precise extraction of \(\eta/s\) from the anisotropy data is crucial for investigating the transport properties of the hot and dense medium created in heavy-ion collisions in detail [1]. This effort is, however, complicated by large uncertainties in our understanding of the initial-state conditions of heavy-ion collisions, especially in terms of event-by-event fluctuations. Different initial-state models predict different values of eccentricity and its fluctuations, leading to large uncertainties on the extracted \(\eta/s\) values. In order to better constrain the initial-state condition, it was suggested [25] that in ultra-central heavy-ion collisions (e.g., top 1% most central collisions), the initial collision geometry is predominantly generated by fluctuations such that various orders of eccentricities predicted by different models tend to converge. Here, collision centrality is defined as the fraction of the total inelastic PbPb cross section, with 0% denoting the most central collisions. Therefore, studies of azimuthal anisotropy in ultra-central heavy-ion collisions can help to reduce the systematic uncertainties of initial-state modeling in extracting the \(\eta/s\) value of the system, although quantitative comparison to theoretical calculations is beyond the scope of this paper.

Furthermore, since the event plane angle, \(\Psi_n\), is determined by the final-state particles, selecting particles from different ranges of transverse momentum \((p_T)\) may lead to different estimates of event plane angles. Also due to the effect of initial-state fluctuations, it was recently predicted by hydrodynamic models that a \(p_T\)-dependence of the event plane angle will be induced, which could be one of the sources responsible for the breakdown of factorization in extracting \(v_n\) harmonics from dihadron correlations [26, 27]. As mentioned already, the ultra-central heavy-ion events are dominated by the initial-state eccentricity fluctuations. Thus, they provide an ideal testing ground for the effect of a \(p_T\)-dependent event plane angle.

This paper presents the measurement of azimuthal anisotropy harmonics, from \(v_2\) to \(v_6\), extracted using long-range (large \(|\Delta\eta|\)) dihadron correlations as a function of \(p_T\) from 0.3 to 8.0 GeV/c in the top 0.2% most central PbPb collisions at a center-of-mass energy per nucleon pair \((\sqrt{s_{NN}})\) of 2.76 TeV. Here, \(\Delta\eta\) is the difference in pseudorapidity \(\eta\)
\[= - \ln[\tan(\theta/2)] \] between the two particles, where the polar angle \(\theta \) is defined relative to the beam axis. The \(p_T \)-averaged \(v_n \) values for \(0.3 < p_T < 3.0 \text{ GeV}/c \) are also derived up to \(n = 7 \).

Factorization of the Fourier coefficients from dihadron correlations into a product of single-particle azimuthal anisotropies is investigated. This study of factorization is quantitatively compared to hydrodynamic predictions with different models of initial-state fluctuations and \(\eta/s \) values for two centrality classes.

2 Experimental setup

The data used in this analysis correspond to an integrated luminosity of 120 \(\mu \text{b}^{-1} \) and were recorded with the CMS detector during the 2011 PbPb LHC running period at \(\sqrt{\mathcal{S}_{NN}} = 2.76 \text{ TeV} \). A detailed description of the CMS detector can be found in ref. [28]. The CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the \(x \) axis pointing to the centre of the LHC, the \(y \) axis pointing up (perpendicular to the LHC plane), and the \(z \) axis along the anticlockwise-beam direction. The polar angle \(\theta \) is measured from the positive \(z \) axis and the azimuthal angle (\(\phi \)) is measured in the \(x-y \) plane.

The central feature of the apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip trackers, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter. In PbPb collisions, trajectories of charged particles with \(p_T > 0.2 \text{ GeV}/c \) are reconstructed in the tracker covering the pseudorapidity region \(|\eta| < 2.5 \), with a track momentum resolution of about 1% at \(p_T = 100 \text{ GeV}/c \). In addition, CMS has extensive forward calorimetry, in particular two steel/quartz-fiber Cherenkov hadron forward (HF) calorimeters, which cover the pseudorapidity range \(2.9 < |\eta| < 5.2 \). The HF calorimeters are segmented into towers, each of which is a two-dimensional cell with a granularity of 0.5 units in \(\eta \) and 0.349 rad in \(\phi \). The zero-degree calorimeters (ZDC) are tungsten/quartz Cherenkov calorimeters located at \(\pm 140 \text{ mm} \) from the interaction point [29]. They are designed to measure the energy of photons and spectator neutrons emitted from heavy ion collisions. Each ZDC calorimeter has electromagnetic and hadronic sections with an active area of \(\pm 40 \text{ mm} \) in \(x \) and \(\pm 50 \text{ mm} \) in \(y \). When the LHC beam crossing angle is 0 degree, this corresponds to an \(\eta \) acceptance that starts at \(\eta = 8.3 \) and is 100% by \(\eta = 8.9 \) for \(\sqrt{\mathcal{S}_{NN}} = 2.76 \text{ TeV} \). For one neutron, the ZDCs have an energy resolution of 20%. Since each neutron interacts independently, the resolution improves as the square root of the number of neutrons.

