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We study the visible compression of a souéee{|¢;),p;} of pure quantum signal
states or, more formally, the minimal resources per signal required to represent
arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor

is given the identity of the input state sequence as classical information. According
to the quantum source coding theorem, the optimal quantum rate is the von Neu-
mann entropyS(&) qubits per signal. We develop a refinement of this theorem in
order to analyze the situation in which the states are coded into classical and
guantum bits that are quantified separately. This leads to a trade-off QIr{iR),
where Q* (R) qubits per signal is the optimal quantum rate for a given classical
rate of R bits per signal. Our main result is an explicit characterization of this
trade-off function by a simple formula in terms of only single-signal, perfect fidel-
ity encodings of the source. We give a thorough discussion of many further math-
ematical properties of our formula, including an analysis of its behavior for group
covariant sources and a generalization to sources with continuously parametrized
states. We also show that our result leads to a number of corollaries characterizing
the trade-off between information gain and state disturbance for quantum sources.
In addition, we indicate how our techniques also provide a solution to the so-called
remote state preparation problem. Finally, we develop a probability-free version of
our main result which may be interpreted as an answer to the question: “How many
classical bits does a qubit cost?” This theorem provides a type of dual to Holevo’s
theorem, insofar as the latter characterizes the cost of coding classical bits into
qubits. © 2002 American Institute of Physic§DOI: 10.1063/1.1497184
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I. INTRODUCTION

When the term “quantum information” was first coined, it would have been hard to predict
how thorough and fruitful the analogy between quantum mechanics and classical information
theory would ultimately prove to be. The general approach, characterized by the treatment of
guantum states as resources to be manipulated, has yielded a promising collection of applications,
ranging from unconditionally secure cryptographic prototdigo quantum algorithm$:® More-
over, the analogy, which was initially unavoidably vague, has gradually been filled in by a diverse
variety of rigorous theorems describing achievable limits to the manipulation of quantum states,
such as the characterization of the classical information capacity of quantum sbitcesden-
tification of optimal strategies for entanglement concentration and difuéind many more. One
of the pivotal results of the emerging theory is the quantum source coding th&srémdemon-
strating that for the task of compressing quantum states, the von Neumann entropy plays a role
directly analogous to the Shannon entropy of classical information theory. Indeed, the quantum
theorem subsumes the classical one as the special case in which all the quantum states to be
compressed are mutually orthogonal.

A guantum sourcéor ensemble&={|¢;),p;} is defined by a set of pure quantum sigfai
“letter” ) stated ¢;) with given prior probabilitiep; (cf. below for precise definitions of these and
other terms used in the Introductjoin this article we will study the so-calledsible compression
of £. More specifically, we wish to characterize the minimal resources per signal that are necessary
and sufficient to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the
compressor is given the identity of the input state sequencelaasical information (as the
sequence of labels, ... i, rather than the quantum statasl), o] (pin> themselves, for example
According to the quantum source coding theorem the optgquahtumrate in this scenario is the
von Neumann entrop$(£) qubits per signal. We will develop a refinement of this theorem in
which the states are coded into classical and quantum bits which are quasifiachtely This
leads to a trade-off curnv®* (R) whereQ* (R) qubits per signal is the optimal quantum rate that
suffices for a given classical rak bits per signal. The quantum source coding theorem implies
thatQ* (0)=S(&) and evidently we also hav@* (H(p)) =0 whereH(p) is the Shannon entropy
of the prior distribution of the sourcéBy standard classical compression, the compressor can
represent the full information of the input sequenceHifp) classical bits per signdlThus the
trade-off curve extends between the limitssR<H(p).

There are various reasons why we might wish to maintain a separation between classical and
quantum resources in an encodiigOn a purely practical level it seems to be far easier to
manufacture classical storage and communication devices than it is to make quantum ones. But
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perhaps the primary reason is conceptual: classical and quantum information have quite different
fundamental characters, with classical information exhibiting special properties not shared by
quantum information in general. For example, classical information is robust compared to quan-
tum information—it may be readily stabilized and corrected by repeated measurement that would
destroy quantum information. Also, unlike quantum information, it may be cloned or copied.
These and other singular properties indicate that for many purposes it may be useful to regard
classical information as a separate resource, distinct from quantum information. Classical infor-
mation is sometimes formally regarded as a special case of quantum informiatitre quantum
information of a fixed set of orthogonal states. While this characterization is useful for formal
analyses, it is unsatisfactory conceptually because it relies on the essentially nonphysical infinite
precision of orthogonality. It is, therefore, desirable to view classical information as a separate
resource.

Exploring the trade-off possibilities between the two resources will lead to a better under-
standing of the interrelation of these concepts and the nature of quantum information itself. If bits
can always be represented as qutdisd indeed, by Holevo's information bouttipne qubit per
bit is necessary and sufficigntvhat are the limitations on representing qubits as bits? Under what
conditions is it possible at all? If there is a penalty to be paid, how large is it? In this article we
will give answers to these questions.

Our main result is a simple characterization of the trade-off funo@driR) which may be
paraphrased as follows. Given the ensentbe{|¢;),p;} comprisingm states| ¢;) we consider
decompositions of into at most (n+1) ensembles); with associated probabilities; , i.e., the
ensembles;={|¢;),q(i|j)} have the same states &sind their unionJ;q;&; reproduces. This
is equivalent to the condition

pi=; q(ilj)a; 1)

on the chosen probabilitie; and q(ilj) defining the decomposition. L8=3%,q;3(&)) be the
average von Neumann entropy of any such decomposition arti(ief) be the classical mutual
information of the joint distributionq(i,j). For anyR let S,;,(R) be the least average von
Neumann entropy over all decompositions that haMg:j)=R. Then we will prove that the
trade-off function is given byR* (R) = S,in(R).

The prescription of a decompositiaf= U ;q;&; may be equivalently given in terms of a
visible encoding maje of the states of:

E<i>=|¢i><¢i|®§ Pl I- 2

Here p(j|i) are chosen freely subject only to the condition thkti:j)=R and the previous
probability distributions are constructed @s==2;p(j|i)p; andq(i|j)=p(j|i)p;/q;. Under this

map,i is encoded into a quantum register, simply containing the $tajeitself, and a classical
register, containing a classical mixture jofalues. Note that this is single signal encoding with
perfectfidelity since the statép;) may be regained perfectly from the encoded version by simply
discarding the classical register. Hence our result characterizes optimal classical and quantum
resources in compression, in terms of very simple single-signal perfect-fidelity encodings, despite
the fact that compression is defined asymptotically in terms of arbitrarily long signal strings and
fidelities merelytendingto 1. This is a remarkable and unexpected simplification—even in clas-
sical information theory it is by no means the rule that coding problems have solutions thait do
involve asymptoticgdespite a few well-known examples such as Shannon’s source and channel
coding theoren?s). The situation is even more tenuous in quantum information theory, which
seems to be plagued by further nonadditiity unresolved additivity questionfor some of its

basic quantities so that, at the present stage, many basic constructions require a limit over opti-
mization problems of exponentially growing size.
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Using our formula we will give a thorough discussion of further properties of the trade-off
curve including a generalization to group covariant sources and to sources with infinitely many
(continuously parametrizédtates. We show that our result also leads to a number of corollaries
characterizing the trade-off between information gain and state disturbance for quantum sources
(yielding the results of Ref. 13 on blind compression as a corgllamyd we indicate how our
techniques for characterizin@* (R) provide a solution to the so-called remote state preparation
problem as well. Finally, we develop a probability-free version of our main result which may be
interpreted as an answer to the intuitive question: “How many classical bits does a qubit cost?”
This may also be interpreted as a kind of dual to Holevo’s theorem, insofar as the latter charac-
terizes the qubit cost of coding classical information into qubits.

The presentation of these results is organized as follows. At the top level, the article is divided
broadly into two parts. The first part, Secs. II-VIIl, sets up a precise formulation of the basic
definitions and the trade-off problem and gives the proof of the main theorem characterizing
Q*(R), as well as a discussion of some of its important basic properties. The second part, Secs.
IX and X, then goes on to provide some further generalizations of the main result. In more detail,
the contents of the various sections are as follows.

In Sec. Il, we will define the notions of blind and visible compression, the essential difference
being that in the blind setting the encoder is given the actual quantum states, while in the visible
setting the encoder is given the names of the quantum states as classical data. We then extend
these definitions to quantum-classical trade-off coding and introduce the trade-off function
Q*(R).

In Sec. Il we will prove a lower bound to the trade-off curve in terms of the simple single-
letter formula of the ensemble decomposition construction paraphrased above. In Sec. IV we will,
in turn, show that the lower bound is achievable so that the trade-off curve is identical to the
single-letter formula. This is our main result, Theorem 4.4.

In Sec. V we use our characterization of the trade-off curve to eva@af®) numerically for
a selection of particular ensembles, chosen to illustrate various important properties of the trade-
off function. In Sec. VI we extend our results to a different asymptotic setting, known as the
arbitrarily varying sourcdAVS), in which there is ndor only limited) knowledge of the prior
probability distribution of the states to be compressed. This provides a probability-free generali-
zation of our main result. In Sec. VII we show that our main result can be reinterpreted to provide
statements about the trade-off between information gain and state disturbance for blind sources of
guantum state€n particular entailing a new proof of the main result of Ref).JBnally, in Sec.

