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Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star

and a black hole are one of the most interesting sources for the ground-based gravitational-wave

observatories Advanced LIGO and Advanced Virgo. Advanced LIGO will be sensitive to the inspiral

of a 1:4M� neutron star into a 10M� black hole to a maximum distance of �900 Mpc. Achieving this

sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the

binary to construct template waveforms. In a neutron-star–black-hole binary, the black hole may have

significant angular momentum (spin), which affects the phase evolution of the emitted gravitational

waves. We investigate the ability of currently available post-Newtonian templates to model the

gravitational waves emitted during the inspiral phase of neutron-star–black-hole binaries. We restrict

to the case where the spin of the black hole is aligned with the orbital angular momentum and compare

several post-Newtonian approximants. We examine restricted amplitude post-Newtonian waveforms that

are accurate to third-and-a-half post-Newtonian order in the orbital dynamics and complete to second-

and-a-half post-Newtonian order in the spin dynamics. We also consider post-Newtonian waveforms that

include the recently derived third-and-a-half post-Newtonian order spin-orbit correction and the third

post-Newtonian order spin-orbit tail correction. We compare these post-Newtonian approximants to the

effective-one-body waveforms for spin-aligned binaries. For all of these waveform families, we find that

there is a large disagreement between different waveform approximants, starting at low to moderate

black hole spins, particularly for binaries where the spin is antialigned with the orbital angular

momentum. The match between the TaylorT4 and TaylorF2 approximants is �0:8 for a binary with

mBH=mNS � 4 and �BH ¼ cJBH=Gm
2
BH � 0:4. We show that the divergence between the gravitational

waveforms begins in the early inspiral at v� 0:2 for �BH � 0:4. Post-Newtonian spin corrections beyond

those currently known will be required for optimal detection searches and to measure the parameters of

neutron-star–black-hole binaries. The strong dependence of the gravitational-wave signal on the spin

dynamics will make it possible to extract significant astrophysical information from detected systems

with Advanced LIGO and Advanced Virgo.

DOI: 10.1103/PhysRevD.88.124039 PACS numbers: 04.30.Db

I. INTRODUCTION

Compact object binaries are likely to be the first
source detected by the Advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) [1] and
Advanced Virgo (AdV) [2]. These detectors will be
sensitive to the gravitational waves radiated as the orbital
frequency of the binary sweeps upwards from �5–10 Hz
to the point at which the compact objects coalesce [3].
Binaries containing a (NSBH) have a predicted coales-
cence rate of 0:2–300 yr�1 within the sensitive volume of
aLIGO [4], making them an important source for these
observatories. The observation of a NSBH by aLIGO
would be the first conclusive detection of this class of
compact-object binary. Gravitational-wave observations
of NSBH binaries will allow us to explore the central
engine of short, hard gamma-ray bursts, shed light on

models of stellar evolution and core collapse, and inves-

tigate the dynamics of compact objects in the strong-field

regime [5–11]. Achieving aLIGO’s optimal sensitivity to

NSBH binaries and exploring their physics requires accu-

rate modeling of the gravitational waves emitted over

many hundreds of orbits as the signal sweeps through the

detector’s sensitive band. For binary neutron star (BNS)

systems the mass ratio between the two neutron stars is

small and the angular momenta of the neutron stars

(the neutron stars’ spins) is low. In this case, the emitted

waves are well modeled by post-Newtonian (PN) theory

[12–14]. However, NSBH binaries can have significantly

larger mass ratios and the spin of the black hole can be

much larger than that of a neutron star. The combined

effects of mass ratio and spin present challenges in con-

structing accurate gravitational waveform models for
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NSBH systems, compared to BNS systems. In this paper

we investigate how accurately current theoretical models

simulate NSBH gravitational waveforms within the sensi-

tive frequency band of aLIGO.
Although no NSBH binaries have been directly ob-

served, both black holes (BHs) and neutron stars (NSs)
have been observed in other binary systems. Several BNS
systems and neutron-star–white-dwarf systems have been
observed by detecting their electromagnetic signatures.
Electromagnetic observations suggest that the NS mass
distribution in BNS peaks at 1:35M�–1:5M� with a narrow
width [15], although NSs in globular clusters seem to have
a considerably wider mass distribution [15]. There is also
evidence that a neutron star in one system has a mass as
high as �3M� [16]. The dimensionless spin magnitude
� ¼ cJ=Gm2 for NSs is constrained by possible NS equa-
tions of state to a maximum of 0.7 [17]. The fastest
observed pulsar has a spin period of 1.4 ms [18], corre-
sponding to a �� 0:4, and the most rapidly spinning
observed NS in a binary, J0737–3039A, has a spin of
only �� 0:05. The observational data for BHs is more
limited than for NSs. Studies of BHs in low-mass x-ray
binaries suggest a mass distribution of 7:8� 1:2M� [19].
This extends to 8� 11� 2� 4M� when five high-mass,
wind-fed, x-ray binary systems are included [20]. For BHs
there is evidence for a broad distribution of spin magni-
tudes [21], although general relativity limits it to be �< 1.
Given the uncertainties in the masses and spins of NSBH
binaries, we consider a fairly broad mass and spin distri-
bution when investigating the accuracy of NSBH wave-
forms. In this paper, we consider NSBH binaries with the
NS mass between 1 and 3M�, the BH mass between 3 and
15M�, the NS spin between 0 and 0.05 and the BH spin
between 0 and 1. Between these limits, the distributions of
mass and spin are all assumed to be uniform.

Gravitational-wave detectors are sensitive to the phase
evolution of the waves radiated by the binary. PN theory
can be used to compute the energy of a compact binary
EðvÞ and the flux radiated in gravitational waves F ðvÞ in
terms of the invariant velocity v ¼ ð�MfÞ1=3, where
M ¼ m1 þm2 is the total mass of the binary, and f is
the gravitational-wave frequency [12]. By solving the
energy balance equation dE=dt ¼ �F , we can obtain
expressions for the gravitational-wave phase as a function
of time �ðtÞ or, equivalently, the Fourier phase of the
waves as a function of frequency �ðfÞ. At leading order,
the gravitational-wave phase depends only on the chirp

mass Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 [22]. Beyond lead-
ing order, the waveforms also depend on the symmetric
mass ratio � ¼ m1m2=ðm1 þm2Þ2 [23–28], with spin-
orbit corrections entering at the third correction beyond
leading order [29–33].

