Structure of the subduction transition region from seismic array data in southern Peru

Kristin Phillips and Robert W. Clayton

Division of Geophysics, Caltech Seismological Laboratory, MS 252-21, Pasadena, CA 90240, USA. E-mail: k.phillips.alonge@gmail.com

Accepted 2013 December 11. Received 2013 December 7; in original form 2013 August 28

SUMMARY
Data from three seismic arrays installed in southern Peru were analysed using receiver functions from P, PP and PKP wave phases, in order to image the subducted Nazca slab. The arrays cover the transition region from flat slab subduction in central Peru to normal subduction with an angle of about 30° further south. A previous study used data from the first array in the normal subduction region to image the Moho depth and slab, and showed the existence of a mid-crustal structure at 40 km depth that is suggested to be a possible underthrusting of the Brazilian shield. Here, we discuss new observations from the other two arrays that span the transition between the two subduction regimes and the flat subduction region. The results provide an image of the flattened slab from the coast to approximately 30 km inland and also across the transition region from flat to 30° subduction, which appears to be a bend rather than a tear in the slab. In the flat slab region, the slab is well defined near the coast and flattens out at 100 km depth beneath the Altiplano. The slab appears to start flattening some 400 km in advance of the subduction of the Nazca Ridge and the flattening is maintained for 1300 km after its passage. The Moho begins at a depth of around 30 km near the coast and has a maximum depth of 75 km beneath the Altiplano, consistent with the results of the other arrays. Both arrays also show a positive impedance mid-crustal structure at 40 km depth, which if explainable by underthrusting of the Brazilian shield, would add further support to the observations from the normal subduction region and show the northward and westward extent of the signal. The underthrusting hypothesis would explain the missing crust from the shortening budget needed to support the Altiplano. The Vp/Vs ratios for both arrays exhibit average values between 1.73 and 1.75 indicating a lesser likelihood that there is a high degree of partial melting or magma bodies at depth in this region. The receiver function results provide new imaging of the flat slab and transition from normal to flat slab subduction which allows for comparison of different subduction regimes.

Key words: Seismicity and tectonics; Continental margins: convergent; Crustal structure.

1 INTRODUCTION
The dip of the subducted Nazca Plate beneath southern Peru changes from shallow or flat slab beneath central Peru to a steeper dip angle (‘normal’ subduction) of around 30° beneath southern Peru. This transition is evident in the seismicity (Barazangi & Isacks 1976; Suarez et al. 1983; Grange et al. 1984; Cahill & Isacks 1992), and by a gap in the arc volcanism (McGeary et al. 1985; Gutscher et al. 1999a, 2000b). Adakitic magmas have also been associated with flat slab regions (Gutscher et al. 2000a) and have been reported in southern Ecuador/northern Peru (Beate et al. 2001). They are suggested to result from partial melting of subducted oceanic crust. Besides the observed correspondence between adakites and flat slab regions, the partial melting resulting in such magmas could also be a result of slab tearing at the transitions from flat slab to a steeper dip angle (Yogodzinski et al. 2001). The lack of reported adakites in southern Peru gives some indication that the southern transition is slab bending rather than a tear. The change in dip is coincident with the subduction of Nazca Ridge. This is one of three zones of slab-dip changes along the western margin of southern America. In central Chile, the subduction of the Juan Fernandez Ridge is cited as the cause of the flatten along its subduction trajectory (Pilger 1981; von Huene et al. 1997; Gutscher et al. 2000b), and the study of Anderson et al. (2007) shows that the zone of flattening tightly conforms to the shape of the ridge. In Equador, the Carnegie Ridge also apparently causes the slab to flatten (Gutscher et al. 1999b).