VIl we indicate how our techniques—developed to st@fy(R) —can also be used to characterize
the trade-off curve for the coding problem of remote state preparation posed in Refs. 16 and 17.

Sections IX and X treats two significant further issues. In Sec. IX we show how to apply our
results in the setting of group covariant ensembles, which leads to considerable further elegant
simplifications. Section X is devoted to the technicalities of generalizing our main result to sources
with infinitely many (continuously parametrizédstates. Finally, in the Appendix, we collect
proofs of various auxiliary propositions that have been quoted in the body of the article.

II. BLIND AND VISIBLE COMPRESSION

We begin by introducing a number of definitions that are required to give a precise statement
of the variations of quantum source coding that we will be considering in this article. We will
denote an ensemble of quantum staiewith prior probabilitiesp; as€={¢;,p;}. In turn, we will
write S(£)=S(Z;pi¢;) for the von Neumann entropy of the average state of the ensemble:
S(p) = —Trp log p. (Throughout this article log and exp will denote the logarithm and exponential
functionsto base2.) Starting from an ensembl& we can consider the quantum source producing
guantum states that are sequentially drawn independently frdduch a source corresponds to a
sequence of ensembléS"={¢, ,p,}, where

le=igeeein, )
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o=, ® B, @

P =pi, P, - (5
This sequence will be referred to as an independent identically distriljiiteld source and the
states off ®" are called blocks of length from £. In this article we will focus on sources of pure
quantum statep;), often making use of the notatian = | ¢;){¢;|. The measure that we will use
to determine whether two quantum states are close is the fidkelifor two mixed statep and w,

F is given by the formula

F(p,w):=(Tryw?pw?)?. (6)

(Note that some authors use the name “fidelity” to refer to the square-root of this qualtity.
o=|w){w| is a pure state, then the fidelity has a particularly simple form:

F(p,0)=(o|p|o)=Tr(pw). 7

Finally, we will use the notatioft{y to denote the Hilbert space of dimensidrand 534 to denote
the set of all mixed states diy . Likewise, H ¢" will refer to then-fold tensor product of{4 and,
in a slight abuse of notatior§ 3" will refer to the set of density operators 6g". We are now
ready to introduce the definition d&lind quantum compression.

Definition 2.1: Ablind coding schemdor blocks of length nto R qubits per signal and
fidelity 1— e, comprises the following ingredients:

(1) a completely positive, trace-preserving (CPTP) encoding m{m’a’E”aB?”R, and

(2) a CPTP decoding map RB5""—B5",
such that average fidelity

2. P{@|Dn(En(@))|@)=1—e. (8)

We say that an i.i.d. sourcé can be blindly compressed to R qubits per signal if for &l&
>0 and sufficiently large n there exists a blind coding scheme toSRyjubits per signal with
fidelity at leastl—e.

The definition of visible compression is the same except that@I'P restrictions on the
encoding majk,, are relaxed; for visible compressi&y, can be an arbitrary association of input
states to output states. Equivalenty, is a mapping from th@amesof the input states to output
states. Thus, we write (1) e B?”R. Note that blind and visible compression schemes differ only
in the set of encoding maps that are permitted. For blredpectively visible compression, the
input states are given as quantraspectively classicainformation. In both cases the decoding
must be CPTP. In this language, the central result on the compression of quantum information can
be expressed as follows.

Theorem 2.2 (Quantum source coding theorem®*?): A source€ of pure quantum states
can be compressed @ qubits per signal if and only i&=S(&). The result holds for both blind
and visible compression

It is interesting to study a refinement of quantum source coding in which the states are coded
into classical and quantum resources which are quantified separately. Because of restrictions on
the manipulation of quantum states such as the no-cloning thé8relind compression is typi-
cally weaker than visible. In Refs. 13 and 19, for example, it was shown that in blind compression
it is typically impossible to make use of classical storage. The same is not true in the visible
setting, where it is possible to trade classical storage for quantum. In this article we study this
trade-off forvisible compression but, before we begin, we need to recall some basic definitions
introduced in Ref. 13.
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Consider an encoding operati@), which maps a signal stafe,) into a joint state on a
quantum registeB and a classical regist€. If {|j)} is the classical orthonormal basis®f then
the most general classical state @ris a probability distribution ovej values, implying that the
most general form of the encoded state can be written as

En(|>=; Pl el ®[j)(IC. (9)

The quantum and classical storage requiremérgs resourcesof the encoding map are simply
the sizes of the registe® andC, respectively.
Definition 2.3: Thequantum rateof the encoding map Eis defined to be

1
qsupgE,,£®") = - log dimHg,
while theclassical rateof the encoding is defined to be
1 .
CSUpRE, %"= ﬁlog dimH,.

With these definitions in place, we can make precise the notion of compression with a quan-
tum and a classical part.

Definition 2.4: A source& can be compressed to R classical bits per signal plus Q qubits per
signal if for all €,6>0 there exists an N0 such that for all >N there exists an encoding-
decoding scheméE,,,D,) with fidelity 1 — e satisfying the inequalities

CSUPRE, £ <R+ 5, (10)
gSUpgE,.£2M=Q+54. (11)

The main result of this article will be a complete characterization of the curve describing the
trade-off betweeR andQ. As mentioned above, for blind encodings there is usually no trade-off
to be made: genericalyQ=S(&), regardless of the size d®. The reason is essentially that
making effective use of the classical register amounts to extracting classical information from a
quantum system in a reversible fashion, which is impossible unless the quantum states of interest
obey some orthogonality condition. The more interesting case, therefore, is to study the structure
of the trade-off curve for visible encodings. As it turns out, our technique will yield the older
results for blind compression as a corollary.

Definition 2.5: For a given sourcé={| ¢;),p;}, define the function &R) to be the infimum
over all values of Q for which the source can be visibly compressed to R classical bits per signal
and Q quantum bits per signal

Some properties of the cun@* (R) are immediate. For example, the endpoints of the curve
are easily found. IfR=0, then the compression must be fully quantum mechanical and the
guantum source coding Theorem 2.2 appli@3{0)=S(£). More generally, the theorem implies
that Q* (R)+R=S(&) for all R. Similarly, for R=H(p) we haveQ*(R)=0, by Shannon’s
classical source coding theorem. Moreover, for intermediate valuBs tife curve is necessarily
convex because one method of compressing with classical {Ret A ,R, is simply to timeshare
between the optimal protocols foR; and R, individually, resulting in quantum rate of
A Q¥ (Ry) +A2Q* (Ry).

Example (Parametrized BB84 ensembleg¢t us consider in more detail the example of a
parametrized version of the BB84 ensemble in order to see what sorts of protocols are possible
beyond simple timesharing. FoxO9< /4, let Egg(6) be the ensemble consisting of the states
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o) | [©3)

lp2)

01

FIG. 1. Parametrized BB84 ensemiglgs(6).

le1)=10), 12
| ¢,) =cosh|0)+sing|1), (13
les)=11), (14
|@4)=—sing|0)+cosh|1), (15

as illustrated in Fig. 1, each occurring with probabiliy=1/4. We then haves(£)=1 and
H(p)=2. From the argument above, we therefore already know two points onRii@* (R))

curve, namely0,1) and(2,0). To get a better upper bound than the straight line joining these two
points, suppose we were to partition the four states into two sub¥ets{|¢,),|¢,)} and X,
={|®3),|¢4)}. For a given input strind=i4i, --i,,, the classical register could be used to en-
code, for eaclk, whether|<pik> e X, or |(pik> e X,. The classical rate required to do so would be

1 classical bit per signal. Independent of the value of the classical register, the quantum resource
required to compress the subensembles is then just the quantum resource required to compress a
pair of equiprobable quantum states subtended by the @hdlkerefore,

Q*(1)<S(3le1){@1]+ 3l @2){ @2]) =Ha(3(1+cosh)). (16)

By timesharing between the point corresponding to this protocol and the two endpoints of the
curve that we already calculated, we get a piecewise linear upper bou@d .0As we will see
later, however, the true curve is strictly below this upper bowfie impatient reader is allowed
to peek at Fig. 5 in Sec. V.
With this example in mind, let us move on to our analysis of the general case.

[ll. SINGLE-LETTER LOWER BOUND ON Q*(R)

In this section we will prove a lower bound on the quantum-classical trade-off curve by
reducing the asymptotic problem to a single-copy problem. Because compression is only possible
asymptotically, however, we need to shift the emphasis away from the quantum and classical
resources towards quantum and classical mutual information quantities. In the next section we will
then prove that nothing was lost by making this shift—we will show that the resulting lower bound
to Q*(R) is actually achievable.