There are several different ways in which to solve the
energy balance equation to obtain the gravitational-wave
phase measurable by aLIGO; these different methods are

known as PN approximants. While the convergence of the
full PN series is not guaranteed, the available PN approx-
imants produce waveforms that are indistinguishable for
BNS systems in Advanced LIGO and are reliable for use in
detection searches and parameter measurement [13,14,34].
However, for NSBH binaries the total mass, and hence the
PN expansion parameter v, is larger. The mass ratio and
spin corrections are also more significant. In this paper, we
investigate the accuracy of waveforms generated by differ-
ent PN approximants for observing NSBH binaries with
aLIGO. To do this, one could compare subsequent terms in
the PN expansion and determine the effect of neglecting
them. However, in the case of systems whose component
objects are spinning, only terms up to 2.5PN order are
completely known [29–31]. This represents the leading
order (1.5PN) and next-to-leading order (2.5PN) spin-orbit,
along with the leading order (2.0PN) spin-spin contribu-
tions to the phasing [29–31]. We choose to compare
approximants that are constructed with terms up to the
same PN order, but that use inversely related differential
equations to solve for the orbital dynamics, in addition to
comparing to approximants that include higher order spin-
related corrections at partially derived orders [33,35].
These methods both have the effect of testing how
well the PN series has converged. We also present a
comparison between waveforms from these PN approxim-
ants where we fix the mass and spin parameters of the
objects in order to understand when in the inspiral the
waveforms diverge.
We consider two families of PN approximants for bi-

naries where the spin of the black hole is aligned with the
orbital angular momentum: TaylorT2 [12,26,36] and
TaylorT4 [37]. In these models, we include all the com-
pletely known orbital evolution terms (up to 3.5PN order)
[23–28] and all the completely known spin-related terms
(up to 2.5PN order) [29,38–41]. Restricting to systems
where the spin angular momenta are aligned (or antia-
ligned) with the orbital angular momentum means that
the plane of the binary does not precess, simplifying our
comparisons. However, this study captures the dominant
effect of spin on the waveforms [42]. In a separate paper, we
investigate the effect of precession on detection searches
[43]. We also consider the effective-one-body model as
described in Ref. [44]. We separately consider models that
include spin-related terms up to 3.5PN order [33,35].
Spin-orbit tail (3.0PN) and next-to-next-to-leading order
spin-orbit (3.5PN) contributions to the phasing are known.
However, these orders are incomplete as there are also
unknown spin corrections at 3.0PN and 3.5PN, including
spin-spin and (spin-induced) octupole-monopole couplings.
We restrict to comparing the inspiral portion of approx-

imants. Numerically modelling the merger of a black hole
and a neutron star is an active area of research [45–49].
However, producing long simulations of NSBH systems
with high spin remains a challenge, and there is currently
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no widely available waveform model that includes the
complete evolution of a NSBH coalescence over the full
parameter space we consider. Refs. [13,50] suggest that for
nonspinning systems, inspiral-only templates are suitable
for detection purposes below a total mass of 12M�. For a
canonical 1:4M� neutron star, this roughly corresponds to a
mass ratio of 8. Even at the upper range of masses we
consider, ð3þ 15ÞM�, it has been shown in the case of
nonspinning numerically modeled binary black hole wave-
forms that inspiral-only template banks recover >95% of
the signal power [50,51].

In Fig. 1 we show the distance an optimally oriented
system would be observed at signal-to-noise ratio (SNR) 8
(the horizon distance), for a 1:4M�–10M� NSBH system,
as a function of the spin of the black hole, for both the
aLIGO zero-detuned, high-power sensitivity curve and a
plausible range of early aLIGO sensitivities [52]. Systems
where the spin of the black hole is large in magnitude and
aligned with the orbital angular momentum can be seen
from a greater distance than systems where the spin is
small or antialigned. Achieving this sensitivity requires
NSBH waveforms that do not incur a significant loss in
SNR when used as search templates [53]. Furthermore,

FIG. 1 (color online). The horizon distance as a function of the
spin of the black hole for a 1:4M�–10M� NSBH system, for both
the aLIGO zero-detuned, high-power aLIGO sensitivity curve
(blue) and plausible early aLIGO detector sensitivities (red),
with a 15 Hz lower frequency cutoff. Results are obtained using
the TaylorT4 approximant including only the complete spin terms
up to 2.5PN. Note that aLIGO will be sensitive to NSBH systems
out to �900 Mpc, and there will be increased sensitivity for
systems with aligned black hole spins with large magnitudes.

FIG. 3 (color online). The match between the TaylorF2 and
TaylorT4 approximants as a function of black hole spin and mass
ratio. Both models include the next-to-next-to-leading spin-orbit
(3.5PN) and spin-orbit tail terms (3.0PN). In comparison to
Fig. 2, the additional terms have improved the agreement for
moderately spinning aligned spin systems; however, the match is
still �0:8 for �� 0:5 at all mass ratios.

FIG. 2 (color online). The match between the TaylorF2 and
TaylorT4 approximants as a function of the spin of the black hole
and the mass ratio of the system. Only the completely known
spin-related corrections up to 2.5PN are included. Matches are
calculated using the aLIGO zero-detuned, high-power sensitivity
curve and a 15 Hz lower frequency cutoff. A significant reduc-
tion in match is seen for even moderate spins �� 0:3 and low
mass ratios mbh=mns � 4. The approximants also begin to dis-
agree for nonspinning systems as the mass ratio increases.