3 Selections of events and tracks

Minimum bias PbPb events were triggered by coincident signals from both ends of the detector in either the beam scintillator counters (BSC) at \(3.23 < |\eta| < 4.65 \) or in the HF calorimeters. Events due to noise, cosmic rays, out-of-time triggers, and beam backgrounds were suppressed by requiring a coincidence of the minimum bias trigger with bunches colliding in the interaction region. The trigger has an efficiency of (97±3)% for hadronic inelastic PbPb collisions. In total, about 2% of all minimum bias PbPb events were recorded.
To maximize the event sample for very central PbPb collisions, a dedicated online trigger on the 0–0.2% ultra-central events was implemented by simultaneously requiring the HF transverse energy (\(E_T\)) sum to be greater than 3260 GeV and the pixel cluster multiplicity to be greater than 51400 (which approximately corresponds to 9500 charged particles over 5 units of pseudorapidity). The selected events correspond to the 0.2% most central collisions of the total PbPb inelastic cross section. The correlation between the HF \(E_T\) sum and pixel cluster multiplicity for minimum bias PbPb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV is shown in figure 1. The dashed lines indicate the selections used for the 0–0.2% centrality range. This fractional cross section is determined relative to the standard 0–2.5% centrality selection in PbPb collisions at CMS by selecting on the total energy deposited in the HF calorimeters [8]. The inefficiencies of the minimum bias trigger and event selection for very peripheral events are properly accounted. In a similar way, the 0–0.02% centrality range is also determined by requiring the HF \(E_T\) sum greater than 3393 GeV and pixel cluster multiplicity greater than 53450 (a subset of 0–0.2% ultra-central events). With this trigger, the ultra-central PbPb event sample is enhanced by a factor of about 40 compared to the minimum bias sample. For purposes of systematic comparisons, other PbPb centrality ranges, corresponding to 40–50%, 0–10%, 2.5–5.0%, 0–2.5% and 0–1%, are studied based on the HF \(E_T\) sum selection using the minimum bias sample. As a cross-check, the 0–1% centrality range is also studied using combined HF \(E_T\) sum and pixel cluster multiplicity, similar to the centrality selection of 0–0.2% ultra-central events.

Centrality selections of ultra-central events are investigated in Monte Carlo (MC) simulations using the AMPT [30] heavy-ion event generator, which provides a realistic modeling
Table 1. The mean and RMS of N_{Part} distributions for selected events in each centrality bin in AMPT simulations.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>$\langle N_{\text{Part}} \rangle$ (Mean)</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.02%</td>
<td>406.2</td>
<td>3.6</td>
</tr>
<tr>
<td>0–0.2%</td>
<td>404.0</td>
<td>6.9</td>
</tr>
<tr>
<td>0–1.0%</td>
<td>401.1</td>
<td>8.3</td>
</tr>
<tr>
<td>0–2.5%</td>
<td>395.8</td>
<td>11.3</td>
</tr>
<tr>
<td>2.5–5.0%</td>
<td>381.3</td>
<td>19.5</td>
</tr>
</tbody>
</table>

of the initial-state fluctuations of participating nucleons. The generated particles are propagated through the full GEANT4 [31] simulation of the CMS detector. The equivalent centrality requirements on the HF E_T sum and pixel cluster multiplicity are applied in order to evaluate the selected ranges of impact parameter and number of participating nucleons, N_{Part}, for various centrality ranges. A summary of the mean and RMS values of N_{Part} distributions for selected events of each very central PbPb centrality range can be found in Table 1. As one can see, there is only a moderate increase of average N_{Part} value for events that are more central than 0–1% centrality, although the RMS value still decreases significantly for more central selections.

Standard offline event selections [8] are also applied by requiring energy deposits in at least three towers in each of the HF calorimeters, with at least 3 GeV of energy in each tower, and the presence of a reconstructed primary vertex containing at least two tracks. The reconstructed primary vertex is required to be located within ± 15 cm of the average interaction region along the beam axis and within a radius of 0.02 cm in the transverse plane. These criteria further reduce the background from single-beam interactions (e.g., beam-gas and beam-halo), cosmic muons, and ultra peripheral collisions that lead to the electromagnetic breakup of one or both Pb nuclei [32]. These criteria are most relevant for selecting very peripheral PbPb events but have little effect ($< 0.01\%$) on the events studied in this paper.