A. Mutual information and additivity

The information quantities in question will be the mutual information between the name of the
state being compressed and the quantum and classical registers containing the output of the
encoding majk,,. Thus, we define the state
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pABcF,Ej Pl AP D opeli)([]. 17

The names are stored in orthogonal states on sys#emvhile the quantum and classical encoding
registers are labeled andC, respectively. We can then make the following definitions:
S(A:C):=S(A)+S(C)—S(AC), (18
S(A:B|C):=S(AC)+S(BC)—S(ABC)—S(C), (19

where, for any subsystedi, S(X) denotes the von Neumann entropy of the reduced state of
Note thatS(A:C) is just the classical mutual informatidr(l:j) betweenl andj. To interpret
S(A:B|C), observe that for a given classical outputve can write down a conditional ensemble

gj:{wl,j vq(llj)}1 (20)

whereq(l]j) is calculated using Bayes’ rule to twg!|j)=p(j|1)p,/q;, with q;==p(j[I)p, -
The conditional quantum mutual informati@¢A: B|C) is just the average Holevo informatign
of the conditional ensemble :

S<A:B|C>=; qix (&), (21)

wherey is defined, for an ensembl={p,,p,}, as*

x<5>==3(2k PPk —Ek PIS(p)- (22)

Becausef] is an ensemble supported on systBmy(&;) <ngsupp, which implies that

ngsupp=S(A:B|C). (23

Therefore, roughly speaking, we will derive a lower bound@n(R) by minimizing S(A:B|C)
subject to the constrair8(A:C)<nR and developing further properties of that minimum. To that
end, definel (£%",nR) to be the set of all encoding magsfor which S(A:C)<nR and there
exists a decoding map satisfying

E. P(F (¢ ,(DE)g)=1—e. (24)

Next defineM (£®",nR) to be the infimum ofS(A:B|C) over allEe T (£®",nR). We begin by
noting the following basic properties ol .(&,R).

Lemma 3.1: M(&,R) is a monotonically decreasing function of Rioreoever, it is jointly
convex ine and R in the sense that, for any set ef>0 and R;=0 as well as probabilities
Ek)\kzl,

M.(E, R)s}k‘, MM, (ERy), (25)

Where&': Ek)\kfk and R= Ek)\kRk .

Proof: Monotonicity follows immediately from the definitions. R;<R, and S(A:C)<R,
thenS(A:C)<R,. Thus the sef (&,R;) is contained inT (&,R,) andM (&,R)=M (&,Ry).

To prove joint convexity, lek,, R, and\, be as in the statement of the lemma and assume
thatE, e Tsk(& Ry). Furthermore, suppose that the encoding napmap into orthogonal sectors
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Cy of the classical registe€. We construct an encoding map with information r&te > A\ Ry
and fidelity e< X\ €, by applying the majc, with probability A, . The first inequality follows
from the fact that the sectoS, are orthogonal:

S(A:C)= % MS(A:Cp)<R. (26)

The decoding map for the new encoding consists of first determining which sgcteas used
and then applying the decoding map correspondingo The output of the encoding-decoding
scheme will, therefore, be the average of the outputs of the individual schemes, yielding 1
=3 \(1—€) by the concavity of the fidelity. Finally, if we defing (A:B|C) to be the condi-
tional quantum mutual information for the encoding nign then we can calculate the value for
the new scheme,

S(A:B|C)=§k‘, MS(AIB|C). (27)

SinceM (£,R)<S(A:B|C) by definition and this inequality must hold for all encoding maps
we can conclude tha¥l (&, R)<Z MM (& Ry). O
The particular usefulness of tid_ function derives from an additivity property with respect
to the input ensemble given in the next lemma, a property that can be converted into a single-letter
lower bound omQ* (R).
Lemma 3.2: For any ensemhfe numbers Re=0 and non-negative integer,n

M(E°"NR)=nM(&R). (28
Proof: To begin, recall that=i4i, - - i,, and decomposa into A;A, --- A,, with |i}) stored
on Ay. We will frequently make use of the notatioh.,=A;A,--- Ac_; and the analogous

| =iqis** ix_q, as well the similan-, andl.,. For a fixedE e T(£®",nR), the chain rule
for mutual information(cf. Appendix C of Ref. 1Bimplies that

S(A:B|C)=kzl S(A¢:B|C,A_y). (29)

The bulk of the proof will consist of definitions for the purpose of interpreting the individual
summands in the chain rule in terms of single-copy encoding maps. Consider one such term,
S(A¢:B|C,A_,), which we can express as

S<Ak:B|c.A<k>=|2j Pl < x(E_, ), (30)
<k

where&,_ ; is the ensemble of states

&1 0i=| 2 PU=wr 0 (D) 31)
>k
with

= plipU=pilh)
2 pI=p(j[l)

a_ ()= (32)

Now define the encoding metp _,on the ensemblé€ to be

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 9, September 2002 Trading quantum for classical resources 4413

By (1)=2 p(I-0E()=2 2 (1P D e ®[5)]- (33)

The output ofE,<k on the quantum register is described by the set of enserﬁblgg. Next,
define the decoding map,=Tr.,°D and the fidelity

Fio=l-e_ =2 p(idF(pi, (DE_)(ik). (34)
Tk

We can then calculate that
2 p(lFi =2 P10 2 PF (P, (DB (i)
<k <k k

=2 p<|<k>F(pik,Tr¢kD(2 p<|>k>E<|)))

I~k

=> p(lgkw(; P(1-10piys 2 p<|>k><Tr¢koDoE><l>)
>k >k

I<k

>2| P(DF(Tropy ,(TraeDeE)(1))

>Z p(NF(p,(DE)(1)=1—e. (35)

The first three lines are by definition and using linearity to shuffle the terms. The first inequality
comes from the joint concavity of the fidelity, the second from its monotonicity under partial trace,
and the last from the fidelity condition dbeE.

Therefore, if we writgj (E, _ ) for the random variable representing the classical output of the
encoding map Ei_, and Ri_, for the corresponding mutual information, theE|<k
eT€|<k(<€, R|<k). Defining Rk::2|<kp(l<k) R|<k for the average classical information and apply-

ing the joint convexity ofM then finally yields
S(A¢:B|C, AL =M (&ER)). (36)

A simple calculation allows us to bound tig from above; however,

2 Re=2 2 pUaH(ci(E L)) (37)
<k

=2 S(ACCIALY (38)

=S(A:C)<nR. (39

Combining Eqgs(36) and(39) with the chain rule, and applying the convexityMfone more time
gives the simple inequality

s(A:|3|C)>Zk M (ER)=NMER). (40)
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Since this lower bound must hold for all encoding mapd i6€®",R), that concludes the proof
of the lemma. O

B. Perfect encodings and their properties

Within the sefT(&,R) of encoding maps witperfectfidelity decodings there is a particularly
simple subset, in terms of which we will phrase our final boun®6iR). Let T(E,R) CTy(E,R)
be the set of all encoding majgsof the form

E<i>=|¢i><¢i|B®; PG IDIINGC. (41)

In other words,T(&,R) consists of the encoding maps in which a perfect copy of the state to be
compressed is placed in regisirThe decoding map is simply to trace over the regi€tewhile

such encodings, which simply reproduce the input, are obviously useless for compression, they
turn out to be quite sufficient for minimizin§(A:B|C). Indeed, let us define

M(ER)=inf{S(A:B|C):Ec T(&,R)} (42

= inf {S(A:B|C):S(A:C)<R}. (43
p(-[)

By construction, this optimization is no longer over general CPTP maps but only over different
possible conditional probability distributions on regisgr

Let us collect a few properties & for later use: First of allM inherits the convexity oM,
in the variableR. Also, it is clearly nonincreasing, andl(£,0)=S(€) is immediate from the
definition. Furthermore, for any choice p{-|-), we have

S(A:C)+S(A:B|C)=S(A:BC)=S(A:B)=S(&), (44)

from which we conclude thaR+ M (&,R)=S(€). This, together with the convexity, implies
continuity inR, and the estimates

M(ER)=M(ER+8)=M(ER)— 6. (45)

In what follows, it will also frequently be helpful to use the following fact:
Proposition 3.3:

M(&R)= inf {S(A:B|C):S(A:C)=R}, (46)
p(-[-)

with an equality condition in the infimum [rather than the inequality of Eq. (43)]

The proof is given in the Appendix, Sec. 1.

In principle one might envisage a limit with larger and larger classical regitéris would
constitute a serious obstacle to calculatM&,R) and carrying through our larger program of
evaluatingQ* (R). Fortunately, the next proposition ensures that the ranggsoive need to
consider in the definition oM (&,R) is bounded universally. Since the mutual informations in-
volved are continuous, the infimum in the definitionM{&,R) can be replaced by a minimum.

Proposition 3.4: In the definition of KE,R) given in Eq. (43), it suffices to consider encod-
ings of the form Eq. (41) with at moéin+1) j values, where m is the number of state<in

The proof is given in the Appendix, Sec. 2.

C. Completing the lower bound

Returning to the main argument, we are now prepared to rBl@t&R) to the trade-off curve:
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Theorem 3.5:1f a source€ can be visibly compressed to Q qubits per signal and R classical
bits per signal, then @M (&,R). Equivalently Q* (R)=M(&,R).