FIG. 4 (color online). The match between TaylorF2 with
2.5PN spin corrections and TaylorF2 including the next-to-
next-to-leading spin-orbit (3.5PN) and spin-orbit tail terms
(3.0PN), as a function of the spin of the black hole and the
mass ratio of the system. Matches are calculated using the
aLIGO zero-detuned, high-power sensitivity curve and a 15 Hz
lower frequency cutoff. Although there is agreement where
the spins are low � < 0:2, the match quickly drops as the spin
of the black hole increases, so that the match is already �0:7 for
�� 0:5.
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extracting the physics from observed signals requires
faithful templates for parameter measurement.

We find that no presently available waveform model is
sufficiently accurate for use in parameter measurement.
Our key results, Figs. 2–6, show the match between the
various waveform families considered here. There is a
significant disagreement between the PN approximants
we have examined, even at low (�� 0:4) spins and small
(mBH=mNS � 4) mass ratios for TaylorF2 and TaylorT4.
The match decreases as these increase with matches as low
as �0:1 observed. This motivates the need to compute
higher order PN spin corrections.

Our present knowledge of NSBH waveforms will limit
the ability of gravitational-wave observatories to accu-
rately determine source parameters from the detected

signals and may hinder the detection of some sources.
Further analytical and numerical modeling of NSBH
systems will be needed before aLIGO comes online in
2015 and reaches full sensitivity in �2019 [52].
The remainder of this paper is organized as follows.

In Sec. II, we describe the construction of the PN
approximants used and Sec. III describes our method of
comparing them. In Sec. IV we show the results of com-
paring different PN approximants, and show that there is a
large discrepancy between the waveforms for NSBH
binaries at relatively low black hole spins. In Sec. V we
construct a new frequency domain approximant that is
designed to agree with TaylorT4. This is followed by a
comparison of the time domain approximants to their
frequency domain counterparts in Sec. VI, where we dem-
onstrate that they largely agree. Finally, in Sec. VII and
VIII we investigate where in the inspiral the disagreement
between the waveform families becomes important. We
demonstrate that the divergence occurs at surprisingly low
velocities for even modest black hole spins. Finally in
Sec. IX we investigate whether maximizing over the
mass and spin parameters of the waveform can improve
the agreement between present models, and investigate the
accuracy of the waveforms for early aLIGO observations
when the detectors will have reduced low-frequency
sensitivity when compared to the ultimate sensitivity.

II. CONSTRUCTING POST-NEWTONIAN
WAVEFORMS

We examine the accuracy and convergence of currently
known waveforms for NSBH binaries by comparing
approximants constructed using the PN approximations
of the binary’s equation of motion and gravitational
radiation. To obtain the gravitational-wave phase from
these quantities, we assume that the binary evolves adia-
batically through a series of quasi-circular orbits. This is a

FIG. 5 (color online). The match between TaylorT4 with
2.5PN spin corrections and TaylorT4 including the next-to-
next-to-leading spin-orbit (3.5PN) and spin-orbit tail terms
(3.0PN), as a function of the spin of the black hole and the
mass ratio of the system. Matches are calculated using the
aLIGO zero-detuned, high-power sensitivity curve and a 15 Hz
lower frequency cutoff. In comparison to Fig. 4, the approximant
is more noticeably changed by the additional terms. For a mass
ratio of 8, the match has already fallen to �0:7 for �� 0:15.

FIG. 6 (color online). The match between the TaylorF2 (left) or TaylorT4 (right) and SEOBNRv1 approximants. Spin correc-
tions for the PN approximants are included up to 2.5PN. Matches are calculated using the aLIGO zero-detuned, high-power
sensitivity curve with a 15 Hz lower frequency cutoff. As in Fig. 2, there is a significant reduction in match where spin of the
black hole is only moderate. Note, however, that the PN approximants have marginally better agreement with SEOBNRv1 than with
each other.

NITZ et al. PHYSICAL REVIEW D 88, 124039 (2013)

124039-4



reasonable approximation as gravitational radiation is ex-
pected to circularize the orbits of isolated binaries [54]. In
this limit, the equations of motion reduce to series expan-
sions of the center-of-mass energy EðvÞ and gravitational-
wave flux F ðvÞ, which are expanded as a power series in
the orbital velocity v around v ¼ 0. They are given as

EðvÞ ¼ ENv
2

�
1þ X6

n¼2

Eiv
i

�
; (1)

FðvÞ ¼ FNv
10

�
1þ X7

n¼2

Fiv
i

�
; (2)

where the coefficients fEN; Ei; FN; Fig are defined in
Appendix A. For terms not involving the spin of the
objects, the energy is known to order v6, while the flux is
known to v7, referred to as 3.0 and 3.5PN, respectively. At
order 3.0PN, the flux contains terms proportional to both
v6 and v6 logv; which are regarded to be of the same order.
Complete terms involving the spins of the objects first
appear as spin-orbit couplings at 1.5PN order, with spin-
spin couplings entering at 2PN order, and next-to-leading
order spin-orbit couplings known at 2.5PN order.

We use the assumption that these systems are evolving
independently to relate the PN energy and gravitational-
wave flux equations, i.e. the loss of energy of the system is
given by the gravitational-wave flux

dE

dt
¼ �F : (3)

This can be rearranged to give an expression for the time
evolution of the orbital velocity,

dv

dt
¼ �F ðvÞ

E0ðvÞ ; (4)

where E0ðvÞ ¼ dE=dv. The orbital evolution can be trans-
formed to the gravitational waveform by matching the
near-zone gravitational potentials to the wave zone. The
amplitude of gravitational waves approximated in this way
are given by the PN expansion of the amplitude. This gives
different amplitudes for different modes of the orbital
frequency. The dominant gravitational-wave frequency f
is given by twice the orbital frequency, which is related to

the orbital velocity by v ¼ ð�MfÞ1=3. The orbital phase is
therefore given by

d�

dt
¼ v3

M
; (5)

and the phase of the dominant gravitational-wave mode is
twice the orbital phase. Here, we will only expand the
gravitational-wave amplitude to Newtonian order (0PN),
which, when combined with the phase, is referred to as a
restricted PN waveform.