Various mechanisms have been proposed as to the cause of flat slab subduction. Some authors have noted a correlation between regions of flat slab subduction and the presence of thickened oceanic crust such as that due to a subducting plateau or ridge which could...
increase the buoyancy of the subducting slab (Gutscher et al. 2000a). Gutscher et al. (1999a) proposed that the length of flat subduction in Peru was due to buoyancy effects resulting from two subducting bodies; the Nazca Ridge and a previously unknown impactor referred to as the Inca Plateau which is believed to be the mirror image of the Marquesas Plateau although recent plate movement reconstructions call into question the proposed location and timing of the Inca Plateau (Skinner & Clayton 2013). Both plateaus were suggested to have formed at the Pacific–Farallon spreading centre based on tectonic reconstructions. According to Hampel (2002), the Nazca Ridge originally began subducting at 11°S at around 11.2 Ma. Since then it has been sweeping south and presently has a migration rate of around 43 mm a⁻¹ (Hampel 2002). The region of flat subduction in Peru corresponds to the area swept out by the Nazca Ridge. Thus, the Nazca Ridge may have had an impact on the evolution and shape of the subduction zone. In addition to buoyancy effects caused by a subducting ridge or plateau, other factors could influence flat subduction such as the age of the lithosphere being subducted (Sacks 1983), delay in the basalt to eclogite transformation (Pennington 1984; Gutscher et al. 2000b), absolute motion of the upper plate (Olbertz et al. 1997), the convex curvature of the Peruvian margin (Bevis 1986; Cahill & Isacks 1992), intraplate hydrostatic suction (Jischke 1975) or cycles of flat subduction caused by rebound after a steepening slab breaks off (Haschke et al. 2002).

Modelling has been done in several studies to address the relative importance of different causes for flat slab subduction. van Hunen et al. (2002a) suggested that relative motion of the upper plate could be equally or more important than plateau subduction based on numerical studies; however, this is a factor that is present in the region of normal subduction as well. The dominant mechanism for flat slab subduction needs to be considered independently for each subduction zone since some factors are present in both normal and flat slab regions while other factors can be observed in only some flat slab regions and not in others. One of the puzzling aspects of the flat subduction in southern Peru is the fact that the slab does not return to a normal dip angle after the impactor has passed. This contrasts with central Chile where the slab returns to normal dip at a distance of about 150 km on either side of the track of the Juan Fernandez Ridge (based on contours from Anderson et al. 2007).

In this study, we examine the details of the transition zone between normal and flat subduction using dense seismic arrays, which include instruments both in the flat slab zone as well as an array parallel to the trench to sample the subduction transition. The array in the flat slab region near the Nazca Ridge provides an opportunity to study the effect of the Nazca Ridge on the subduction zone in southern Peru. A previous study (Phillips et al. 2012) has described the results of a line (Line 1, Fig. 1) that is in the normal dip part of the zone. It succeeded in imaging the slab down to 250 km, and

Figure 1. Location of the seismic arrays in southern Peru as denoted by red circles. Added stations from the PULSE and CAUGHT experiments are shown as orange and purple circles, respectively. The topography and bathymetry show the incoming Nazca Ridge and the Altiplano of the Andes. Slab contours are based on fits to seismicity and comes from the Slab 1.0 model (Hayes et al. 2012). Active and dormant volcanoes are denoted by white and blue triangles. The three seismic arrays are labelled ‘Line 1’, ‘Line 2’ and ‘Line 3’. Line 1 is located in the region of normal subduction, Line 2 samples the transition from normal to flat slab subduction and Line 3 is in the flat slab region. The black lines along Lines 2 and 3 with endpoints labelled A, B and C correspond to cross-section profiles in Fig. 2.
found a mid-crustal velocity increase at about 40 km depth suggested to be underthrusting by the Brazilian shield. In this study, we expand on those results by presenting details of the transition and flat slab subduction regions.

Receiver function studies performed here provide details of the structure of the subduction system including Moho depth and shape of the slab as well as velocity information such as \(V_p/V_s \) ratio. Corresponding images show the transition from normal to flat slab subduction and the shape of the slab in the flat slab region, which is affected by the subducting Nazca Ridge. The structure of the flat slab region is compared to the study of the normal subduction regime. The slab geometry is important for simulations of flat slab evolution such as those found in Manea et al. (2012) and O’Driscoll et al. (2012).

2 METHODS

2.1 Stations and data

Three lines of broad-band sensors were installed as part of the Peru Subduction Experiment (PeruSE) as seen in Fig. 1. The first line (Line 1) deployed perpendicular to the trench from Mollendo on the coast to Juliaca near Lake Titicaca, samples the region of normal subduction dip (Philips et al. 2012). The second seismic array (Line 2) runs parallel to the trench from Juliaca to Cusco sampling the transitional region where the subduction regime changes to shallow subduction. It includes 50 broad-band seismic stations over a distance of about 300 km resulting in an average station spacing of about 6 km. Line 3 is perpendicular to the trench starting on the coast near the city of Nazca and runs inland through Cusco for 509 km. It consists of 40 stations from the PeruSE network plus five stations from the PULSE network (Eakin et al. 2011). Line 3 is located near where the Nazca Ridge is subducting beneath South America and samples the flat slab region. In addition, two stations from the CAUGHT network (Ryan et al. 2011) that are in the interior of the box defined by the networks described above are used.