Proof: By the definition of compression and the previous lemma, we note that, fer, &ll
>0, the inequalityQ* (R)=M (&,R+ §) must hold. We will give a proof tha#l, is continuous at
e€=0, from which the stronger lower bound in termsM{ &, R) will follow.

So, fix €6 for now and suppose th&e T (£,R+ 8). Let D be the decoding map associated
to E. As usual,

E<i>=$ o @p(j D )(1C. (47)

For a givenj value, the decoding map will produce the ensemble of sl{atg§,p(i|j)} where
Ui’j:D(ij®|j><j|B). Therefore, applying Markov’s inequalitgf. Lemma 6.3 of Ref. 18and
the fidelity condition in the definition of .(&,R), the probability weight of theg’s with

Ei q(ilj)F (¢, 01 ))=1— e (48)

is at least - \/e. In other words, for these gogdvalues, the output of the decoding map is close
to & . Therefore, for these same gopdalues, by the monotonicity and continuity gf we must
have

—f(e), (49

x(ej)>8(2 q(ili)| e il

where we may choosé(e) =4 (4/elogd—4/elog(2i/e)) (as shown in Appendix A of Ref. 13
Consequently,

—f(e). (50

S(A:BIC)=2 aix(£)=2 qJ-S(Ei a(ilDei)(ei

Sincef(e) —0 ase—0 we conclude that lig)oM .(€,R+ 6) = M(&,R+ 6) and, moreover, in the
limit e—0 it suffices to consider encoding maps of the type

E<i>=|goi><goi|8®§ (DS, (51)

Thus we obtaifQ* (R)=M(&,R+ 6), for all >0, which, by Eq.(45) above yields our claiml
Remark:The estimatd (e) above may also be derived using Fannes’ inequélityhich states
that for density operators and o on ad-dimensional space,

lp—olli<e=[S(p)—S(o)|<dn(eld). (52)
where
—xlogx for x<3,
700~ 3 for x>1. 53
We will use this inequality again later. [l

D. On alternative definitions

Inspecting the proofs of Lemma 3.2 and Theorem 3.5 reveals that we do not actually need the
block-based fidelity condition
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<F>==Z pF(¢,(DeE)(1))=1—¢ (54)

of Eq. (8), but only the weaker mean letterwise fidelity

<E>=:§|] pF=1-¢, (55
where
R
Fra=— kgl F(@i,(TreeDeE) (1)) |. (56)

By the monotonicity of the fidelity under partial traces, the latter is directly implied by the former.
The lower bound Eq(35) is then replaced by % ¢, with (1/n) 2, €,= €, and we conclude,
instead of Eq(36), that

S(A(:BIC ALY =M, (£R). (57)

The remaining argument is only altered at E40):
n
S(AB|C)= 2, M (ERIZNMLER), (58)
=1

using joint convexity once more.

Hence, we could define the function (&,R) in a fashion analogous tdl (£,R) but using
the fidelity functionF instead ofF and Lemma 3.2 would continue to hold for the new function.
In fact, M (&,R) will be strictly additive, in the sense that

M (E2"NR)=nNM(&ER), (59)

because any single-letter encoding with fidelity & repeatedh times gives rise to am-block
coding with mean letterwise fidelity 1 e.

We also note at this stage that we could have opted for a slightly more sophisticated definition
of the quantum resource of the encoding. In particular, if we introduce g¢supp
= (1/n)log Ranke; as the minimal number of qubits per signal required to support the conditional
ensemblef;, then we could have defined the quantum rate of the encoding map as

qsupp=$ q;9supp- (60)

In this picture, the quantum resource would be the average over classialles of the minimal
number of qubits per signal required to support the quantum portion of the encodel gigte

Such a definition, by treating the classical and quantum storage requirements differently, allows
the possibility of variable-length quantum encodings, where the length is a function of the clas-
sical messagé¢. Such encodings could potentially be more powerful than the encodings with
fixed-sized quantum supports used to define the original gsupp. However, because gsupp
=x(&;), the analog of Eq(23) continues to hold(For a more detailed investigation of the
properties of such variable-length quantum memories, see Rg¢fMdte precisely,

ngsupP= S(A:B|C). (61)
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Therefore, the lower bound of Theorem 3.5 on the trade-off c@%€R) would apply equally
well if we had definedQ* (R) usingqsupp instead of gsupp.

Thus, while replacing eithéf by F or qsupp bygsupp in the definition of compression could
potentially have reduced the resource requirements, we find that our lower bounds would apply to
the modified definitions. Since we will see later in the article that the lower bounds are achievable
using the original, restrictive formulation of compression, we can conclude that no advantage can
be gained by relaxing the definitions to useand qsupp.

IV. ACHIEVING THE LOWER BOUND M(&,R)

Recall that the trade-off functio®* (R) gives the minimal quantum resour€ qubits per
letter that is sufficient to encode arbitrarily long strings with arbitrarily high fidelityelfor any
€>0, given a classical resource Rfbits per letter. On the other hand, the lower bodh¢E,R)
is defined as the minimal quantum resource for a particular kinsirgfeletter perfectfidelity
(i.e., e=0) encoding given in Eq(51), subject to the constraint that the classioaitual infor-
mation A:C) between andj is R. Hence in the latter case, the classical resource will generally
exceedR bits per letter. Thus by implementing the simple encodings of(&f). we can attain
M(&,R) as the quantum resource but not generally with a classical resource bounéedNsy
now argue that, nevertheless, the classical resource can be reduedvitde retaining the
guantum resource # (&,R) i.e., that the lower boun® (&,R), to Q*(R) is attainable, so we
must then hav&®* (R) =M (&,R).

Our strategy intuitively is the following. We think of the conditional distributioj|i) with
mutual informationS(A:C) in Eq. (51) as a noisy channel frointo j. Then the reverse Shannon
theorem? states that this noisy channel can be simulated with a noiseless channel of capacity
S(A:C) if the receiver and sender have shared randomness, i.e., in the presence of shared ran-
domness, the classical resource can be reducBe=t8(A: C) bits per letter. Finally, we show that
only O(logn) bits of shared randomness suffice to provide a high fidelity encoding-decoding
scheme for blocks of length. Hence this amount of shared randomness can be included in the
classical resource of the encoding with asymptotically vanishing cost per letter.

To make the above intuitions mathematically rigorous, we begin by recalling some basic facts
from the theory of typical sequené@$*and typical subspacEs®in the following two subsec-
tions.

A. Typical sequences
For a sequence=i---i,e Z" define thetype B of | as its empirical distribution of letters,
ie.,
1 1 -
Py(i) = N(i[1) == [{Klik=1}] (62)

The number of types of sequences is polynomiatirit is ([~ *)<(n+1)7.

Thetype classZy of P is the set of all sequences with type
Tp:={l €Z"|P,=P}. (63

Consider now any probability distributidd on Z, and let6>0. Then the set dfypical sequences
(with respect to the distributioR and ) is

Tp 5={1 e Vi|P (i) — P(i)|< &/ \/n}. (64)

Note that this set is a union of certain type classes.
The following are standard factd?*
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P®”(Tp,5)>1—312, (65)
(n+1)"Mexpn(H(P)))<| 7, (66)
exp(n(H(P)))=|Ts|, (67)
(n+1)"Mexp(n(H(P)~|Z| (/) <|Tp 4, (68)
(n+ 1) expn(H(P)+|Z| n(8/\n)))=|Tp 4. (69)

Note that the latter two follow from the former two by the following well-known explicit estimate
on the difference of two entropi€qthis being a classical case of the Fannes inequality(E2)]:
if P andQ are probability distributions on a set kfelements, then

[P Qly= = H(P) - HQ)| <k £ 70

where the functiony is given in Eq.(53).
For sequencebe Z", Je J", the conditional type W, of J (conditional onl) is defined as
the stochastic matrix given by

Vij P()Wy(j1)=Pyy(ij), (71

whereP; is the joint type ofld=(i1j1,....injn). It is undetermined if,(i)=0.
The conditional type clasef W given| is defined as

T(1) :={ Wy =W} ={J:Vij Py(ij)=P,(1)W(jli)}. (72

Let W be now an arbitrary stochastic matrix aégt 0. Theset of conditionally typical sequences
of W given| is defined as

Ty, (1) ={J:Vij Wy (J[1) = W(j[i)]|=< 6/ YN(i[1) ] (73

Again, there are a couple of standard facts:

W.<TW,,;<I>>>1—|§2, (74)
for the product distributioW, =W, @---@W; , and
(n+1) " exp(nH(W|P)<|Tw(1)], (75)
exp(nH(W|P)))=|Ty(1)], (76)
(n+1)" A expn(H(WIP) —|Zl| A n( 8| Zl/ V) < T, 5(1)]. (77)
(n+ 1) exp(n(H(W|Py) +|Z]| 71 (8 Z1/ n))) = T, (1), (78)

whereH(W|P,) is just the conditional Shannon entroRyP, (i)H(W(-|i)).