Solutions vðtÞ and�ðtÞ to Eqs. (4) and (5) can be used to
construct the plus and cross polarizations and the observed

gravitational waveform. For restricted waveforms, these
are

hþðtÞ ¼ � 2M�

DL

v2ð1þ cos 2�Þ cos 2�ðtÞ; (6)

h�ðtÞ ¼ � 2M�

DL

v22 cos � sin 2�ðtÞ; (7)

hðtÞ ¼ FþhþðtÞ þ F�h�ðtÞ: (8)

Here Fþ and F� are the antenna pattern functions of the
detector, DL is the luminosity distance between the binary
and observer, and � is the inclination angle between the
orbital angular momentum of the binary and the direction

of gravitational-wave propagation: cos� ¼ L̂ � N̂. Thus, a
nonprecessing, restricted PN waveform is fully specified
by vðtÞ and �ðtÞ [or equivalently tðvÞ and �ðvÞ].
We now have the ingredients necessary to produce the

TaylorT2 and TaylorT4 families of approximants, which
we describe in the following sections.

A. TaylorT4

The TaylorT4 approximant, introduced in [37], is
formed by numerically solving the differential equation

dv

dt
¼

��F ðvÞ
E0ðvÞ

�
k
¼ AkðvÞ: (9)

The notation ½Q�k indicates that the quantity Q is to be
truncated at vk order. Terms containing pieces logarithmic
in v are considered to contribute at the order given by the
nonlogarithmic part. Thus waveforms expanded to 3.5PN
order in the phase would be truncated at k ¼ 7. We use Ak

as shorthand for the truncated quantity that is used as the
expression for dv=dt.
The resulting differential equation, given explicitly in

Appendix B 1, is nonlinear and therefore must be solved
numerically. The result is a function vðtÞ. The phase can
then be calculated by

d�

dt
¼ vðtÞ3

M
: (10)

The phase is integrated from a fiducial starting frequency
up to the minimum energy circular orbit (MECO), which is
defined by

dEðvÞ
dv

¼ 0: (11)

The MECO frequency is where we consider the adiabatic
approximation to have broken down. Note that the MECO
frequency is dependent on not only the masses but also the
spins of the objects; specifically, systems where the ob-
jects’ spins are aligned with the orbital angular momentum
will have a higher MECO frequecy. When the partial spin-
related terms at 3.0PN and 3.5PN are included, however,
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there are regions of the NSBH parameter space for which
the MECO condition is never satisfied. For these cases, we
impose that the rate of increase in frequency must
not decrease (i.e. we stop if dv=dt � 0), and that the
characteristic velocity of the binary is less than c (i.e. we
stop if v 	 1). We terminate the waveforms as soon as any
of these stopping conditions are met.

B. TaylorT2

In contrast to the TaylorT4 approximant, the TaylorT2
approximant is constructed by expanding t in terms of v
and truncating the expression to consistent PN order. We
first construct the quantity

dt

dv
¼

�
E0ðvÞ
�F ðvÞ

�
k
¼ BkðvÞ: (12)

This can be combined with the integral of (5) and solved in
closed form as a perturbative expansion in v,

�ðvÞ ¼
Z v3

M
BkðvÞdv: (13)

The explicit result of this integral is given in Appendix B 2.
Similar to TaylorT4, the phase is generally calculated up to
the MECO frequency. However, for some points of pa-
rameter space, this formulation can result in a frequency
that is not monotonic below the MECO frequency. As with
TaylorT4, we stop the waveform evolution with dv=dt � 0
or v 	 1.

A related approximant can be computed directly in the
frequency domain by using the stationary phase approxi-
mation [12,36]. This approximant is called TaylorF2 and
can be expressed as an analytic expression of the form

�ðfÞ ¼ AðfÞeic ðfÞ; (14)

where the phase takes the form

c ðfÞ ¼ X7
i¼0

X1
j¼0

�i;jf
ði�5Þ=3log jf: (15)

The full expressions for the amplitude and phase are given
in Appendix B 3. Because the stationary phase approxima-
tion is generally valid, the TaylorT2 and TaylorF2 approx-
imants are nearly indistinguishable [36]. An advantage of
the TaylorF2 approximant comes from the fact that it can
be analytically calculated in the frequency domain. In
practice, waveforms that are generated in the frequency
domain without the use of integration are less computa-
tionally costly, and so searches for gravitational waves
from inspiraling binary systems have been performed using
the TaylorF2 approximant [12,26,36,55–66].

C. SEOBNRv1

An additional approximant we use is the spinning effec-
tive one-body model (SEOBNRv1), presented in Ref. [44].
This approximant incorporates the results of black hole

perturbation theory, the self-force formalism and PN re-
sults. The model has been calibrated to numerical relativity
simulations, including simulations where the objects’ spins
were (anti-) aligned with the orbital angular momentum
and had magnitudes of �� 0:4. In order to compare these
waveforms more fairly with the PN approximants that only
model the inspiral, we truncate this model before the
merger section of the waveform.
The implemented versions of SEOBNRv1 are currently

limited to � � 0:6. To further extend the model would
require better modeling of the plunge physics and possibly
the computation and incorporation of additional PN terms.

III. COMPUTING FAITHFULNESS

Searches for gravitational waves from compact binary
coalescences utilize matched filtering [67,68], in which the
signal model is correlated with the detector output to
construct a signal-to-noise ratio. If the signal model does
not accurately capture the true gravitational waveform,
then the signal-to-noise ratio, and hence the distance to
which the detector can see signals at a given false alarm
rate, will decrease. Matched-filtering therefore relies on the
accuracy of the models. We quantify the agreement be-
tween waveform families by computing the match, or
faithfulness of the waveforms, defined as follows. We
define the noise-weighted inner product between two
gravitational waveforms, h1 and h2, to be

ðh1jh2Þ ¼ 4<
Z 1

0

~h1ðfÞ~h
2ðfÞ
SnðfÞ df; (16)

where

~h1ðfÞ ¼
Z 1

0
h1ðtÞe�2�iftdt (17)

is the Fourier transform of h1ðtÞ, and SnðfÞ denotes the one-
sided power spectral density of the gravitational-wave
detector’s noise. In practice, the signals are discretely
sampled so the upper frequency limit is the Nyquist
frequency of the data, and the lower frequency limit of
the integral is set by the detector’s low-frequency sensitiv-
ity [68]. We define the normalized overlap between two
waveforms h1 and h2 as