The flat slab and the transition from normal to flat slab subduction can be roughly delineated by the seismicity of the Wadati–Benioff zone as is shown in Fig. 2. Event locations are from the International Seismological Centre (ISC) reviewed catalogue. The black lines show an average value for slab location based on best fit to seismicity. The seismicity shows the slab flattening out at 100 km depth beneath the Altiplano in the flat slab region and the shape of the curve in the transition region between Cusco and Juliaca.

Teleseismic data collected by the array were used in receiver function studies. Earthquakes between 30° and 90° away from Peru were used to make receiver functions based on the \(P \)-wave arrival. However, since many events are located beyond 90° from Peru, \(PP \) and \(PKP \) phases were also analysed for events occurring at distances greater than 90° from Peru. \(PKP \) phases are used at distances between 143° and 180° and can be useful for detecting dipping interfaces. For Line 2, a total of 73 events using the \(P \)-wave phase, 175 \(PP \) and 50 \(PKP \)-wave phase events were used in this study. For Line 3, 50 \(P \) wave, 106 \(PP \) and 21 \(PKP \) phase events were used. To ensure higher signal to noise, events are of magnitude 5.8 or greater for distances less than 90° from Peru and greater than magnitude 6.0 for distance greater than 90°. The data were generally bandpassed from 1 to 100 s, but this was narrowed to 2–100 s for some distant events with higher apparent noise. Data were included if the signal-to-noise ratio appeared adequate for both the raw seismic data and resultant receiver functions.

Receiver functions were performed using the method described in Langston (1979) and Yan & Clayton (2007). Mantle and source effects are minimized by deconvolving the radial with the vertical component in the frequency domain (Langston 1979; Ammon 1991). Time-domain iterative deconvolution (Ligorio & Ammon 1999) was also tried, but produced noisier results. Receiver functions were stacked using the method of Zhu & Kanamori (2000) using multiple events from a similar backazimuth for each station to perform stacks. A maximum weighted summation function for stacking over the Moho and multiple arrivals provide estimates for depth to the impedance contrast and the \(V_p/V_s \) ratio. Average crustal \(P \)-wave velocities used in the estimate of depth and \(V_p/V_s \) from stacking of receiver functions for each station were derived mostly from averages of the 3-D \(P \)-wave velocity structure of Cunningham & Roecker (1986) for southern Peru. Their model was also compared with more recent velocity models such as the model of Dorbath et al. (2008) from northern Chile. Uncertainty in the stacking method described above is given by the 95 per cent maximum.
contour. Estimates of depth uncertainty due to uncertainty in the velocity model used for stacking are on the order of 2 km or less based on performing stacks with variations in average crustal V_p of up to 0.2 km s$^{-1}$ from the velocity model used.

2.2.1 Receiver function imaging methods

Several different imaging and migration approaches were tested in order to image the receiver function data. Although all the imaging methods show consistency in the major arrivals such as the Moho, the various methods can highlight or bring out different features in the data and are useful to compare.

One imaging method uses backprojection to plot receiver function amplitudes along rays projected in the direction from which the energy originated. The initial velocity model for converting receiver function time to depth was a simple layered velocity model based on IASP91 but the model was tested against one with a thicker crust to better reflect expectations for the Andes. The change was not observed to affect resultant depths in images significantly. The backprojection uses information such as the ray parameter and backazimuth to calculate the arrival angle at the station and estimate the distance from the station at a given depth. Examples of images using this method can be seen in Figs 6(a) and 11(a)–(c) as discussed in the Section 3. A related but slightly different approach uses common conversion point (CCP) stacking in which the Moho piercing point is estimated using backprojection. The array is divided into distance bins and at each distance the stack of all receiver functions with a Moho piercing point at that distance is plotted vertically as a function of depth. This is different from the other imaging approach where each point in the image is a stack of all rays that pass through that point. Examples of CCP stacking can be seen in Figs 4 and 6(b).

In addition to backprojection and CCP stacking, a migration of P-to-S converted phases using a Kirchoff-style migration is done by assuming a conversion occurs at every possible scattering point to calculate traveltimes. Corresponding amplitudes are stacked to form an image. A simple half-space starting model for the traveltime inversion uses an average crustal P-wave velocity of 6.3 and the average V_p/V_s ratio of 1.75. The velocity was varied to test sensitivity of the migration results to the velocity changes. An example of receiver function migration can be seen in Fig. 5. Further details of the receiver function methodology and imaging are discussed in the Supporting Information and in Phillips et al. 2012.