B. Typical subspaces

The concepts in the previous subsection translate straightforwardly to their Hilbert space
versions via the following recipe:
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For a statep choose a diagonalization==; _;;|e;)(€;|, with eigenvectorge;) and eigen-
valuesr;, which define a probability distribution ai Then we have a diagonalization pf":

p"=2, rle(ail, (79

with
len=le)®--le ), (80)
M=ri . (81

Now for any subsetdC Z" we can define the subspace spanned by the ved@bsl € .A}, which
is most conveniently described by the subspace projector

HA:I;A le)(el. (82)

In this way we can define, for any distributidhon Z,

HP==iEET le)(eil, (83

(note that this is not uniquely specified by the distribut®mlone, but also requires specification
of the baside;)), and

I, 5= > lexel. (84)

el s

Statements on the cardinality of sets translate into statements on the dimension of the correspond-
ing subspaceS§.e., rank, or equivalently, trace, of the projecfors

Similarly, if we have state®V; with diagonalizationdV;=3=;W(jli)|e;;)(ej;|, we can define,
for any subsetAC 7" andl e Z",

NOEDS leg (el (85)

Je A

This leads to the concept ebnditional typical subspace projectdior 6=0,

My (1) = ; legn)eql, (86)

e Ty,

and again probability and cardinality statements about the typical sequences translate into equiva-
lent statements about certain traces.

In particular we shall use the following estimate of the rank of the conditional typical sub-
space projector:

TrIl, 5(1)<(n+1)7expn(S(p|P)) +|Z|d 7( 8|ZI/\n))). (87)

[Here we make use of the notati&(p|P,) :==;S(W;) in an attempt to match the statements about
typical sequences as closely as possjilée’ll also use the important probability estimate
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C. Trade-off coding

We will use the coding technique that is summarized in the following proposition. The state-
ment is slightly more technical and the estimates more explicit than we would need to prove our
main Theorem 4.4. This is because we will reuse it in Secs. VI and X.

Proposition 4.1: For a probability distribution p orf and a classical noisy channel
p(-|-):Z— J consider the tripartite state

pIEi pi|i><i|A®|(Pi><<Pi|B®; PN
Then there exists a visible codE,D) such that

VieT,s F(e) (el (DE)I)=1—

4|71 1
5

and having classical and quantum resources
nS(A:C)+nK|Z|| 7 7(8/Jn)+K'|Z]| Jlog(n+1) classical bits

nS(A:B|C)+n-3d|Z]| 7 »(28|Z1| J//n) +d| Jllog(n+1) quantum bits

where K and K are absolute constants

Proof: We design ann-block code as followdtypicality conditions throughout are with
respect to a previously fixed):

(a) Encoding:

(1) Given| generate] according top(J|1).
(2) Compresdi.e., project the quantum statgp, ){¢,| to the conditional typical subspace
;0 5(3), where =W, (il )] o) @il

If 1 is typical andJ is conditionally typical, send and the joint type of andJ as classical
data, and send the projected statelby 5(J) as quantum data.

(b) Decoding:

Given J, one can isometrically embed the quantum state transmitted back into the ambient
Hilbert space.

The fidelity of this scheme is analyzed as followd/e assume that if, at any point of the
above protocol, an “if” is not satisfied, then some fixed failure action is taken. Such would be the
case when the POVM involving the above subspace projection yields an orthogonal result, for
example) With probability at least |Z]/5%, J is conditionally typical, and in this case the
projection is successful with probability at least 1L7]/ 62 [by virtue of Eq.(88)], leaving a state
which (cf. Ref. 12 has fidelity=1—2|7/6% to |¢,}{ @] .

Looking at the classical cost of this procedure, we see that it is dominated by séneihgch
requires too many, namelyS(C), classical bits. Here the reverse Shannon thefresrinvoked.

(For a precise statement, see Theorem 4.2 bgldsing this theorem we can simulate the channel

p on the typical sequenceéssendingn S(A:C) +o(n) classical bits, but at the same time needing

an amount of shared randomness. The simulation, in fact, has the property that it endows sender
and receiver with a commad, the distribution of which i$Z{| 7/ §>-close top(J|l). Taking all

these points into account, we see that the fidelity of this protocol is at leag|q| 7]/ 5 for

every individual| ¢, )(¢,| for which | is typical.

The analysis of the quantum resources needed is equally straightforward. B8 7Edhe
number of qubits needed to transmit the projected state is

nS(BY|P;) +dn| 7 7(8lyn)+d| Jlog(n+1). (89)

Note that the leading term is a conditional von Neumann entropy of the bipartite state
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p=; PPyl (90)

which has trace norm distance at mosi{#|.7]//n from

w:iEJ p()len{eil@p(jlIi)il- (91

(This follows from the typicality ofl and conditional typicality of).) Next, using the Fannes
inequality (52), we can upper bound E@89) by

nS(p|q)+2dn| 7 7(28Z]| J/\/n) + dn| A (8 /n) +d| Slog(n+ 1), (92)

with g;=3;P(i)p(j[i) andp;=a; *S;P()p(j[i) ¢ eil-

We are left with one remaining feature to address: the protocol uses shared rand¢mndess
to a considerable extent, according to Theoren).4A\& shall now show that we can reduce this
requirement td(log n) shared random bits using a technique very much like the derandomization
argument in Ref. 26. The proof will then be complete because setting up these bits can be absorbed
into the classical communication with asymptotically vanishing cost per |€&etually, in order
to achieve high average fidelity, no random bits are needed at all, but our goal is to prove that high
fidelity can be achieved for every state in the typical subspace, a more stringent requirement that
is used later in our study of arbitrarily varying sourges.

Observe that a protocol using shared randomness can be viewed as a probabilistic mixture of
ordinary, deterministic protocols. Index these by a variahlaccompanied by a probability, .
For eachv we have a corresponding fidelify;(v) for each individuall. Our construction shows
that for typicall,

> xFi(v)=1-

14

31711
Note that the left hand side is exactly the expectation of the random vaRabM/e now choose
vq,...,». independently and identically distributédi.d.), according to the probabilities, . For
fixed | the F (v)), I=1,...L are i.i.d. as well, and in the interviD, 1]. Thus we can apply the
Chernoff—Hoeffding bound for their arithmetic meédremma 4.3 below

u
=eX —Lm (94)

By the union bound we can estimate the probability that the above event occurs for a single typical
| to be less than or equal to
2
e
ex”( L 52

Choosinge=|7|| 7/ 82, this bound is itself less than 1 if

1 L
Pr[EE Fitr)<(1-e)u
I=1

7" (95

- 26%In2 0g|7 6
EERE

in which case we can conclude that there exist valyes..,v, such that, for all typical, we have

47|71
5

|~

L
> Fi(v)=1-
=1
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Therefore, a shared uniform distribution over the numbers,L,is sufficient, wherd. need only
satisfy EQ.(96). This can be accomplished with(logn) shared random bits, which is what we
wanted. O
Here are the auxiliary results we needed in the proof:
Theorem 4.2 (Reverse Shannon Theorem; see Refs. 22 and)2For any channel WZ
— J, distribution P onZ, and 0<\ <1 there exist maps

E,:Z"—{1,...M},
D,:{1,... M= 7",

v=1,... N, such that

_ [z

VI E/Tp,g

1 12
3| W)= 2 DuE,(1)

Moreover, with an absolute constant K
logM=<nH(P:W)+nK|Z|| 7 n(8/n) +K|Z]| Jllog(n+ 1),

logN=<nH(W|P)+nK|Z||7 n(8/\yn) + K|Z|| Jlog(n+1).

U
Lemma 4.3 (Chernoff-Hoeffding boufftf% Let X ,...,X, be independent, identically distri-
uted random variables, taking real values in the interf@l 1], and with expectatioriX;= w.
Then, fore>0,

O

With this we are ready to state our main result:

Theorem 4.4:Q*(R)=M(&,R).

Proof: The inequality =" is theorem 3.5. For the opposite inequality choosp(a-) such
that S(A:C)<R and S(A:B|C)<M(&,R)+e€. Then, according to Proposition 4.1, there exist
n-block codes E,D) with classical and quantum rates boundedPyo(1) andM(&R) + e
+0(1), respectively, which have fidelity-1 e for all typical I. But since these carry almost all the
probability weight(say, larger than % €) of all sequences, the fidelity of the scheme is at least
1—2¢, regardless of what is done on nontypical sequences Was arbitrary, we geQ* (R)
=M(&R). O

Remark:The proof of Proposition 4.1, as the eventual “derandomization” shows, does not use
the full power of the reverse Shannon theorem, but only a consequence that is actually also used
in rate-distortion coding: that one can map the typical sequenoeto expH(P:W)+o0(n)) many
J's such that all the pairsl (f(1)) are jointly typical. O

V. EXPLORING THE TRADE-OFF CURVE

In this section we use our formula for the trade-off curve to eval@téR) numerically for
a selection of particular ensembles chosen to illustrate further important properties of the trade-off
function.