ðh1jh2Þ ¼ ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : (18)

The match between two waveforms is obtained by max-
imizing the overlap over the phase of the waveform and�c

and any time shifts tc between h1 and h2,

Mðh1; h2Þ ¼ max
�c;tc

ðh1jh2ð�c; tcÞÞ; (19)

where the shifted waveform can be constructed as

~hð�c; tcÞ ¼ ~heið�c�2�ftcÞ: (20)
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The faithfulness of representing a waveform from a given
PN family with that of another is described by the match
between the two waveforms when the same physical pa-
rameters are used as input to the models. As both models
describe the same physical source, the match should be
unity. Any deviation is due to the variation between models
and the match gives the fractional loss in signal-to-noise
ratio that will result.

IV. POST-NEWTONIAN APPROXIMANT
FAITHFULNESS COMPARISON

In this section we compare the faithfulness between
waveforms from different PN approximants where we
choose the physical parameters to be consistent with
NSBH sources. We also consider how the waveforms
from the PN approximants compare to the waveforms
from the SEOBNRv1 effective-one-body model [44].
Lastly, we consider the effect of including the spin-related
terms at only partially derived orders. We model the sensi-
tivity of second generation gravitational-wave detectors
with the aLIGO zero-detuned, high-power sensitivity curve
[69]. For this study we use a lower frequency cutoff of
15 Hz since it is not expected that detectors will have
significant sensitivity below this frequency. We consider
the effect of increasing this low-frequency cutoff to simu-
late early aLIGO sensitivities in Sec. IX.

In Fig. 2, we examine the faithfulness of NSBH wave-
forms by computing the match between the TaylorF2 and
TaylorT4 PN approximants. The TaylorT4 approximant
was used to simulate NSBH binaries in LIGO’s previous
gravitational-wave searches, and the TaylorF2 family is
used as the templates for detection [63]. In order to focus
on the mismatches primarily due to phase differences
between the models, the frequency cutoff of the TaylorF2
waveform is made to agree with the ending frequency of
the TaylorT4 waveform. We see that the agreement be-
tween the two models is primarily influenced by the mag-
nitude of the black hole’s spin, and secondarily by the mass
ratio. There is a noticeable drop in match at higher mass
ratios, even when the spin of the black hole is zero. As
expected, the best agreement is seen when the black hole’s
spin is small and the black hole and neutron star have
comparable masses. However, this plot shows that there
is a substantial disagreement between these approximants
for even moderately low black hole spins (�� 0:3), which
increases as the spin of the black hole increases. We note
that the effect on the match due to the spin of the neutron
star is negligible in all areas. In Fig. 3 we compare the
TaylorF2 and TaylorT4 models, with the inclusion of
the spin-orbit tail (3.0PN) and next-to-next-to-leading
spin-orbit (3.5PN) corrections recently computed in
Refs. [32,70]. In comparison to Fig. 2, the agreement is
significantly improved for aligned spins with moderate
magnitudes. However, these approximants maintain a
poor level of overall agreement, with matches of only

�0:8 at �� 0:5 for all mass ratios, and even lower
matches for antialigned systems. Figures 4 and 5 compare
the TaylorT2 and TaylorT4 approximants with and without
these additional spin terms. We see that TaylorT4 is espe-
cially sensitive to the additional corrections. In both cases,
however, we note that the additional terms have caused a
significant change in the waveforms, as indicated by the
low matches, demonstrating that the expansion has not yet
sufficiently converged to produce reliable waveforms for
parameter estimation.
In Fig. 6 we compare the SEOBNRv1 model to the PN

models TaylorF2 and TaylorT4. Since the SEOBNRv1
model is not valid for large values of � [44] we restrict �<
0:6 and only report matches below this limit. We see that,
similar to the comparison between TaylorF2 and TaylorT4,
these models also have large mismatches when the spin of
the black hole is nonzero. The large discrepancy between
the waveform families indicates that higher order PN cor-
rection terms are required. This may also pose significant
problems for parameter estimation of NSBH sources.

V. THE TAYLORR2F4 APPROXIMANT

In the previous section, we found a surprisingly large
disagreement between the TaylorF2 and TaylorT4 PN ap-
proximants when compared with waveform parameters
appropriate for NSBH systems. We would like to distin-
guish how much of this is due to differences between time
domain and frequency domain approximants, and how
much of this is due to differences between the formulation
of the two PN families. This can easily be performed for
the TaylorF2 and TaylorT2 approximants, however we
need to construct an equivalent frequency domain version
of TaylorT4 to complete the comparison.
By analogy with TaylorF1 and TaylorF2 [13,71],

TaylorF4 is obtained by numerically integrating the recip-
rocal of Eq. (9) in the frequency domain,

dt=dv ¼ 1=AkðvÞ: (21)

However, this does not elucidate the differences between
the TaylorT4 and TaylorF2 approximants. Instead, we
construct an analytical approximation to the TaylorF4
approximant, which we call TaylorR2F4, by expanding
Eq. (21) in powers of v. In order to make this series finite,
we truncate these additional terms at an order in v higher
than the order where the PN expansion of the energy and
flux were truncated,

dt

dv
¼

�
1

AkðvÞ
�
l
¼ BkðvÞ þ RklðvÞ ¼ CklðvÞ: (22)

Here BkðvÞ is the same as in the TaylorT2 approximant and
RklðvÞ are the terms from order vkþ1 up to order vl. It is
important to note that this produces a power series that is
identical to the TaylorF2 approximant up to the point
where (12) was truncated. Thus, terms of higher order in
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v account for the differences between the TaylorT2 and
TaylorT4 approximants.