2.3 Finite difference modelling

A simple 2-D velocity model was used to produce synthetic receiver functions using a 2-D finite difference code (Kim et al. 2010) to compare with receiver function results for both Lines 2 and 3. The model for Line 2 is 300 km wide in distance and 250 km in depth. It has an average crustal P-wave velocity of 6.3 km s$^{-1}$ with a mid-crustal velocity jump to 6.6 km s$^{-1}$. The velocity jump is constrained by the amplitude of the mid-crustal arrival. The mantle wedge is taken as having an average velocity of 7.7 km s$^{-1}$ and the subducting oceanic crust as 7.0 km s$^{-1}$ (Abers 2000; Abers et al. 2006; Kim et al. 2010). The underlying mantle is taken as having an average velocity of 8.0 km s$^{-1}$ down to 250 km. Synthetic receiver functions are produced by modelling plane waves with variable ray parameters to simulate teleseismic sources. The finite difference synthetics are of comparable frequency content to the teleseismic data used to produce receiver functions in this study.

Synthetic receiver functions are produced using a standard time-domain deconvolution algorithm.

3 RESULTS

3.1 Line 2 results: transition from normal to flat slab subduction

Line 2 samples the transition from normal to flat subduction. On the SE end (near Lake Titicaca) the slab is at a depth of approximately 215 km, while on the NW end (near Cusco) the slab is at a depth of 100 km. An image of the Moho and the slab can be seen in the receiver functions shown in Fig. 3(a). The receiver function signal from the slab is usually defined as negative and positive receiver function pulses at the top and bottom of the subducting oceanic crust. In some cases, the double pulse signal is detectable while in some cases either a positive or negative signal is dominant. In the case of Line 2 (Fig. 3a), the region where the slab is expected based on seismicity slab contours (see black line in Fig. 3a) contains a broad region of negative impedance with a shape that bends upwards as expected of the slab signal as delineated by the dotted yellow line. Also observable is a mid-crustal positive impedance signal at a depth of about 40 km, which was interpreted by Phillips et al. (2012) to result from the underthrust Brazilian shield. The strength of the mid-crustal signal relative to the Moho can be seen in the Supporting Information which shows that a very similar Moho and mid-crustal signal are seen at multiple stations across the array. Both features appear to be relatively flat and the Moho has an average depth between 70 and 75 km beneath the Altiplano. This depth is consistent with the relatively flat elevation profile and suggests that the topography is isostatically supported by the crustal root (see Fig. 9 which shows consistency with Airy isostasy). Receiver function traces from a magnitude 7.3 Vanuatu earthquake on 2010 August 10 (Fig. 3b) show a result consistent with all other receiver function images based on multiple events. The receiver function traces show signals from the mid-crustal structure, Moho, slab and crustal multiples. Finite difference modelling based on receiver function results for Line 2 using a simplified 2-D velocity model produces synthetic receiver functions consistent with the receiver function data (Figs 3c and d). CCP stacks were done for both the P/PP and PKP receiver functions and the resultant images are shown in Fig. 4 which is consistent with Fig. 3(a). Although the primary slab signal observed for Line 2 is a negative impedance signal consistent with finite difference modelling results, a positive impedance signal roughly following the shape of the slab is observed above the negative slab signal as seen in Figs 3 and 4. Another check on the shape of the slab is receiver function migration using a simple homogenous velocity model for the crust. The results are shown in Fig. 5, which shows a discontinuous signal from the Moho and mid-crustal structure and a clear change from negative to positive impedance near where the top of the slab is expected. Although a weak, discontinuous Moho signal is present at depths expected from other images, inversion artefacts and other noise interference largely removes the signal in the migrated image so it is useful to compare with other imaging approaches such as CCP stacking in Fig. 4. The initial model for the expected slab location (see lines in Figs 3a and 5) is based on slab contours from the Slab 1.0 model of Hayes et al. (2012).

Several different models for the shape of the slab were considered and modelled using the finite difference method for comparison with the receiver function data, including a linear transition, an abrupt...
transition consistent with a slab break and a gently bending model shown in Fig. 3 (see Supporting Information for alternative models). The receiver function results such as Fig. 4 best match the bending model.

The Moho and Vp/Vs results obtained from receiver function stacking using the method of Zhu & Kanamori (2000) are summarized in Fig. 8, which shows station elevation, Moho depths and Vp/Vs ratios. The Moho is relatively flat for Line 2 and increases with depth to a maximum depth of 75 km near Line 3 with a decrease in crustal thickness notable where station elevation begins to decrease.