During the 2011 PbPb run, there was a probability of about 10^{-3} to have two collisions recorded in a single beam crossing (pileup events). This probability is even higher for ultra-central triggered events, which sample the tails of the HF E_T sum and pixel cluster multiplicity distributions. If a large HF E_T sum or pixel cluster multiplicity event is due to two mid-central collisions instead of a single ultra-central collision, more spectator neutrons will be released, resulting in a large signal in the ZDC. To select cleaner single-collision PbPb events, the correlation of energy sum signals between ZDC and HF detectors is studied. Events with large signals in both ZDC and HF are identified as pileup events (about 0.1% of all events), and thus rejected.

The reconstruction of the primary event vertex and the trajectories of charged particles in PbPb collisions is based on signals in the silicon pixel and strip detectors and described in detail in ref. [8]. From studies based on PbPb events simulated using HYDJET [33] (version 1.8), the combined geometrical acceptance and reconstruction efficiency of the primary tracks is about 70% at $p_T \sim 1$ GeV/c and $|\eta| < 1.0$ for the 0–0.2% central PbPb events but
drops to about 50% for \(p_T \sim 0.3 \text{ GeV}/c \). The fraction of misidentified tracks is kept at the level of < 5% over most of the \(p_T \) (\(p_T > 0.5 \text{ GeV}/c \)) and \(\eta \) (\(|\eta| < 1.6 \)) ranges. It increases up to about 20% for very low \(p_T \) (\(p_T < 0.5 \text{ GeV}/c \)) particles in the forward (\(|\eta| \approx 2 \)) region.

4 Analysis procedure

Following the same procedure of dihadron correlation analysis as in refs. [9, 34–37], the signal and background distributions of particle pairs are first constructed. Any charged particle associated with the primary vertex and in the range \(|\eta| < 2.4 \) can be used as a “trigger” particle. A variety of bins of trigger particle transverse momentum, denoted by \(p_T^{\text{trig}} \), are considered. In a single event, there can be more than one trigger particle and their total multiplicity is denoted by \(N_{\text{trig}} \). Within each event, every trigger particle is then paired with all of the remaining particles (again within \(|\eta| < 2.4 \)). Just as for the trigger particles, these associated particles are also binned in transverse momentum (\(p_T^{\text{assoc}} \)).

The signal distribution, \(S(\Delta \eta, \Delta \phi) \), is the per-trigger-particle yield of pairs found in the same event,

\[
S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d\Delta \eta d\Delta \phi},
\]

where \(N_{\text{same}} \) is the number of such pairs within a \((\Delta \eta, \Delta \phi) \) bin, and \(\Delta \phi \) and \(\Delta \eta \) are the differences in azimuthal angle \(\phi \) and pseudorapidity \(\eta \) between the two particles. The background distribution, \(B(\Delta \eta, \Delta \phi) \), is found using a mixed-event technique, wherein trigger particles from one event are combined (mixed) with all of the associated particles from a different event. In the analysis, associated particles from 10 randomly chosen events with a small \(z_{\text{vtx}} \) range (\(\pm 0.5 \text{ cm} \)) near the \(z_{\text{vtx}} \) of the event with trigger particles are used. The result is given by

\[
B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{mix}}}{d\Delta \eta d\Delta \phi},
\]

where \(N_{\text{mix}} \) denotes the number of mixed-event pairs. This background distribution represents the expected correlation function assuming independent particle emission, but taking into account effects of the finite acceptance.

The two-dimensional (2D) differential yield of associated particles per trigger particle is given by

\[
\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0, 0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)},
\]

where \(N_{\text{pair}} \) is the total number of hadron pairs. The value of the background distribution at \(\Delta \eta = 0 \) and \(\Delta \phi = 0 \), \(B(0, 0) \), represents the mixed-event associated yield for both particles of the pair going in approximately the same direction and thus having full pair acceptance (with a bin width of 0.3 in \(\Delta \eta \) and \(\pi/16 \) in \(\Delta \phi \)). Therefore, the ratio \(B(0, 0)/B(\Delta \eta, \Delta \phi) \) accounts for the pair-acceptance effects. The correlation function described in eq. (4.3) is calculated in 0.5 cm wide bins of the \(z_{\text{vtx}} \) along the beam direction and then averaged over the range \(|z_{\text{vtx}}| < 15 \text{ cm} \).

To extract the azimuthal anisotropy harmonics, \(v_n \), the one-dimensional (1D) azimuthal dihadron correlation function as a function of \(\Delta \phi \), averaged over \(|\Delta \eta| > 2 \) (to
avoid the short-range correlations from jets and resonance decays), can be decomposed into a Fourier series given by

\[
\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left\{ 1 + \sum_{n=1}^{\infty} 2V_{n\Delta} \cos(n\Delta \phi) \right\}.
\]

(4.4)

Here, \(V_{n\Delta} \) are the Fourier coefficients from dihadron correlations, and \(N_{\text{assoc}} \) represents the total number of hadron pairs per trigger particle for a given \(|\Delta \eta|\) range and \((p_{T}^{\text{trig}}, p_{T}^{\text{assoc}})\) bin.