In Sec. VI we show that TaylorR2F4 agrees well with the
TaylorT4 approximant when expanded to v9 or v12, which
we shall see in the next section. As noted above, the second
expansion in the TaylorR2F4 approximant is a different
expansion than the PN expansion of the energy and flux.
The Fourier phase for the TaylorR2F4 approximant can be
obtained from (13) where BkðvÞ is replaced by CklðvÞ. This
is given up to order vN as

c R2F4ðfÞ ¼ c F2ðfÞ þ
XN
i¼6

XN
j¼0

�i;jf
ði�5Þ=3log jf; (23)

where the form of these expressions up to N ¼ 12 can be
found in Appendix B 4. Because this approximant can be
analytically expressed in the frequency domain, it can
be generated relatively cheaply compared to TaylorT4.
This means that it has the potential to be used where
computational efficiency and a higher degree of agreement
with TaylorT4 is desired. We note that the frequency-
domain approximants are much faster than their time-
domain counterparts, which must integrate differential
equations and perform a Fourier transform. Therefore,
they are especially useful in computational problems
which are waveform-generation limited, such as parameter
estimation of signals [72].

VI. COMPARISON OF FREQUENCY TO TIME
DOMAIN APPROXIMANTS

In this section, we investigate to what extent the dis-
crepancy between the waveform families that was demon-
strated in Sec. IV is due to the difference between
expressing approximants in the frequency and time domain
alone. We compare the new TaylorR2F4 approximant from
Sec. V, and TaylorF2, to their time domain equivalents.

We find that TaylorF2 waveforms are a good represen-
tation of TaylorT2 waveforms, even when we consider

waveforms from NSBH systems where the component
objects are spinning. This can be seen in Fig. 7, which
shows the match between the TaylorF2 and TaylorT2
models. In that figure, the ending frequency of both models
is made to be the same, which is accomplished by termi-
nating the TaylorF2 waveforms at the frequency where the
generation of the equivalent TaylorT2 waveforms termi-
nated. We find that the TaylorF2 and TaylorT2 waveforms
agree to better than * 95:7% for the entire region inves-
tigated. For systems where the black hole spin was posi-
tively aligned with the orbital angular momentum, the
match is * 97:9%. The discrepancy between these two
models is in part due to expanding to only Newtonian order
the frequency sweep associated with the stationary phase
approximation of the TaylorF2 approximant. In addition,

FIG. 7 (color online). The match between TaylorF2 and
TaylorT2. Both include spin corrections up to 2.5PN order.
Matches are calculated using the aLIGO zero-detuned, high-
power sensitivity curve and a 15 Hz lower frequency cutoff.
We see that the F2 and T2 approximants largely agree. The
discrepancy between the two approixmants can be reduced by
expanding the frequency sweep of the TaylorF2 approximant’s
amplitude to higher PN orders. However, there is different Gibbs
phenomena between the two approximants that will cause a
discrepancy.

FIG. 8 (color online). The match between TaylorT4 and TaylorR2F4. Both models include spin corrections up to 2.5 PN. TaylorR2F4
is re-expanded up to order v9 (left) and v12 (right). Matches are calculated using the aLIGO zero-detuned, high-power sensitivity curve
and a 15 Hz lower frequency cutoff. R2F4 and T4 have high agreement over a broad range of parameters, with some visible exceptions.
Expanding up to order v12 has generally increased agreement with TaylorT4.
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part of the discrepancy results from Gibbs phenomena
differences between the approximants. It is important to
note that neither of these waveforms have termination
conditions that are determined by the physical behavior
of the inspiralling binary. The termination frequency only
indicates the point at which the approximant is certainly no
longer valid. The increased match for aligned spin wave-
forms is due to the higher frequency cutoff, which pushes
the termination frequency out of the most sensitive part of
the zero-detuned, high-power aLIGO sensitivity curve.

Figure 8 shows a comparison between the TaylorR2F4
and TaylorT4 models. In that figure, the second expansion
associated with the TaylorR2F4 model is extended to order
v9 (left) and v12 (right), and the ending frequency of both is
that corresponding to the MECO. We show that the
TaylorR2F4 model is adequate for a large range of parame-
ters as a computationally inexpensive substitute for
TaylorT4.

Since the mismatch between the TaylorF2 and TaylorT4
models is not due to differences between the time domain

and frequency domain approximants, this indicates that the
effective higher order PN terms used in the construction of
TaylorR2F4, which are also intrinsically present in
TaylorT4, are still significant. To obtain better agreement
between the different PN approximants we consider, it is
necessary to extend the PN expansions of the energy and
flux equations to include unknown higher order terms,
particularly ones that involve the spin of the objects.

VII. ACCUMULATION OF PHASE DISCREPANCY

In the previous sections, we demonstrated that the two
PN approximants, TaylorF2 and TaylorT4, and the
SEOBNRv1 model are not faithful to each other. We also
showed that this is not due to the differences between
frequency and time domain waveforms. From the construc-
tion of the TaylorR2F4 approximant, we also demonstrated
that the two PN families can be written in a way that is
consistent up to the chosen PN order, but where
TaylorR2F4 contains higher order in v corrections that

FIG. 9 (color online). The accumulation of phase differences between TaylorT2 and TaylorT4, for systems with component masses
(m1, m2) of (1:4M�, 6M�) (left), (1:4M�, 10M�) (center), and (1:4M�, 14M�) (right). The approximants include spin terms up to
2.5PN. The calculation starts from the velocity corresponding to a gravitational-wave frequency of 15 Hz, continues to the velocity on
the horizontal axis, and reports the difference in accumulated gravitational-wave phase between the waveforms. The feature in the
bottom right corner of each plot arises because the TaylorT2 approximant is no longer monotonic. Note that large phase differences
accumulate at very low velocities v� 0:2 for even small black hole spins.