3.2 Line 3 results: flat slab region

The third seismic array runs from the coast near Nazca northeast to Cusco in the region of shallow subduction just south of where the continuation of the Nazca Ridge is subducting. The shallow slab can be clearly seen to a depth of about 100 km in Fig. 6, as well as the Moho at an average depth of 70–75 km. A mid-crustal structure is observed as well (see Fig. 7a for clarification). The receiver function traces from the NW backazimuth in Fig. 7b also show the Moho signal clearly as well as the signal from the slab as it flattens at 100 km depth. A more complete image showing that the slab remains flat for the extent of the array can be seen in the CCP stacks plotted in Fig. 6(b). The receiver function results can be compared to 2-D finite-difference models as in Fig. 7(a). The model that fits the data best includes a velocity increase between the upper and lower crust. The synthetic receiver functions show a double pulse structure the full length of the subducting oceanic crust, which is consistent with Fig. 6(b), which includes receiver function data from all azimuths while in single azimuth images such as Fig. 6(a) the positive impedance signal from the base of the oceanic crust is more difficult to detect at greater distances and depths.

Moho depths for Line 3 in Fig. 8 indicate isostatic compensation under much of the Altiplano but the fit to Airy isostasy is not as good near the coast where the slab depth is shallower,
Figure 4. Plot of common conversion point (CCP) stacks with bin spacing equal to station spacing. The stack traces are shown overlaying the amplitude of the stack with some horizontal smoothing. Receiver functions included in the stacks come from all azimuthal directions. The images show the mid-crustal structure, Moho signal (positive impedance signals) which are both relatively flat and the slab signal which is observed as a negative impedance signal underlying a positive slab arrival. The station elevation is shown above the image (note the different scale from the CCP image).

Figure 5. Line 2 receiver function migration plotted as distance from Juliaca on the x-axis and depth on the y-axis. Black lines show an interpretation of the image showing the expected location of the mid-crustal structure, Moho and slab. The location of the slab, as noted in Fig. 3(a), is based on slab contours which were then compared against the RF results. Note the change from negative to positive receiver function impedance corresponding with the expected location of the slab.

possibly as a consequence of the presence of the Nazca Ridge. The crust appears compensated within the uncertainty of the data if buoyant material is present near the coast with dimensions comparable to that of the Nazca Ridge (see Fig. 8d). The V_p/V_s ratio varies with most values falling between 1.7 and 1.8 with an average value of 1.75 and shows no strong trends other than an overall slight increase in V_p/V_s with distance from the coast.
Figure 6. (a) Receiver function image for Line 3 based on P and PP receiver functions from an NW azimuth from Peru. The image was formed by backprojecting the rays from the direction in which the energy originated. Distance is from the coast near Nazca to Cusco. Open circles show hypocentral locations from NEIC. Black lines show an interpretation of the Moho with individual station picks from stacking shown as green triangles, and interpretations of the slab and mid-crustal structure. The slab can be seen flattening out at 100 km depth with the Moho just above it at around 70 km depth. Note a shallowing of Moho depth between about 200 and 300 km distance and near 500 km distance where topography decreases in elevation, indicating a good correspondence between topography and Moho depth. (b) CCP plot for Line 3 showing the stacks with background colours showing amplitude. The mid-crustal structure, Moho and slab interpretations are delineated with yellow lines.
Figure 7. (a) Finite difference modelling for Line 3. The model includes a mid-crustal velocity increase. Synthetic receiver functions are consistent with receiver function results showing the double pulse structure of the slab, the positive Moho signal and mid-crustal structure. (b) Receiver function plot showing stacks for each station based on events from the northwest consistent with the images in Fig. 6. Major arrivals such as the slab signal, Moho depth and mid-crustal structure are marked by yellow lines and can be compared to the synthetics in part (a).
4 DISCUSSION