To begin, let us consider the simplest possibility, a pair of nonorthogonal states. Figure 2 plots
the trade-off curve for the pa{f0),(1#72) (|0)+]1))}, each occurring with probability. At first
glance,Q* (R) appears to coincide with the linear upper bound given by interpolating between

(0,S(6)) and H,(3),0). A more detailed examination, however, reveals that the curve is actually
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Pair of non-orthogonal states
T T

0.7 T T T

0.6 — Q*(R)versus R e
N — — — Schumacher limit

0.5 N b

03f N 4

0.2 \ 4

01f N J

FIG. 2. The trade-off curve for a pair of equiprobable, nonorthogonal states. The dashed line represents the lower bound
Q* (R)+R=S(&) imposed by the Schumacher limit.

very slightly nonlinear. Therefore, somewhat surprisingly, the simple quantum-classical coding
scheme given by timesharing between fully quantum and fully classical coding is nearly optimal
but not completely so. As we will see below, this need not always be true.

In general, more complicated ensembles with internal structure will have trade-off curves
reflecting that structure. Consider, for example, the three-state ensémitliestrated in Fig. 3,
consisting of the statelsp;)=|0), |@,)= (1V2) (|0)+|1)) and|e3)=|2) with equal probabili-
ties. Since the set of states decomposes into two suBgets|¢.),|¢,)} and X,={|¢3)} with
mutually orthogonal supports, it is possible to encode whether a digpre Xy or |¢;) e X,
efficiently usingH,(3) classical bits. Indeed, Fig. 4 plo@* (R) for this ensemble and we see that

the Schumacher limit is achieved for valuesRsE H,(1/3). For values oR>H,(3), or once the
classical information in the ensemble has been exhausted, the trade-off curve departs from the

Schumacher lower bound to meet the poit(§,3,3),0).

: l3)

FIG. 3. The three-state ensemlglg consists of the statd,), |@,), |@s) occurring with equal probabilities.
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Reducible ensemble

— Q*R)versusR
1.2p — — - Schumacher limit 7

08

04F

0.2

FIG. 4. The trade-off curve for three-state ensenfle The dashed line again represents the Schumacher lower bound,
which in this case is achievable fR<H(3).

Our third example, the parametrized BB84 ensenffyg(6) introduced in Sec. I, is an
ensemble that, lik€; above, decomposes naturally into subensembles. On the other hand, unlike
for &5, the subensembles are generally not orthogonal. The trade-off curée=fe¥8 is plotted
in Fig. 5. As usual, the dashed lower bound is the Schumacher limit. The dashed-dot line is the
piecewise linear upper bound constructed in Sec. Il. Squeezed into the intermediate region, we see
that Q* (R) is typically strictly less than the upper bound and, especially in the regioR 0
<1, quite strongly curved. The point {;(3(1+ cos/8)) provides another surpris@* (R) and
the upper bound coincide there. Therefore, the partitioning scheme is optimal if exactly one bit of
classical storage is to be consumed per copy but not otherwise.

We now turn to another interesting property of the trade-off curve. Contrary to what one might
expect, the functioM (£,R) is not concave in the ensembigolating the intuition that it should

Parameterized BB84 Ensemble

1 v T T T T v v v v
\'\\
9 N\ —— Q*R)versus R 1
\
AN
ANNS - — - 8chumacher limit
0.8 W\,
\\ \\ = = Partitioning upper bound
0.7f Y\ 4
AN
AN
0.6} SO\ i
\ A
\ N
L \ N, 4
G 05 . N
\ N
N\ Y
0.4 \ o 4
\ N
\ .
0.3 AY \-\ 4
\ .
\ NS
N\
0.2 \ ) E
\ e
\ R
o1 N S 4
\ =
Ay e
0 1 L L L N 1 1 1 1
[} 0.2 0.4 0.6 08 1 12 1.4 16 18 2
R

FIG. 5. Trade-off curve for the BB84 ensemiglgs(7/8). The dashed line represents the Schumacher lower bound and the
dashed-dot line represents the upper bound from partitioning into the¥setsd X, .
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Violation of concavity
2 .. T T T T T T T T T

M(€1, R)
—— M(}3E 4+ 35, R)
——— }M(£;, R)+ dM(52, R) A

M(E2, R)

0.8

0.6

0.2

FIG. 6. Violation of concavity in the ensemble. @* were concave in the ensemble, the solid line represeﬂﬂiﬁ%g1

+ %SZ,R) would always exceed the dashed Iine%lm(Sl,R)-r %M(EZ,R). For large values oR we see that is not the
case in this example.

be harder to send the mixture of two ensembles than it is to probabilistically send eithEx otee.
thatM (£,0), however, is just the von Neumann entrd{¥) and is, therefore, concave & In
fact, counterexamples to concavity can be constructed without even making use of nonorthogonal

states. Le€1={|i),%}i3:0 be an ensemble consisting of four equiprobable orthonormal states and
let £,=1]i),3}1_,. We can also consider the mixture of ensembles

&=36+36=1{(10)..(11).9.(12).9).(13).5)}. (97)

Since each of these ensembiles is effectively classical, the Schumacher lower bound is attainable
and their trade-off curves are just straight lines with slepk From there, we can also evaluate
3(M(&,R)+M(&,R)) and compare it tM (€,R). This is done in Fig. 6, revealing a violation
of concavity wherR comes close to 2.

In the same spirit, note that an analogous construction shows that, while

M(E,®E,2R)<M(&;,R)+M(&,R) (99)

always holds, equalityi.e., the natural “additivity” property oM under tensor produgtsnay be
violated if the ensembles are sufficiently different from each other. More generally we have the
following.

Proposition 5.1:

M(E,8&,,R)=min{M(&;,Ry)+M(&,Ry):R;+Ry=R}.

Also, while M(&,R) may not be concave in the ensembleat does obey a weaker condition
analogous to Schur concavity.

Proposition 5.2: Leté={|¢;),p;} be an ensemble. Ldg,} be a set of probabilities with
corresponding unitary operators Jand F be the ensembl&={U,|¢;),p;a,}. Then M&,R)
<M (FR).

The proofs of these propositions can be found in Appendix Secs. 3 and 4, respectively.

As our last example, we include the trade-off curve for the unifd¢umitarily invariany
ensemble on a single qubit as Fig. 7. Devetak and B&tgetually calculated an explicit param-
etrization of the optimal trade-off curve for a restricted class of encodings. Our lower bound of
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Uniform qubit ensemble

09
\ —— Q*R)versus R

(X1 — — — Schumacher limit b

06

0.4F
0.3
0.2

0.1

FIG. 7. Trade-off curve for the uniform qubit ensemble. Note that the curve never reacl@s thexis, encoding the fact
that no finite amount of classical information is sufficient to perfectly transmit an arbitrary qubit state.

Theorem 3.5, or, rather, its infinite source ensemble variant, Theorem 10.1, proves that their

construction is optimal within all possible quantum-classical coding strategies. Thus, we can quote
their result that, foix e (0,0),

R:

—1+log

N
6)\_1) 1 (99)

-1

1
Q*(R)=H2(X—

&1/ (100
gives a parametrization @* (R). This curve will also play an important role when we construct

a probability-free version of our main result in Sec. VI. We will find that, in an extremely strong
sense, it describes the cost of a qubit in classical bits.

VI. ARBITRARILY VARYING SOURCES

Our main result does not yet say, however, what a qubit costs in bits because it only supplies
the trade-off curveQ* (R) for a given set of quantum states once a set of prior probabilities have
been prescribed. Without the probabilities, the curve is undefined and the rate of exchange be-
tween bits and qubits cannot be uniquely identified. However, using the thecaybibfarily
varying sources (AVS(see Ref. 31 for an exposition of this concept in classical information
theory), we can develop a probability-independent version of our trade-off curve that will elimi-
nate the ambiguity.

Throughout this section, l&t denote not an ensemble, but just a set of states, arRideR,.

be a subset of probability distributions &n For each strind € Z" of lengthn we will consider
product distributions

P (1) =pa(i1)Pnlin), (103
where eachp,e P. An AVS-code of fidelityl — € is defined as a visible code, as befdsee

Definition II), only that now the fidelity condition is required to hold for all probability distribu-
tions inP:
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Vp'e P Z p"(1)F(¢,,(D°E)(1))=1—e. (102

The classical and quantum rates are exactly as in Definition 2.3 and, likewise, Definition 2.4 can
be used unchanged to characterize attainable rate Ri€¥) ( This leads to the definition of the
trade-off functionQ* (R,P) as the minimumQ such that R,Q) is attainable.

Intuitively, the encoder-decoder pair plays a game against a clairvoyant adversary whose aim
is to minimize their average fidelity and who can control the source mechanism so as to create any
of the distributionsp™e P". Their goal is to win by keeping the average fidelity above el
against arbitrary strategies of the adversary.

A special case is that ¢f="P, in which case we have no restriction on the source, so that all
possible state strings are to maintain high fidelity.

We shall use the notatioM (&,p,R) to designate our earlier functiod for the ensemble
consisting of the state$ and the probabilitiep, and define now

M(E,P,R):=supM(&,p,R), (103
peQ

whereQ:=conv(P) is the convex hull ofP.

Theorem 6.1: Q*(R,P)=M(&,P,R).