In refs. \([9, 35-37]\), a fit to the azimuthal correlation function by a Fourier series was used to extract the \(V_{n\Delta} \) coefficients. In this paper, a slightly different approach is applied. The \(V_{n\Delta} \) values are directly calculated as the average value of \(\cos(n\Delta \phi) \) of all particle pairs for \(|\Delta \eta| > 2\) (to avoid the short-range correlations from jets and resonance decays):

\[
V_{n\Delta} = \langle \langle \cos(n\Delta \phi) \rangle \rangle_s - \langle \langle \cos(n\Delta \phi) \rangle \rangle_b.
\]

(4.5)

Here, \(\langle \langle \rangle \rangle \) denotes averaging over all particles in each event and over all the events. The subscripts \(S \) and \(B \) correspond to the average over signal and background pairs. With an ideal detector, \(\langle \langle \cos(n\Delta \phi) \rangle \rangle_s \) equals to \(V_{n\Delta} \) by definition. The \(\langle \langle \cos(n\Delta \phi) \rangle \rangle_b \) term is subtracted in order to remove the effects of detector non-uniformity. The advantage of the present approach is that the extracted Fourier harmonics will not be affected by the finite bin widths of the histogram in \(\Delta \eta \) and \(\Delta \phi \). This is particularly important for very-high-order harmonics (\(V_{n\Delta} \) is extracted up to \(n = 7 \) in this analysis) that are sensitive to the finer variations of the correlation functions.

It was thought \([9, 14, 16]\) that, for correlations purely driven by the hydrodynamic flow, \(V_{n\Delta} \) can be factorized into a product of single-particle Fourier harmonics, \(v_n(p_{T}^{\text{trig}}) \), for trigger particles and \(v_n(p_{T}^{\text{assoc}}) \), for associated particles:

\[
V_{n\Delta} = v_n(p_{T}^{\text{trig}}) \times v_n(p_{T}^{\text{assoc}}).
\]

(4.6)

The single-particle azimuthal anisotropy harmonics can then be extracted as a function of \(p_{T} \) as follows:

\[
v_n(p_{T}) = \frac{V_{n\Delta}(p_{T}, p_{T}^{\text{ref}})}{\sqrt{V_{n\Delta}(p_{T}^{\text{ref}}, p_{T}^{\text{ref}})}},
\]

(4.7)

where a fixed \(p_{T}^{\text{ref}} \) range is chosen for the “reference particles”. However, as pointed out in refs. \([26, 27]\), due to fluctuating initial-state geometry, the factorization of \(V_{n\Delta} \) could also break down for flow-only correlations. Direct tests of the factorization relation for \(V_{n\Delta} \) in eq. (4.6) are carried out in this paper, as will be discussed in section 5.3. These tests may provide new insights into the initial-state density fluctuations of the expanding hot medium.

When calculating \(\langle \langle \cos(n\Delta \phi) \rangle \rangle \), each pair is weighted by the product of correction factors for the two particles. These factors are the inverse of an efficiency that is a function of each particle’s pseudorapidity and transverse momentum,

\[
\varepsilon_{\text{trk}}(\eta, p_{T}) = \frac{A(\eta, p_{T})E(\eta, p_{T})}{1 - F(\eta, p_{T})},
\]

(4.8)
Table 2. The factor, f, for estimating the v_n values of misidentified tracks, as well as its uncertainty, for various orders of Fourier harmonics.

<table>
<thead>
<tr>
<th>n</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.8 ± 0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.8 ± 0.6</td>
</tr>
<tr>
<td>>6</td>
<td>0.8 ± 0.6</td>
</tr>
</tbody>
</table>