4.1 Moho depth and V_{p}/V_{s}

The maximum Moho depth of 75 km beneath the Altiplano is consistent with results for the first seismic array (Line 1) in the region of normal subduction dip (Phillips et al. 2012). Previous studies in the central Andes have resulted in comparable estimates for crustal thickness. Most estimates have an average value of 70 km with ranges between 59 and 80 km for crustal thickness beneath the Western and Eastern Cordilleras and Altiplano (Cunningham & Roecker 1986; Zandt et al. 1994; Beck et al. 1996; Myers et al. 1998; Baumont et al. 2001; Beck & Zandt 2002; Yuan et al. 2002; McGlashan et al. 2008; Lloyd et al. 2010). The crust in the Altiplano region is isostatically compensated primarily through crustal thickening (Whitman et al. 1993), and crustal shortening due to compression generated by plate coupling or through the Arica bend provides a significant mechanism for contributing the crustal thickness. Gotberg et al. (2010) show that 70 km of thickness in to the Andes would require 240–300 km of shortening but their preferred shortening estimate left a significant proportion of this shortening budget unaccounted for. Other possible mechanisms which would contribute to thickening include processes such as shortening related to the Arica bend (Kley & Monaldi 1998; Gotberg et al. 2010), magmatic additions or shortening hidden by the volcanic arc (Gotberg et al. 2010), thermal weakening, upper-mantle hydration (Allmendinger et al. 1997) or other factors. Another possible mechanism which would help to explain crustal thickness not accounted for by shortening, is tectonic underthrusting which would be consistent with the idea that the mid-crustal structure observed at 40 km depth is a result of underthrusting of the Brazilian shield (Whitman et al. 1993). In this case, the mid-crustal structure could represent the top of the Brazilian shield in which much of the overlying sediment has been eroded off and incorporated into the fold and thrust belt leaving mostly basement rock remaining. A thin layer of remaining sediment may show up as a low-velocity layer, which has been
observed in initial surface wave studies. The positive impedance signal at about 40 km depth is observed strongly across Line 2 and also is seen in the easternmost portions of the two arrays perpendicular to the trench. The possible correlation between the signal at 40 km depth with the underthrusting of the Brazilian shield is discussed in Phillips et al. 2012. This mechanism is more consistent with a gradual uplift model for this part of the Altiplano (Elger et al. 2005; McQuarrie et al. 2005; Oncken et al. 2006; Barnes & Ehlers 2009; Ehlers & Poulsen 2009). Further discussion of crustal thickness and properties and implications for possible underthrusting of the Brazilian shield can be found in Phillips et al. 2012.

V_p/V_s ratios appear to have an average value between 1.73 and 1.75 with few discernible patterns in terms of areas of higher or lower V_p/V_s. A V_p/V_s ratio of 1.73–1.75 corresponds to a Poisson’s ratio of 0.25 to 0.26, which is compatible with previous results for the Altiplano (Zandt & Ammon 1995; Beck et al. 1996; Swenson et al. 2000). The observed values of the V_p/V_s ratio support the conclusion that the crust in the transition and flat slab regions does not have a high degree of partial melting, consistent with the observed volcanic gap, since there are no regions with abnormally high values as might be expected where a magma body is present. The location of the active volcanic arc relative to the arrays can be seen in Fig. 1 which confirms that Lines 2 and 3 are located outside of the volcanic region. V_p/V_s results for Line 1 in the region of normal subduction showed a few areas of higher V_p/V_s values near the active volcanic arc, which may be indicative of magmatism (Phillips et al. 2012). The amount of variation in V_p/V_s measurements is partly due to uncertainty in cases where the multiples on which they rely are not readily apparent in the receiver function data resulting in less constraint on V_p/V_s results. An example is seen in the Supporting Information where the signal from the Moho is observed more clearly than the multiple arrivals. The uncertainty is given by the 95 per cent contour line and gives a 1σ value of about 0.035 which is an average uncertainty estimate for error due to sources such as noise and unclear multiple arrivals.

4.2 Slab structure

The shape of the slab is delineated through various images from different backazimuths and the use of both P/PP and PKP receiver functions. For Line 2, the transition from normal to flat slab subduction, the slab signal appears as a primarily negative impedance functions. For Line 2, the transition from normal to flat slab subduction regimes, the finite difference runs were performed with similar ray parameters and slab orientations (shallowest part of slab on left) such that the only difference is the shape of the slab, which impacts the transmission angle of the incoming energy. Note that the observed slab signal in the synthetic receiver functions differs for different slab shapes, with a dominantly negative impedance signal in the transition region, a double pulse signal in the flat slab region and a double pulse signal for the shallower part of the normal subduction region. The effect of the angle of incidence on the observed slab signal in receiver functions was also investigated by varying the ray parameter and location from which the plane wave originates in finite difference simulations. Such simulations showed that it was even possible to get a positive pulse overlying a negative pulse for certain steep angles of incidence. This was also noted in Phillips et al. (2012) particularly with respect to PKP receiver functions which arrive at a very steep angle and produce a slab signal that was inverted with respect to that of P/PP receiver functions. Thus the reason why the slab signal appears to be mainly a negative impedance signal for Line 2 (see Figs 3c and d) compared to the slab signals for the other two arrays appears to be related to the subduction zone structure and angle of the subducted oceanic crust and a change in the transmission coefficient for certain angles of incidence.