Proof: The inequality “=" follows almost directly from Theorem 3.5: only observe that the
adversary can simulate any source enserpkd€®, and then Theorem 3.5 appli¢éslore formally,
choose a probability distributios on P such thatp==,s,p,, and note that averaging EGL02
over the measurs®" gives (102 for p®".]

In the other direction, we only need to exhibit a covering of the union of the “probable sets”
of the distributionsp" e P" by appropriate sets of typical sequences, and apply Proposition 4.1.
This is done as follows:

For p"=p;®---®p, e P" observe that the set

N(i|l)—k§l pi(i)

Tpn==[ 1:Vi saﬁj (104

carries(by Chebyshev’s inequalifyalmost all the weight of the distribution:
P Tpn)=1-682 (105

Since 70 is in fact the same as the set of typical sequeriggs, for p= (1/n) ZypyeQ, the
union U pn7 ;0 is actually a union of certain type classes, and hence we may clpqose,pr,
Ts(n+1)‘IF, such that

5. (106)

phepn t=1

The coding is very simple: whehe 7 the encoder choosdssuch thatl ETFM' He then

communicates$ to the decoder, and uses the protocol of Proposition(fhifact, communication
of t is not even necessary, as in the latter protocol the tygei@tommunicated anywgyWhen
| ¢ 7 some fixed default choice is sent.
By construction and by Proposition 4.1, for sufficiently lagéhis scheme useR+ e clas-
sical bits andV (£,P,R) + € qubits per source symbol. For egahe P" we obtain high fidelity for
all states outside a set of arbitrarily small probability. O
In particular, for the above-mentioned case of no restrictions at all on the probabilities, we get
the trade-off function
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Q* (R, Pe) = supM(&,p,R). (107

pE’Pg

which depends only on the states &f For a finite ensemble it is quite easy to show that
M(&,p,R) is continuous in the distributiop. This implies that the suprema in Eq4.03) and
(107 are, in fact;maxima(in the former case over the closure @f.

VII. INFORMATION AND DISTURBANCE

The functionM (&,R), in addition to providing the quantum-classical trade-off curve, has a
number of other useful interpretations. Recall from Proposition 3.3 that

M(&R)= inf {S(A:B|C):S(A:C)=R}, (108
p(-[-)

with an equality forS(A:C) rather than the inequality we usually use. By the chain rule,
S(A:C)+ S(A:B|C)=S(A:BC) (109

and S(A:BC) is just the Holevoy quantity of the ensemble

FeC=l o 2 pUIDINGISPi- (110

Therefore, if we define the functiod(&,R) :=R+ M (&,R), then we can rewrite EQ108) as

X(E,R)=inf {x(FBC):S(A:C)=R}. (111
p(-1-)

The quantity on the right is now perhaps more familiar than the conditional mutual information
S(A:B|C): it is a standard measure of the distinguishability present in the enseffslemini-
mized over all possible ways of including a fixed amount of classical information about the index
i in registerC. Now suppose that Alice is initially given a stdig;) from & (without the name
this time and, via a CPTP map, manages to extract an amRwftclassical information abolit
without damaging any of the statgs;). Then her final Holevgy would necessarily be at least as
large asX(&,R), by definition. Typically, howeverX(&,R)>S(€) [by the Schumacher lower
bound toQ* (R)=M(&,R)], so such an operation will be forbidden by the monotonicityyof
Therefore, it is impossible for Alice to extract information without disturbing the states.

The simple argument above combined with the additivityvof £,R) from Sec. Il A can be
used to prove interesting statements about the trade-off between information gain and state dis-
turbance in an asymptotic and approximate setting. In contrast to the compression problem, how-
ever, we can make stronger statements if we use the mean letterwise fidelity nfedsameSec.
Il D instead of the global fidelity measufe. Therefore, we will express our results in terms of

the corresponding functioﬁe(é‘@”,nR) instead ofM .(£*",nR). Recall that these functions are
defined identically except that the first uses the mean fidelity fun&iamd the second uses the
global fidelity F. Likewise, defineX (&,R)=R+M (&R). SinceF andF are identical for a
single copy, we havB_’IE(E, R)=M _(&,R) and similarly forX andX. By the discussion in Sec. llI
D, we know thatV (£%",nR)=nM (&,R), which in turn implies

X (E%"nR)=nXER). (112

Now, generalizing the above single copy argument, suppose that Alice is given pggjadeawn
from £°", which, by a CPTP majp, she manages to convert into the state
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p.=; 2r0pGIDIINGIC, (113

with a quantum and classical part such that the mutual informatifinj)=nR and the mean
letterwise fidelity between Alice’s initial states and her final states of sy&esatisfies

_ 1o
F(5®“,TrC°F(8®”))==Z p.ﬁgl Fleip TreeTre(p))=1-e. (114

Writing 72¢={T'(¢,),p;}, the monotonicity ofy guarantees thatS(£)=x°“ and it is easy to see
that xB¢=X_(£%",nR). By applying Eq.(112), we then find

S(E)=X(ER), (115

in which, conspicuously, all dependenceminas vanished. In other words, in order to maximize
her information at a given mean letterwise fidelity, Alice should just repeat the optimal single letter
strategy for each position; she need not ever apply any collective operations. Summarizing these
observations, we have the following.

Theorem 7.1:Suppose we have a set of stdieg drawn from the ensembt&®" represented
on system B and |df be a CPTP map from B to the joint system B@here C is classical,
satisfying the following conditions:

(1) H(I:j)=nR, where j is the classical output on system C
(2) The mean letterwise fidelity(E“", Trcel' (£€M))=1—€.

Then, for eache>0, the inequality $&)=X_(&,R) holds. Moreover, the Holevo quantity of the
ensembleFEC={T'(¢,),p,} satisfies the inequality(FE)=nX_(& R).
O

One application of the theorem is that it provides an alternative method for analyzing the
quantum resources required for blind compression, which was the subject of Ref. 13. The idea is
simply to think of the mad" as the compositio® ,°E,, of the encoding and decoding maps for
blocks of sizen. (Because classical information can be copied, we can assume without loss of
generality that the decoder keeps his classical information around after the decoding stage has
been completed Now suppose that the scheme has classical mutual informalforj)=nR. If
it also has mean letterwise fidelity-le,,, then, as for the visible case,

1
qsuppaHMEn(éZ@”,nR):MEn(&R). (116

By the previous theorem, however, we must also have the ineq&ﬁWzXen(& R). Moreover,

if perfect compression is possible asymptoticallising either the block or letterwise fidelity
conditiong, we get the stronger inequality

S(&)=lIMX(E,R)=Xo(ER). (117)
€0

(The continuity ate=0 follows from the continuity ofM,, demonstrated earli¢rBecause the
ensemblef can always be recovered by tracing over @eegister, the monotonicity of guar-
antees that the right hand side is always at least as large as the left, im{¥ig Xo(&E,R). We
are, therefore, interested in the equality conditions for monotonicity.

Recalling some terminology from Ref. 13, we say an enseidifidereducibleif its states can
be partitioned into two nonempty sets with orthogonal supports. An ensemble is said to be irre-
ducible if it is not reducible. Every ensemble, therefore, can be decomposed into orthogonal,
irreducible subensembles as
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L
E=U a.|5| , (118)
=1

wherea, is the total probability weight of states in subensentfle

Proposition 7.2: Letf= UI; 184& be a decomposition of the pure-state enserghilgo irre-
ducible subensemblﬁz{hp”),pig} and let FBC={ol® wff,a|pi|,} be a bipartite extension of
the ensemblé€. Then &) = x(FB°) if and only if wj=wj foralli, j, and I.

A proof is given in the Appendix, Sec. 5. The meaning of the proposition is essentially that the
only information that can be stored on regisewithout increasingy is the classical information
already present on regist&; so thatw;; must be a function of alone. Therefore, in order to
satisfy Eq.(117) it is necessary th&<H(a4, . .. ,a.). Conversely, provided the inequality holds,
it is possible to extradR bits per signal without disturbance at the encoding stage, at which point
the encoding scheme we used for visible compression can be used to achieve the quantum rate
S(€) —R. Putting these observations together, we obtain an alternative demonstration of the main
theorem of Ref. 13:

Theorem 7.3:Let &= Ul":la|5| be a decomposition of the ensembl@to orthogonal, irre-
ducible subensembles. Then blind compressiantofQ qubits per signal plus auxiliary classical
storage is possible if and only if

QBEl aS(&)=S(E)—H(ay, ... a.). (119

O

Thus, the techniques we have introduced to analyze the visible compression problem provide a
unified framework for analyzing blind compression as well. In fact, we will see in the next section
that the trade-off curve for yet another related problem—remote state preparation—can also be
calculated using similar methods.

VIIl. APPLICATION TO REMOTE STATE PREPARATION

Remote state preparation, introduced in Ref. 17 following a conjecture of‘f.dgsyery
similar to what we have considered here: it is a visible coding problem for quantum states
involving classical resources, in the form of communication, and quantum resources, this time in
the form of entanglement. Furthermore, these two types of resources can be traded against each
other so it is natural to study the optimal trade-off curve.

Without giving formal definitions, leE* (R) be the minimum rate of entanglement sufficient
for a remote state preparation protocol with classical Ratsuch that the average fidelity tends to
1 with growing blocklength.