The systematic uncertainties due to misidentified tracks, which are most important at low p_T where the misidentified track rate is high, are reflected in the uncertainty of the f factor in table 2. At low p_T, the systematic uncertainty from this source is 1.4% for v_2 and 5–8% for v_3 to v_6. By varying the z-coordinate of vertex binning in the mixed-event background, the results of the v_n values vary by at most 2–8% for v_2 to v_6, respectively. Systematic uncertainties due to the tracking efficiency correction are estimated to be about 0.5%. By varying the requirements on the ZDC sum energy used for pileup rejection, the results are stable within less than 1%. The various sources of systematic uncertainties are added in quadrature to obtain the final uncertainties shown as the shaded color bands for results in section 5.
are extracted from long-range (|Δη| > 2) dihadron correlations using eq. (4.5), and by assuming factorization in eq. (4.7). The p_T^{ref} range is chosen to be 1–3 GeV/c. The error bars correspond to statistical uncertainties, while the shaded color bands indicate the systematic uncertainties. As the collisions are extremely central, the eccentricities, ϵ_n, are mostly driven by event-by-event participant fluctuations and are of similar sizes within a few % for all orders. Consequently, the magnitudes of v_2 and v_3 are observed to be comparable (within 2% averaged over p_T as will be shown in figure 4), which is not the case for non-central collisions. Different v_n harmonics have very different dependencies on p_T. At low p_T ($p_T < 1$ GeV/c), the v_2 harmonic has the biggest magnitude compared to other higher-order harmonics. It becomes smaller than v_3 at $p_T \approx 1$ GeV/c, and even smaller than v_5 for $p_T > 3$ GeV/c. This intriguing p_T dependence can be compared quantitatively to hydrodynamics calculations with fluctuating initial conditions, and it provides important constraints on theoretical models. For a given value of p_T, the magnitude of v_n for $n \geq 3$ decreases monotonically with n, as will be shown later.

If a system created in an ultra-relativistic heavy-ion collision behaves according to ideal hydrodynamics, the Fourier harmonics, v_n, are expected to follow a p_T dependence that has a power-law, p_T^n, functional form in the low-p_T region [38, 39]. Hence, the scaling ratio, $v_n^{1/n}/v_2^{1/2}$, will be largely independent of p_T, as was seen by the ATLAS collaboration for not very central events [16]. In figure 2 (right), the $v_n^{1/n}/v_2^{1/2}$ ratios are shown as a function of p_T for $n = 3$–6 obtained in 0–0.2% ultra-central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The obtained ratio shows an increase as a function of p_T. This trend is consistent to what was observed by the ATLAS collaboration for very central events (e.g., 0–1% centrality) [16].

Other choices of p_T^{ref} ranges are also studied in order to examine the assumption of factorization made for extracting v_n. As an example, figure 3 shows the comparison of v_n as a function of p_T for $1 < p_T^{\text{ref}} < 3$ GeV/c and $0.5 < p_T^{\text{ref}} < 1.0$ GeV/c. The v_n values extracted with two choices of p_T^{ref} ranges are consistent within statistical uncertainties for $n > 2$ over the entire p_T range. However, a significant discrepancy is observed for v_2 at
Figure 3. Comparison of $v_n(p_T)$ values derived from two different p_T^{ref} ranges: 0.5–1.0 GeV/c (open square markers) and 1–3 GeV/c (solid circles), in 0–0.2% central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Error bars denote the statistical uncertainties.

Figure 4. Comparison of p_T-averaged (0.3–3.0 GeV/c) v_n as a function of n in five centrality ranges (2.5–5.0%, 0–2.5%, 0–1%, 0–0.2% and 0–0.02%) for PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The p_T^{ref} of 1–3 GeV/c is used. Error bars denote the statistical uncertainties, while the shaded color boxes correspond to the systematic uncertainties.

higher p_T, e.g., up to about 40% for $p_T \sim 4$ GeV/c, while the low p_T region shows a good agreement between the two p_T^{ref} ranges. A detailed study of factorization breakdown for eq. (4.6) as well as its physical implication is presented in section 5.3, which is in agreement with the discrepancy observed in figure 3.

The p_T-averaged v_n values (with p_T^{ref} of 1–3 GeV/c) weighted by the efficiency-corrected charged-hadron yield, over the p_T range from 0.3 to 3.0 GeV/c, are shown in figure 4 as a
The 2D (left) and 1D $\Delta \phi$ (right) dihadron correlation functions for $1 < p_{T}^{\text{trig}} < 3$ GeV/c and $1 < p_{T}^{\text{assoc}} < 3$ GeV/c in 0–0.2% central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The broken lines on the right panel show various orders of $V_{n\Delta}$ components expected from the extracted v_{n} values in section 5.1, while the solid line is the sum of all $V_{n\Delta}$ components.

function of n up to $n = 7$ (the v_{7} value as a function of p_{T} is not presented in figure 2 due to limited statistical precision). The 0–0.2% ultra-central events are compared to several other very central PbPb centrality ranges including 2.5–5.0%, 0–2.5%, 0–1% and 0–0.02%. As mentioned earlier, results for 0–1% centrality are compared with both the HF E_{T} sum selection (not shown) and HF E_{T} sum plus pixel cluster multiplicity (NPixel) selection as a systematic check. The two methods of centrality selection yield consistent v_{n} results within statistical uncertainties. Therefore, only results from HF E_{T} sum plus pixel cluster multiplicity centrality selection are shown in figure 4. Beyond the 2.5–5.0% centrality range, the v_{n} values are still decreasing toward more central collisions, especially for v_{2}. Going from 0–0.2% to 0–0.02% centrality, v_{n} shows almost no change, indicating events do not become significantly more central by requiring larger HF E_{T} sum and pixel cluster multiplicity, especially in terms of eccentricities. This is consistent with the studies using the AMPT model. The v_{n} values remain finite up to $n = 6$ within the statistical precision of our data. Beyond $n = 6$, v_{n} becomes consistent with zero. The magnitude of v_{2} and v_{3} are very similar, while the v_{4} become progressively smaller for $n \geq 4$. This is qualitatively in agreement with expectations from hydrodynamic calculations [38].