4.3 Nazca Ridge and causes of flat slab subduction

The Nazca Ridge is currently subducting at a latitude of -15° S and has a projection that puts the portion of the ridge that has already subducted just north of Line 3 (see Fig. 1). The Nazca Ridge has a trend of N42° E at a region where the convergence direction is 77° resulting in an oblique angle of subduction and southward ridge migration (Hampel 2002). According to Hampel (2002), the Nazca Ridge began subducting at 11° S at 11.2 Ma and is presently migrating at 43 mm a$^{-1}$. Several authors have considered the buoyancy effect of the Nazca Ridge as a mechanism to support the development of flat slab subduction (Gutscher et al. 1999a, 2000; van Hunen et al. 2002a,b). The ridge is a wide feature (200 km wide, 1.5 km high, with a total crustal thickness of 17 km) so the stations on the array closest to the coast are most likely to show the impact of the subducting ridge on the subduction system. Some of the expected effects of the subducting ridge on the coastal region are deformation of the upper plate, uplift in the forearc, westward shift of the coastline (Hampel 2002) and a gravity anomaly corresponding to the crustal root supporting the ridge (Macharé & Ortlieb 1992; Hampel et al. 2004). The coastal stations show possible evidence.
of some uplift in the forearc compared to the normal subduction region but overall the elevation profiles are similar (see Fig. 12a).

A comparison of receiver function results from Line 3 near the subducting Nazca Ridge with results from the region of normal subduction further south between Mollendo and Juliaca can be seen in Fig. 11. The slab dips near the trench are initially similar before the flat slab quickly flattens out at 100 km while in the normal region the slab continues declining at a constant angle. The Moho in both cases is relatively flat at a depth of around 70 km for much of the central section of the Altiplano. One notable difference between the Moho in the flat and normal subduction regions is that the positive impedance signal from the Moho is less distinct for the flat slab region (Line 3) near the coastline where the slab is descending from the trench while for the normal subduction region (Line 1) the Moho is clear throughout the whole range of the array. The reason for this may be that the thin slab region has a cooler thermal structure and less slab dehydration, which could change the wedge velocity such that it has no contrast with the crust (Bostock et al. 2002). Another difference between the Moho observed in the two regions is that in the case of the flat slab, there is a narrower gap of only about 30 km between the Moho at 70 km depth and top of the slab at 100 km depth so there is no room for asthenospheric material, which provides an explanation for the observed volcanic gap observed in the flat slab region. A thin mantle lithosphere is expected between the continental Moho and subducting plate. The difference between Moho depth and the subducting plate impacts the degree of coupling between the Nazca Plate and overriding South American Plate and thus the degree of intraplate hydrostatic suction which has been proposed as a possible factor in encouraging flat slab subduction.

A comparison of the topography in the forearc region to the Western Cordillera for both the normal and flat slab regions can be seen in Fig. 12(a). Although there are similarities in the overall rise, Line 1 is almost flat for the first 30 km before showing a sudden jump to an elevation of about 1.2 km while Line 3 initially rises more rapidly before flattening out until 60 km from the coast. Thus, at a distance of 30 km from the coast, Line 3 has an elevation about 400 m higher than Line 1 has at the same distance from the trench. This may correspond to the several hundred metres of forearc uplift mentioned by Hampel (2002) as resulting from the subduction of the Nazca Ridge.

In addition to comparing the topography, Figs 12(b)–(d) show a comparison of the seismicity between the flat slab and normal
Figure 10. Comparison of synthetic models for all three seismic arrays showing (a) the region of normal subduction (Line 1), (b) the transition from normal to flat slab subduction (Line 2) and (c) flat slab region (Line 3). Note that the synthetic receiver functions for Line 3 show a double pulse slab signal while the slab for Line 1 is double pulse mainly for the upper half and primarily negative at depth while the slab signal for Line 2 is mostly a negative impedance signal.