FIG. 10 (color online). The accumulation of phase difference between TaylorT2 and SEOBNRv1, for systems with component
masses (m1, m2) of (6M�, 1:4M�) (left), (10M�, 1:4M�) (center), and (14M�, 1:4M�) (right). TaylorT2 includes spin terms up to
2.5PN. The calculation starts from the velocity corresponding to a gravitational-wave frequency of 15 Hz, continues to the velocity on
the horizontal axis, and reports the difference in accumulated gravitational-wave phase between the waveforms. The feature in the
bottom right corner of each plot arises because the TaylorT2 approximant is no longer monotonic. As in Fig. 9, a large phase difference
is accumulated at low velocities and small black hole spins.
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account for the differences between the models. Since
these are higher order corrections, they should start to
become important to the orbital phasing only at high
velocities, and thus high gravitational-wave frequencies.
In this section we investigate where, for systems with
parameters corresponding to NSBH binaries, the approx-
imants diverge. We do this by examining the accumulation
of phase as a function of orbital velocity and reporting the
difference in the number of gravitational-wave cycles
between different approximants.

In Fig. 9, we examine the difference in the accumulated
phase between TaylorT2 and TaylorT4 for three example
systemswith componentmasses (m1,m2) of (6M�, 1:4M�),
(10M�, 1:4M�), and (14M�, 1:4M�). We see that the
phase difference between the two models quickly grows
to tens of radians, even when the black hole spin magnitude
is small. This is also true when comparing TaylorT2 and
SEOBNRv1, as can be seen in Fig. 10. In the latter case,
there is also a noticeable deviation away from the line of
zero spin where for unknown reasons the two models
diverge and subsequently converge.

VIII. ACCUMULATION OF MISMATCH

As gravitational-wave detectors are not directly
sensitive to phase differences alone, it is useful to compute
how the match, which incorporates the sensitivity of a
gravitational-wave detector, changes as a function of the
upper frequency cutoff used for the calculation. In this
section we demonstrate at which frequencies and corre-
sponding velocities the match between waveform families
drops. To do so, we define an inner product between wave-
forms that is a function of the upper frequency cutoff.
This inner product is then used in the match calculation
of Eq. (19).
In Fig. 11, we examine the match between TaylorF2 and

TaylorT4, integrated from a lower frequency cutoff of
15 Hz up to the upper frequency cutoff indicated on the
horizontal axis. This is compared for the same three ex-
ample systems as in Sec. VII. The match is shown across
the range of allowable values of the black hole spin and
the neutron star spin is set to zero. We see that the match
drops precipitously even at low velocities and relatively

FIG. 11 (color online). The match between TaylorF2 and TaylorT4 integrated from 15 Hz up to the designated frequency for systems
with component masses (m1, m2) of (1:4M�, 6M�) (left), (1:4M�, 10M�) (center), and (1:4M�, 14M�) (right). Both approximants
include spin corrections up to 2.5PN. Matches are calculated using the aLIGO zero-detuned, high-power sensitivity curve. A contour at
a match of 0.97 is indicated by the dotted line. The match follows the general features seen in the phase difference comparison of Fig. 9
and drops significantly, even at relatively low velocities. For the (1:4M�, 6M�) system with a black hole spin � ¼ 0:5, the match has
already dropped to �0:5 at a velocity of only �0:25.

FIG. 12 (color online). The match between the TaylorF2 and SEOBNRv1 models integrated from 15 Hz up to the designated
frequency for systems with component masses (m1, m2) of (6M�, 1:4M�) (left), (10M�, 1:4M�) (center), and (14M�, 1:4M�) (right).
TaylorF2 includes spin corrections up to 2.5PN. Matches are calculated using the aLIGO zero-detuned, high-power sensitivity curve.
A contour at a match of 0.97 is indicated by the dotted line. We note that, although the match is marginally improved compared to
Fig. 11, there are still large disagreements at velocities as low as 0.25.

NITZ et al. PHYSICAL REVIEW D 88, 124039 (2013)

124039-10



modest spin magnitudes. For example, for a system with
m1 ¼ 6M�, m2 ¼ 1:4M�, and a dimensionless spin of 0.5
for the black hole, the match drops below 0.7 at a velocity
of only 0.23. The loss in match is more pronounced with
increasing mass ratio.

In Fig. 12, we examine the match between TaylorF2 and
SEOBNRv1, integrated from a lower frequency cutoff of
15 Hz up to the upper frequency cutoff indicated on the
horizontal axis. Again, the match drops for large spin
magnitudes at relatively low velocities, although, just as
the TaylorF2 approximant has shown better matches with
the SEOBNRv1 approximant than with the TaylorT4 ap-
proximant, this occurs at somewhat higher velocities. This
shows clearly that significant portions of the loss in match
seen in Sec. IV occurs at unexpectedly low velocities.

IX. DETECTION SEARCHES AND EARLYALIGO

In the previous sections, we have demonstrated a sub-
stantial loss in match between different PN and EOB
models of NSBH binaries. These discrepancies will cause
substantial biases in attempts to measure the parameters of
detected systems with aLIGO. However, when detecting
systems the fitting factor, rather than the match, is the
quantity that is used to assess the effectualness of a search
[53]. The fitting factor maximizes the match between a
signal and a bank of templates designed to capture e.g.
97% of the optimal signal-to-noise ratio. The template
bank is constructed to be valid for the same range of masses
and spins used throughout this paper and detailed in Sec I.
Furthermore, the mass and spin parameters of these tem-
plates are strictly within this range. Discrepancies in match
due to differing approximants may be compensated for by
allowing a waveform to match to a template with shifted
parameters. Figures 13 and 14 show the fitting factor of a
TaylorF2 aligned spin template bank when used to detect
aligned spin TaylorT4 waveforms. Figure 13 shows the
distribution of fittings factors for approximants that include
up to the 2.5PN spin corrections. Figure 14 demonstrates
the effect of adding the higher order 3.0PN spin-orbit
tail and 3.5PN spin-orbit corrections. Construction of these
aligned spin banks use the method introduced in Ref. [14]
and is described in more detail in Ref. [43].