5.2 Correlation functions

Dihadron correlation functions are also constructed using eq. (4.3) in order to check the consistency of extracting $V_{n\Delta}$ using eq. (4.5) with the fit method to the correlation function by a Fourier series in eq. (4.4). Figure 5 (left) shows the dihadron correlation functions for $1 < p_{T}^{\text{trig}} < 3$ GeV/c and $1 < p_{T}^{\text{assoc}} < 3$ GeV/c in 0–0.2% central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. As shown in figure 2, the v_{3}, v_{4}, and v_{5} values become comparable or even bigger than v_{2} at $1 < p_{T} < 3$ GeV/c. In figure 5, this can be seen in the dihadron correlation function on the away side ($\Delta \phi \sim \pi$), where a significant local minimum (at $\Delta \phi \sim \pi$ along $\Delta \eta$) is present. On the near side ($\Delta \phi \sim 0$) of the correlation function, a long-range
structure extending over the entire \(\Delta \eta \) region is present. The observed features of the correlation function are similar to what was seen previously at CMS in other centrality ranges of PbPb collisions [9, 35], although the dip on the away side is not seen in non-central PbPb collisions. This may indicate that the contribution of higher-order Fourier components (e.g., \(v_3 \)) is more relevant for very central events.

Averaging over \(\Delta \eta \), the 1D \(\Delta \phi \) dihadron correlation function, for \(1 < p_{\text{trig}}^T < 3 \text{ GeV}/c \) and \(1 < p_{\text{assoc}}^T < 3 \text{ GeV}/c \) in 0–0.2% central PbPb collisions \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \), is shown in figure 5 (right). The range of \(|\Delta \eta| < 2 \) is excluded from the average to avoid non-flow effects from other source of correlations, such as jet fragmentation. The dashed curves represent different \(V_n \Delta \) components and are constructed from the \(v_n \) values extracted in section 5.1 by assuming factorization. The solid curve is the sum of all \(V_n \Delta \) components, which is in good agreement with the measured dihadron correlation function.

5.3 Factorization breakdown and \(p_T \) dependence of event plane angle

The breakdown of factorization observed in figure 3 could be caused by non-flow effects that contribute to the dihadron correlation function at large \(\Delta \eta \), e.g., back-to-back jet correlations. However, in hydrodynamics, it has been recently suggested that one possible source of factorization breakdown is related to the initial-state eccentricity fluctuations [26, 27]. The event plane angle, \(\Psi_n \), as determined by final-state particles, could be dependent on the particle \(p_T \) event-by-event, instead of a unique angle for the entire event (which is the case for a non-fluctuating smooth initial condition). Because of this effect, the factorization of \(V_n \Delta \) extracted from dihadron correlations could be broken, even if hydrodynamic flow is the only source of correlations. The breakdown effect can be explored more quantitatively in the following analysis.

A ratio for testing factorization defined as

\[
 r_n = \frac{V_{n \Delta}(p_{\text{trig}}^T, p_{\text{assoc}}^T)}{\sqrt{V_{n \Delta}(p_{\text{trig}}^T, p_{\text{trig}}^T)V_{n \Delta}(p_{\text{assoc}}^T, p_{\text{assoc}}^T)}}
\]

(5.1)

has been proposed as a direct measurement of \(p_T \)-dependent event plane angle fluctuations [27]. Here, the \(V_{n \Delta} \) coefficients are calculated by pairing particles within the same \(p_T \) interval (denominator) or from different \(p_T \) intervals (numerator). If \(V_{n \Delta} \) factorizes, this ratio will be equal to unity. With the presence of a \(p_T \)-dependent event plane angle, it has been shown that the ratio, \(r_n \), is equivalent to

\[
 r_n = \frac{\langle v_n(p_{\text{trig}}^T)v_n(p_{\text{assoc}}^T)\cos[n(\Psi_n(p_{\text{trig}}^T) - \Psi_n(p_{\text{assoc}}^T))\rangle]}{\sqrt{\langle v_n^2(p_{\text{trig}}^T) \rangle \langle v_n^2(p_{\text{assoc}}^T) \rangle}}
\]

(5.2)

where \(\Psi_n(p_{\text{trig}}^T) \) and \(\Psi_n(p_{\text{assoc}}^T) \) represent the event plane angles determined for trigger and associated particles from two \(p_T \) intervals [26, 27]. One can see from eq. (5.2) that \(r_n \) is in general less than unity if event plane angle \(\Psi_n \) depends on \(p_T \).