Subduction region both in terms of seismicity in the Wadati–Benioff zone defining the shape of the slab and crustal seismicity, which provides some measure of amount of faulting and deformation in the upper plate. The seismicity comes from the National Earthquake Information Center (NEIC) catalogue for the past 30 yr (1982–2012) including events larger than Mw 4.0. Events were removed in which the depths were not well defined and were given a default crustal depth of 33 km. The overall number of events is greater in the south.
Figure 11. Comparison of the structure of the normal subduction region (Line 1) and flat slab region (Line 3). (a) Line 3 from Nazca to Cusco. Moho picks from stacking are shown by green triangles. (b) Results from Line 1 in the normal subduction region showing the 30° dipping slab using P/PP receiver functions from an NW backazimuth. Note that the double pulse slab signal from Line 3 (a) is most clear up to 100 km before appearing as a primarily negative signal while the slab in the region of normal subduction is seen as a positive impedance signal at all depths down to a depth of about 200 km. Simple models of the normal and flat slab regions used for finite difference modeling are shown to the right of the images. (c) An image from Line 2 using P/PP receiver functions from all azimuthal directions showing only the upper 120 km. The Moho can be clearly seen as can a mid-crustal structure at 40 km depth which is suggested to be from underthrusting of the Brazilian shield.
Figure 12. (a) Comparison of station elevation for Line 1 (normal subduction) shown by the red line with elevation of Line 3 (flat slab subduction) shown by the blue line. (b) Depth versus distance seismicity cross-section for Line 1 where the black line represents the approximate location for the top of subducting Nazca Plate. Earthquakes are from the NEIC catalogue from 1982 to 2012 for events of magnitude greater than 4.0. (c) Same as in (b) but for Line 3 in the flat slab region. (d) Overlay of the plots shown in parts (b) and (c) to allow for comparison of the flat slab and normal subduction region.
where normal subduction is occurring. The difference in level of crustal seismicity does not appear to be significant although in the case of normal subduction there appears to be a cluster of events near the centre of the array at a very shallow depth, which is likely related to activity near the active volcanic arc.

In terms of a cause of flat slab subduction, most authors conclude that the Nazca Ridge does not have sufficient buoyancy by itself to sufficiently support the length of the Peruvian flat slab (Gutscher et al. 1999a,b; van Hunen et al. 2002a, 2004). Other factors present in Peru which can impact dip angle are the fast subduction velocity relative to the motion of the overriding plate, intermediate age of subducting lithosphere (30–40 Ma), the Arica bend, hydrostatic suction and possibly cycles of repeated slab breakoff and flat slab subduction since repeated flat slab subduction events through time have been documented in the Andes (Haschke et al. 2007). Although the main cause and relative importance of various causes are outside the scope of the data collected in this study, we conclude that the motion of the Nazca Ridge sweeping down the coast is unlikely to be a significant cause of flat slab subduction. The length of flat slab segment south of the Nazca Ridge appears too long to be supported by buoyancy of the ridge alone and regions north of the ridge do not return to normal dip after the ridge has passed.

5 Conclusions

Receiver function studies from seismic arrays in southern Peru provide more details of the structure of the transition region from normal (30° dip) subduction to flat slab subduction. The Moho beneath the Altiplano is found to have a maximum depth of 75 km. The depth of the Moho is found to be consistently deep beneath the Central Andes, where more topography of the Moho is observed. The shape of the slab is also clarified and the transition is found to be gradual from almost flat at an average depth of 70 km underneath the north–south trending array, which contrasts with other areas of South America where more topography of the Moho is observed. The shape of the slab is also clarified and the transition is found to be gradual from normal to flat slab subduction, which indicates that the change is most likely a contortion rather than a break in the slab. The slab is observed have an almost constant depth of 100 km beneath the array in the flat slab region. The observed impacts of the Nazca Ridge and flat slab subduction from this study are a lessening of overall seismicity, minor uplift in the forearc region and a less defined Moho transition near the coast.

Acknowledgements

We thank the Betty and Gordon Moore Foundation for their support through the Tectonics Observatory at Caltech. This research was partially supported by NSF award EAR-1045683. Also thanks to Richard Guy, Paul Davis and Igor Stubailo of the UCLA Center for Embedded Networked Systems, Steven Skinner of the Caltech Seismological Laboratory, Hernando Tavera and Victor Aguilar of the Instituto Geofisico del Peru and Laurence Audin of Institute of Research for Development. We also thank the PULSE and CAUGHT projects for contributing data to this study. Contribution #238 from the Tectonics Observatory.

References

SUPPLEMENTARY INFORMATION

Additional Supporting Information may be found in the online version of this article:

Supplemental figures. This section contains supplementary material and figures to provide additional details and clarification of the methods and results discussed in the paper. (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggt504/-/DC1)

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.