On Rates and Mechanisms of OH and O₃ Reactions with Isoprene-derived Hydroxy Nitrates

Supporting Information

*Lance Lee¹, Alex P. Teng², Paul O. Wennberg², John D. Crounse*² and Ronald C. Cohen**¹,³

1. Department of Chemistry at University of California, Berkeley CA 94709

2. Geological and Planetary Sciences at California Institute of Technology, Pasadena CA 91125

3. Department of Earth and Planetary Science at University of California, Berkeley CA 94709

*(626)-395-8655; crounjd@caltech.edu; **(510)-642-2735; rccohen@berkeley.edu
A1. NMR assignment

trans-δ-1,4 hydroxy nitrate

NMR spectrum of purified sample of *trans*-δ-1,4 hydroxy nitrate was measured with a Bruker 400MHz instrument in CDCl₃ (Sigma Aldrich, 100% D). Hydrogen on C3 is shown as a triplet centering at 5.640 ppm with coupling constant of 7.2 Hz to the hydrogen on C4 at 4.985 ppm. Hydrogen on carbon 1 and the methyl group are observed as singlet, at 4.074 and 1.757 ppm, respectively. Other peaks upfield from 1.5 ppm are residual solvent peaks such as hexane and water.
cis-δ-1,4 hydroxy nitrate

Measured under the same condition as the trans-δ isomer. Similar peak assignment but slight difference in chemical shift of hydrogens on C3 and C4, due to relative position with respect to the methyl group.
Purified β-4,3 sample after HPLC separation. The 2 singlets at 5.120 and 5.082 ppm locations are the 2 distinct hydrogens at the end of double bond. The triplet at 5.312 ppm couples to the doublet centered at 3.776 ppm with a coupling constant of 5.2 Hz, corresponding to the single hydrogen on the nitrooxy carbon and the 2 equivalent hydrogens on the hydroxy carbon. The methyl group hydrogen appears as a singlet at 1.794 ppm. The peak at 1.555 ppm is due to water. Hydrogen on the OH group is broad.
A2. Wiggle Reduction for CIMS Signal

It may be observed that the CIMS signal has certain fluctuation during the decay. Such fluctuation was thought to relate to temperature of the analog-to-digital conversion board currently being used. The temperature fluctuation on the ADC board affects the counting of the ions with a fixed pre-set discrimination threshold. Overall the temperature fluctuation gives a signal variation of approximately 6%, and may be corrected by observing that similar fluctuation is present for the total ion counts. A long running average (3600 sec) is applied to the total normalized CIMS ion signal to obtain the baseline of the correction. The correction factor is then calculated by dividing the 1 Hz CIMS total ion signal to the long-averaged value. The resulting correction factor is a time series that has the same fluctuation as the signal, but with a normalized value centering at unity. By applying the correction as a multiplicative factor, a smoother decay is obtained, as shown in figure below.

![Graph showing wiggle reduction for CIMS Signal](image-url)
A3. Possible Interferences and Minor Reactions

In determining rate constants using relative method, interferences arise when more than one oxidant contribute to the consumption of the intended reactant and reference compounds. Under our OH experimental conditions, other possible oxidants are O₃, HO₂, RO₂ and O(³P). Ozone reaction with propene and hydroxy nitrates are much slower than OH reaction, with a rate constant around 1×10^{-17} cm3 molecule$^{-1}$ s$^{-1}$. With the measured O$_3$ concentration, we estimate the contribution to be less than 4%, well under our uncertainty. For HO$_2$, due to the excess H$_2$O$_2$ and NO in our system, the ratio of HO$_2$ over OH is generally around 5. Since HO$_2$ reaction with alkene is more than 6 orders of magnitude slower than OH, the HO$_2$ direct contribution should be negligible. The rate constant of reaction between alkene and alkylperoxy radicals are expected to be slow, likely less than 1×10^{-16} cm3 molecule$^{-1}$ s$^{-1}$ and should not be able to compete under 100 ppbv of NO. Lastly, O(³P) is formed under UV irradiation of accumulated NO$_2$ in our chamber, and has been shown to react with alkene by addition reaction to yield oxirane or, through hydrogen shift, ketones. Direct observation of the corresponding mass at m/z = 248 has been observed, with a tentative yield of 1.3% assuming the same sensitivity as trans-δ-1,4 hydroxy nitrate. Note that both oxirane and the isomerized ketones have the same mass. Assuming O(³P) reaction with hydroxy nitrate yields near 100% m/z = 248, this corresponds to an additional loss to our reactant of 1.3%. Using box model simulation with measured UV spectrum from the light banks and absorption cross section data, we estimate the fraction of reactant reacted with O(³P) to be of 0.6% using a rate constant of 3.5×10^{-11} cm3 molecule$^{-1}$ s$^{-1}$ (Paulson et al., 1995), both considered to be insignificant.