In this paper, the proposed factorization ratio, \(r_n \), is studied as a function of \(p_{\text{trig}}^T \) and \(p_{\text{assoc}}^T \) for different centrality classes in PbPb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \). Figures 6–8
show the r_n values for $n = 2–4$, respectively, for four p_T^{trig} bins (of increasing p_T from left to right panels) as a function of the difference between p_T^{trig} and p_T^{assoc}. The average values of p_T^{trig} and p_T^{assoc} in each bin are used for calculating the difference. The measurement is performed in four different centrality classes, i.e., 40–50%, 0–10%, 0–5%, and ultra-central 0–0.2% centralities (from bottom to top panels). By construction, the r_n value for the highest analyzed p_T^{assoc} range, where trigger and associated particles are selected from the same p_T interval, is equal to one. Only results for $p_T^{\text{trig}} \geq p_T^{\text{assoc}}$ are presented. The error bars correspond to statistical uncertainties, while systematic uncertainties are negligible for the r_n ratios, and thus are not presented in the figures.

For the second Fourier harmonics (figure 6), the r_2 ratio significantly deviates from one as the collisions become more central. For any centrality, the effect gets larger with an increase of the difference between p_T^{trig} and p_T^{assoc} values. To explicitly emphasize this observation, $p_T^{\text{trig}} - p_T^{\text{assoc}}$, instead of p_T^{assoc}, is used as the horizontal axis of figures 6–8. The deviation reaches up to 20% for the lowest p_T^{assoc} bins in the ultra-central 0–0.2% events for $2.5 < p_T^{\text{trig}} < 3.0$. This is expected as event-by-event initial-state geometry fluctuations play a more dominant role as the collisions become more central. Calculations from viscous hydrodynamics in ref. [27] are compared to data for 0–10% and 40–50% centralities with MC Glauber initial condition model [40, 41] and $\eta/s = 0.08$ (dashed lines), and MC-KLN initial condition model [42] and $\eta/s = 0.2$ (solid lines). The qualitative trend of hydrodynamic calculations is the same as what is observed in the data. The observed r_2 values are found to be more consistent with the MC-KLN model and an η/s value of 0.2. However, future theoretical studies, particularly with comparison to the precision ultra-central collisions data presented in this paper, are still needed to achieve better constraints on the initial-state models and the η/s value of the system.

For higher-order harmonics ($n = 3, 4$), shown in figure 7 and figure 8, the factorization is fulfilled over a wider range of $p_T^{\text{trig}}, p_T^{\text{assoc}}$, and centrality ranges than for v_2. The factorization only breaks by about 5% at large values of $p_T^{\text{trig}} - p_T^{\text{assoc}}$, i.e., greater than 1 GeV/c. Due to large statistical uncertainties, r_5 is not included in this result. Again, the qualitative trend of the data is described by hydrodynamics for 0–10% centrality, while no conclusion can be drawn for 40–50% centrality based on the present statistical precision of the data.

6 Conclusion

In summary, azimuthal dihadron correlations were studied for PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV using the CMS detector at the LHC. Assuming factorization, these two-particle correlations were used to extract the single-particle anisotropy harmonics, v_n, as a function of p_T from 0.3 to 8.0 GeV/c. The data set includes a sample of ultra-central (0–0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. In the context of hydrodynamic models, anisotropies in such ultra-central heavy-ion collisions arise predominantly from initial-state eccentricity fluctuations. The magnitude of the flow harmonics decreases from v_3 to v_6. As a function of p_T, these four harmonics all
Factorization ratio, r_2, as a function of $p_T^{\text{trig}} - p_T^{\text{assoc}}$ in bins of p_T^{trig} for four centrality ranges of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The lines show the calculations from viscous hydrodynamics in ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition model and $\eta/s = 0.08$ (dashed lines), and MC-KLN initial condition model and $\eta/s = 0.2$ (solid lines). Each row represents a different centrality range, while each column corresponds to a different p_T^{trig} range. The error bars correspond to statistical uncertainties, while systematic uncertainties are negligible for the r_n ratios, and thus are not presented.

Display a common maximum around $p_T = 3.5$ GeV/c. Although the v_2 harmonic exceeds the others at low p_T, it falls below v_3 around $p_T = 1$ GeV/c and reaches its maximum around $p_T = 2.5$ GeV/c.