There is substantial improvement in the fitting factors of
aligned spin systems when adding the higher order spin
corrections, but no improvement for antialigned spin sys-
tems. Although the loss in fitting factor is not as significant
as the loss in match shown in Figs. 2 and 3, aLIGO NSBH
searches will incur a significant loss in signal-to-noise ratio
for systems with antialigned spins. Expanding the template
bank may improve the fitting factors for particular systems.
However, this would necessitate an increase in the size of
the template bank, and subsequently cause an increase in
the false alarm rate. If the faithfulness of NSBHwaveforms
is improved, this approach is no longer necessary.

Refs. [13,50] suggest a 12-solar-mass cutoff for non-
spinning, inpiral-only templates. While our figures con-
sider a range of component masses, for a canonical neutron
star of 1.4 solar masses, this roughly corresponds to a mass
ratio of 8. Although the fitting factors in Figs. 13 and 14 are
maximized over a parameter space that includes spin, we

FIG. 13 (color online). The fitting factor between the TaylorF2
and TaylorT4 approximants as a function of the spin of the black
hole and the mass ratio of the system, when maximizing the
match over a bank of TaylorF2 waveforms. All approximants
include spin corrections up to 2.5PN. Matches are calculated
using the aLIGO zero-detuned, high-power sensitivity curve and
a 15 Hz lower frequency cutoff. In comparison to the match of
these approximants shown in Fig. 2, we see that while allowing
for the maximization over a bank of templates has improved the
overall agreement, it is unable to entirely make up for the poor
match.

FIG. 14 (color online). The fitting factor between the TaylorF2
and TaylorT4 approximants as a function of the spin of the black
hole and the mass ratio of the system, when maximizing the
match over a bank of TaylorF2 waveforms. All approximants
include the 3.5PN spin-orbit and 3.0PN spin-orbit tail correc-
tions. Matches are calculated using the aLIGO zero-detuned,
high-power sensitivity curve and a 15 Hz lower frequency cutoff.
In comparison to the fitting factors shown in Fig. 13, we see
that adding the higher order spin corrections has resulted in
substantially improved fitting factors for systems where the spin
is aligned with the orbital angular momentum. There is no
improvement for antialigned systems.
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find that where the spin of the black hole is nearly zero, the
results are consistent with the comparisons of nonspinning
approximants in Ref. [13].

In the previous sections we have modeled the sensi-
tivity of aLIGO with the zero-detuned, high-power sensi-
tivity curve [69]. Early commissioning scenarios for
aLIGO indicate that observations will begin with less
sensitivity in the 10–40 Hz region [52]. We investigate
if the substantial disagreement found between TaylorF2
and TaylorT4 is still present for early detector sensitives by
a instead using a lower frequency cutoff of 30 Hz.

In Fig. 15 and 16, we show the faithfulness between the
TaylorF2 and TaylorT4 approximants that include only the
complete 2.5 PN and partial 3.5PN spin-related correc-
tions, respectively. We see that there is no significant
improvement in the faithfulness of the approximants, and
so additional spin corrections are desirable even for early
detector scenarios.

X. CONCLUSIONS

We have found that there is significant disagreement
between NSBH waveforms modeled with the TaylorT2,
TaylorT4, and SEOBNRv1 approximants. This will pose
problems for the construction of optimal NSBH detection
searches, potentially reducing the event rate, and may
cause significant biases in the parameter measurement of
detected signals.
The discrepancies are not accounted for by the differ-

ences between frequency and time domain waveforms and
start at fairly low (v� 0:2) orbital velocities. Since the
discrepancies in the approximants result from how the PN
expansions of the energy and flux are combined and trun-
cated, we conclude that the calculation of higher order PN
terms is required to increase the faithfulness of these
approximants, and more importantly, to improve the ability
to detect NSBH coalescences. The discrepancies between
approximants are significantly smaller when the spin of the
black hole is close to zero, which further motivates
the calculation of the PN terms associated with the spin
of the objects beyond those known completely up to 2.5PN
order and partially up to 3.5PN. Therefore, additional work
is needed to verify the validity of waveform models used
for NSBH searches. We also note that we have only com-
pared different waveform families under the assumption
that the spins of the component objects are (anti-)aligned
with the orbital angular momentum of the system. It is
expected that generic NSBH systems will not be limited to
aligned spins, but may instead be more isotropically ori-
ented. This could lead to an additional source of discrep-
ancy between our models and the true signal, which would
result in an additional loss in the detection rate of sources.
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APPENDIX A: POST-NEWTONIAN ENERGY
AND GRAVITATIONAL-WAVE FLUX

In this appendix, we give the PN coefficients for the center
of mass energy Ei and the gravitational-wave flux Fi, whose
contributions were derived and presented in [30,31,33,38–
40,70,73–77]. We include corrections that involve the com-
ponent objects’ spins up to 3.5PN. These coefficients depend
on the dimensionless spins of the component objects �i ¼
Si=m

2
i , their projections onto the direction of so-called

Newtonian orbital angular momentum LN ¼ M�r� _r,
and the symmetric mass ratio �. Additionally, quadrupole-
monopole contributions depend on a parameter qi, which
quantifies the strength of the quadrupolemoment induced by
the oblateness of each spinning compact object. For BHs,
qi ¼ 1, while for NSs qi will depend on the equation of
state, with [78] finding qi � 2� 12.

The coefficients associated with the energy are given as
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The coefficients associated with the flux are given as
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APPENDIX B: POST-NEWTONIAN
APPROXIMANTS

The PN approximants TaylorT4, TaylorT2, TaylorF2,
and TaylorR2F4 are given using the flux up to 3.5 PN
and the center-of-mass energy up to 3.0 PN. Corrections
due to spin are included up to 3.5 PN order. This
includes the leading order spin orbit correction � at
1.5PN, leading order spin-spin correction 	 at 2PN
(which includes quadrupole-monopole and so-called
self-spin effects proportional to s2i ), next-to-leading
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order spin-orbit corrections � at 2.5PN, tail-induced spin
orbit correction 
 at 3PN, and third order spin-orbit
correction � appearing at 3.5PN. These corrections can
be expressed as
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4. TaylorR2F4

In the equation below, the ai are the PN coefficients of the TaylorT4 expansion�
dv

dt
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which can be read off of Eq. (B6),
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