Potential mass interferences from oxidation products other than ones originating from hydroxy nitrate exists and can affect estimation for product yield. Hydroxy acetone, a direct product from δ hydroxy nitrates monitored at m/z = 159 can also be formed from a minor channel in OH oxidation of propene from the corresponding β-hydroxy alkoxy radical reaction with O$_2$. Under our experimental condition the yield is estimated to be 1.4%. For δ hydroxy nitrate experiments the amount of nitrate reacted is very similar to the amount propene reacted, hence the net contribution of m/z = 159 from propene is only around 3%. Photolysis of some of the carbonyl compounds formed has also been considered, given the availability of literature data and we have found that the loss is too slow to have significant modification to our observed products. Due to the limited photolysis data for functionalized organic nitrates, we use nitrooxy acetone as a surrogate for ethanal nitrate (m/z = 190) and methyl vinyl ketone nitrate and methacrolein nitrate (m/z = 234) and obtained a photolysis lifetime of ~48 hours from our light bank emission spectra, much longer than our typical experiment running time of ~2 hours.
A4. Parameterization for RO$_2$ + RO$_2$ Reactions

In order to achieve a reasonable representation of RO$_2$+RO$_2$ chemistry, 2 collective species are introduced, designated as (t)RO$_2$ and (p,s)RO$_2$ standing for the collective concentration of tertiary and non-tertiary peroxy radicals, respectively. The reason for such distinction is to account for the availability of α-hydrogen when proceeding through the alcohol and carbonyl forming channel of RO$_2$+RO$_2$ reactions. In cases when both RO$_2$ radicals are tertiary, this channel will be prohibited and an enhancement in alkoxy radical forming channel is expected. Alternatively when a tertiary RO$_2$ reacts with a primary or secondary RO$_2$, the tertiary RO$_2$ can only transform into the associated alcohol while the non-tertiary counterpart forms a carbonyl. Considerations for this functional group dependence and channel suppression are incorporated in our parameterizations. The collective species are not “consumed” when propagating the master equation, as equations 7~10 are formulated in such a manner that the product stoichiometry corresponds to the consumption of one ISOPOO$_x$ molecule only (not one ISOPOO$_x$ and one (x)RO$_2$). The products from all other RO$_2$ partner are calculated when iterating through all the RO$_2$ species. Note that when calculating (t)RO$_2$ and (p,s)RO$_2$ from lumped RO$_2$ species an estimation of the tertiary fraction of the lumped species may be necessary. For example, under the criteria of mass balance, ISOPNOO$_\delta$ should be considered as consisting of 0.82 (t)RO$_2$ and 0.18 (s,p)RO$_2$, while ISOPNOO$_\beta$ contains 0.36 (t)RO$_2$ and 0.64 (s,p)RO$_2$. Values for (t)RO$_2$ and (s,p)RO$_2$ are refreshed in each simulation step to reflect the current RO$_2$ concentration.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>k (298K) cm3 molecule$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ISOPNOO$_\delta$ + (t)RO$_2$ → 0.76 HO$_2$ + 0.06 ROOR + 0.13 R=O + 0.1 MVKN + 0.01 MACRN + 0.36 PROPNN + 0.3 ETHLN + 0.3 HACET + 0.36 GLYC + 0.11 HCHO</td>
<td>5×10$^{-15}$†</td>
</tr>
<tr>
<td>2 ISOPNOO$_\delta$ + (p,s)RO$_2$ → 0.28 HO$_2$ + 0.02 ROOR + 0.06 R=O + 0.62 C5THN + 0.03 MVKN + 0.01 MACRN + 0.12 PROPNN + 0.11 ETHLN + 0.11 HACET + 0.12 GLYC + 0.04 HCHO</td>
<td>6.7×10$^{-15}$†</td>
</tr>
<tr>
<td>3 ISOPNOO$_\beta$ + (t)RO$_2$ → 0.06 NO$_2$ + 0.44 HO$_2$ + 0.04 ROOR + 0.44 R=O + 0.28 MVKN + 0.16 MACRN + 0.06 HACET + 0.06 GLYC + 0.44 HCHO</td>
<td>4×10$^{-13}$†</td>
</tr>
<tr>
<td>4 ISOPNOO$_\beta$ + (p,s)RO$_2$ → 0.03 NO$_2$ + 0.25 HO$_2$ + 0.02 ROOR + 0.22 R=O + 0.46 C5THN + 0.09 MVKN + 0.16 MACRN + 0.03 HACET + 0.03 GLYC + 0.25 HCHO</td>
<td>8×10$^{-13}$†</td>
</tr>
</tbody>
</table>

† Estimated using the rates from Jenkin and Hayman (1995)6. ROOR = Organic peroxide, C5THN = C5 tri-hydroxy nitrate.

Page S7
References