The p_T-averaged v_n for $0.3 < p_T < 3.0$ GeV/c were also derived up to $n = 7$, and results for 0–0.2% collisions were compared to those for other slightly less central ranges. Between the 2.5–5.0% and 0–0.2% centrality ranges, all v_n harmonics decrease. The decrease is largest for v_2, reaching up to 45%. Only small variations of v_n are observed for events that are even more central than 0–0.2% (e.g., 0–0.02%). For the most central collisions, the p_T-averaged v_2 and v_3 are found to be comparable within 2%, while higher-order v_n decrease as n increases.

Detailed studies indicate that factorization of dihadron correlations into single-particle azimuthal anisotropies does not hold precisely. The observed breakdown of factorization increases up to about 20% as the p_T difference between the two particles becomes larger in ultra-central PbPb events. This behavior is expected in hydrodynamic models, in which a p_T-dependent event plane plane angle is induced by initial-state fluctuations. The factorization
Figure 7. Factorization ratio, r_3, as a function of $p_T^{\text{trig}} - p_T^{\text{assoc}}$ in bins of p_T^{trig} for four centrality ranges of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The lines show the calculations from viscous hydrodynamics in ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition model and $\eta/s = 0.08$ (dashed lines), and MC-KLN initial condition model and $\eta/s = 0.2$ (solid lines). Each row represents a different centrality range, while each column corresponds to a different p_T^{trig} range. The error bars correspond to statistical uncertainties, while systematic uncertainties are negligible for the r_3 ratios, and thus are not presented.

data for the 0–10% and 40–50% centrality ranges were compared to viscous hydrodynamic calculations with different models of initial-state fluctuations and different η/s values. Future quantitative theoretical comparisons to the high-precision data of ultra-central PbPb collisions presented by the CMS collaboration in this paper can provide a new stringent test of hydrodynamic models, particularly for constraining the initial-state density fluctuations and the η/s value.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and
Figure 8. Factorization ratio, r_4, as a function of $p_{T\text{rem}}^{\text{trig}} - p_{T\text{rem}}^{\text{assoc}}$ in bins of $p_{T\text{rem}}^{\text{trig}}$ for four centrality ranges of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The lines show the calculations from viscous hydrodynamics in ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition model and $\eta/s = 0.08$ (dashed lines), and MC-KLN initial condition model and $\eta/s = 0.2$ (solid lines). Each row represents a different centrality range, while each column corresponds to a different $p_{T\text{rem}}^{\text{trig}}$ range. The error bars correspond to statistical uncertainties, while systematic uncertainties are negligible for the r_4 ratios, and thus are not presented.

operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TH-HEP, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the
References

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Vespremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhihnga, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shrivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulshalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad
Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland
H. Bielkowska, M. Bluj33, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas², J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic³⁵, M. Djordjevic, M. Ekmenced, J. Milosevic
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjande

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak47, M. Kaya48, O. Kaya48, S. Ozkorucuklu49

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar50, E. Barlas, K. Cankocak, Y.O. Günaydın51, F.I. Varadarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Boston University, Boston, U.S.A.
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lазич, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, U.S.A.

University of California, Davis, Davis, U.S.A.

University of California, Los Angeles, U.S.A.

University of California, Riverside, Riverside, U.S.A.

Florida International University, Miami, U.S.A.
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.

The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.

Lawrence Livermore National Laboratory, Livermore, U.S.A.
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.

Massachusetts Institute of Technology, Cambridge, U.S.A.
University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.

University of Nebraska-Lincoln, Lincoln, U.S.A.

State University of New York at Buffalo, Buffalo, U.S.A.

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.

University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, U.S.A.

Purdue University Calumet, Hammond, U.S.A.
N. Parashar
Rice University, Houston, U.S.A.
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, U.S.A.
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

University of Tennessee, Knoxville, U.S.A.
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, U.S.A.

Texas Tech University, Lubbock, U.S.A.
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, U.S.A.

University of Virginia, Charlottesville, U.S.A.

Wayne State University, Detroit, U.S.A.
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachichi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, U.S.A.
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, U.S.A.
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Joint Institute for Nuclear Research, Dubna, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, U.S.A.
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Sharif University of Technology, Tehran, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
31: Also at Purdue University, West Lafayette, U.S.A.
32: Also at Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
33: Also at National Centre for Nuclear Research, Swierk, Poland
34: Also at Institute for Nuclear Research, Moscow, Russia
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Kahramanmaras Sütçü İmam University, Kahramanmaras, Turkey
52: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
53: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
54: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
55: Also at Utah Valley University, Orem, U.S.A.
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, U.S.A.
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Texas A&M University at Qatar, Doha, Qatar
61: Also at Kyungpook National University, Daegu, Korea