Given that entanglement can be set up using qguantum communication at a cost of one qubit
per ebit, and that, on the other hand, quantum communication can be accomplished using
teleportatiori? at a cost of two cbits and one ebit per qubit, it is clear that coding methods for the
one problem immediately yiel@gossibly suboptimalprocedures for the othdiin fact, by making
use of quantum-classical trade-off coding, this resulted in the “cap-method” of Ref. 17, which was
further refined in Ref. 30.

In Ref. 33 a method of remote state preparation is developed that works for visible coding of
product states and is more efficient than teleportation: we really need only tmasbit and one
ebit per qubit, asymptotically.

Theorem 8.1(See Ref. 33 Given a finite seft’ of states (density operators) @@ there is a
probabilistic exact (one-shot) remote state preparation protocol working for all statés and
with failure probability uniformlye, using a maximally entangled stgte) on K® K and classical
communication of a message out of
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2In2
M<1+ —ez—log(2|)c1dimIC)dimIC.

O
This leads immediately to the following.
Theorem 8.2: For the source€={|¢;),p;} of quantum states, if R0 and Q=Q*(R), then
E*(R+Q)=<Q.

As a consequence, we obtain

E*(R)<N(&,R):=min{S(A:B|C):S(A:BC)<R},
p(-[-)

minimization over the same set of tripartite states as in the definition.of M

Proof: We apply Theorem 8.1 to the spakieof encoded statesf an optimal trade-off coding
usingR cbits andQ qubits per source symbol, and to the set of all possible encoded states: note
that| A< (|Z]| )"

By that result, we nee@ ebits to do this, and an addition@l+o(1) cbits to theR cbits from
the trade-off coding. O

In fact, in Ref. 33 it is shown, by methods very similar to those in Sec. Ill, that the above
estimate forE* is in fact an equality, and that our AVS considerations also carry over.

Theorem 8.3: For the state se€ and AVSP,

E*(R,P)=supN(¢&,p,R),
peQ

with Q= conv(P). O

For P the set of all distributions on the pure states indeed for any symmetric family of
distributiong we can prove symmetry results like those in the upcoming Sec. IX, and arrive at the
conclusion that thabsolute trade-ofbetween chits and ebits in remote state preparation is given
by the curveN(P(H),u), whereu is the uniform(i.e., unitarily invariant measure on the set
P(H) of all pure states orH. Devetak and Bergét arrived at a slightly different curve as an
upper bound to the true trade-off, starting fror{72(7{),u) as we did, but employing teleporation
instead of the newer technique in Theorem 8.1. For this reason their conjecture that their bound is
tight is not correct.

IX. SYMMETRY IN THE ENSEMBLE

Our formulas for the trade-off curve, both in the known and arbitrarily varying source case,
can be considerably simplified if there is symmetry in the set of states.

Assume that there is a group acting on the label$ of the states by a projective unitary
representatiotJ g,

VgeG,ieZ |<Pgi><‘Pgi|:Ug|§Di><¢i|Ug- (120

(We will present the following arguments for a finite group, but they also apply to compact groups:
in fact, we only need the existence of an invariant measure, see ReflI8&laction ofG onZ
induces an action on the probability distributionsim a natural way: ifp € P(Z) is a distribu-

tion, thenp®(i)=p(g i) defines the translated distribution. Assume now further that the arbi-
tarily varying sourceP is stable under this induced action:

VpeP pY%P. (121

[In the “known source” caseP={p}, this simply means thap(gi)=p(i) for all ieZ andg
eG.]
By the formula for the trade-off curve, ELO3), we may assume th#t is convex. Letting
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PC:={peP:Vge Gp’=p}, (122

we can then prove the following.
Theorem 9.1:For any G-invariant state set and AVB,

M(&P,R)=M(&PC,R). (123

Proof: The lhs is by definition greater than or equal than the rhs.
For the opposite inequality we make use of the “restricted concavity” given in proposition
5.2. For the rotation$); applied with equal probabilities to the ensembiep), we get

1 1
;,ﬁg p%R >@M(ugsu;,pg,R):M(ap.R» (124

M| UU4EU
g

Note that (1JG|) Z4p%e PC and, since the state set@invariant, we havngUggugzé‘, which
proves our claim. O

If G actstransitively this leads to a dramatic simplification of the formula for the AVS
trade-off curve(Theorem 6.1 in this case the onlg-invariant distribution is the uniform distri-
bution, so from Theorem 6.1 we obtain the following.

Corollary 9.2: For an AVY &,P) with transitive group action under which is stable, (e.g.,
for P="P;), we have

Q*(R,P)=M(&u,R),

where u is the uniform distribution ofi O

The particular example of being the set of all pure states @ andP being the set of all
distributions or€ is arguably the setting fahe trade-off between classical and quantum bits: the
trade-off coding becomes a statement solely about states, with no mention of prior probabilities.
Of course we have not yet justified the application of our results to infinite state sets. The
corresponding but more involved treatment of the coding bounds will be given in Sec. X.

Given this generalization to infinite state sets, we conclude thalikelute trade-offor pure
states ori+ is given byM (P(H),u), with the uniform(i.e., unitarily invariant measureu on the
setP(zH) of all pure states. The Devetak-Berger curve introduced earlier corresponds to the case
H=C".

Remark:From the proof of Theorem 9.1, we see that we may always restrict the classical
encodingsp(-|-) to be group covariant as well, in the sense that, for gacly, the distribution
a(-1j) has the property that for eadne G there exists g’ satisfying q;,=q; and q(gilj)
=q(i|j') forallieZ:

Define a new encoding’ by letting

p’(j,glgi)==%p(i|i). (125

For aG-invariant distributionp on the ensemble states this does not change the vall&#\o€)
andS(A:B|C). However, the resulting probabilitieg ,=q; andq’(gilj,g9)=p;p(jli)/q] 4 have
a useful property: there is a group action®bn the indices |(,g) under which the distributiog’
is invariant, and the set of conditional distributionq - |j,g) is stable. More preciselyy acts on
(j»9) by h-(j,9)=(j,hg). Obviously,q’ is invariant under this, and

q’(gilh-(j,9))=q’(gilj,hg)=q’(h~*hgilj,gh), (126)

saying thatg' (- [h-(j,9))=(a’(-|j,hg))".

Hence, when discussing optimal codings givergbyndq( - lj) such tha®;q;q(- [i)=p, we
may always assume th&t also acts on the set ¢fs, and that
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VivVg qg=9; and q(-[gj)=(a(-]j))°. (127

O
We close this section by giving a bound on the size of the classical register for a finite
ensemble with symmetry, which sometimes improves our earlier result in Proposition 3.4:
Proposition 9.3: Let the group G act on the ensemie{ ¢; ,pi}i . 7 in the way described at
the beginning of this section, and assume that p ig@riant. If the group action partitiong
into t G-orbits, then for every R there exists a classical encodifid ):Z— J which is covariant
in the above sense, and satisfies

|7<|G|(t+1), S(A:C)<R, S(A:B|C)=M(&R).

In fact 7 partitions into t+1 G-orbits, in the sense described above

The proof is given in the Appendix, Sec. 6

Example:Let £ consist of any two state§={|zpi)}i2:1. By choosing a reflection that swaps
|eo1) and|e,), we get a transitive/, action on the indices. Therefore, for the AVS {,P;), we
haveQ* (R,P)=M(&,u,R), whereu is the uniform distributiorp; = 3. This distribution is clearly
G-invariant, so Proposition 9.3 ensures that there is an optimal encoding for Whielntitions
into at mostt+1=2 orbits, each of size either 1 or 2. O

Example:For states in the BB84 ensemhigg(6), the groupZ,x 7, acts transitively via
reflection along the&/2 axis and rotation byr/2. Therefore, once again, the unrestricted AVS can
be reduced to the uniform ensemble, for which the optimal encoding can be asSuouedriant,
with 7 partitioning into at most two orbits of length 1, 2 or 4. O

X. INFINITE SOURCE ENSEMBLES

It should be noted that, even in the technical parts of our proofs, and, indeed, in the very
statements of theoding theoremswe assumed that the sets of states under consideration were
finite.

As there are interesting examples of ensembles with infinite state sets, including perhaps most
notably the whole manifold of pure states in a Hilbert space, we show here how a certain approxi-
mation techniquéused in Ref. 25 to deal with coding for nonstationary quantum chancestsbe
used to transfer our main results quite directly. The procedure, unfortunately, is not entirely
painless; we have to go through the proof of Proposition 4.1 again with a modified and more
technical version of the typical subspace. That is why we have chosen to treat the infinite source
case separately, confining the details to this section.

A. Formulation of information quantities and the lower bound

To be able to consider infinite ensembles and encodings, we have to reformulate our notions
from Secs. Il and Il in terms of general measure spafmsthe background and terminology see
any textbooks on probability, such as Ref. 35, and measure tHeory

The source ensembtgis described by a measure spdedwith probability measurd), and
a measurable map: ) —P(H) CS(H) from () into the set of pure states on the Hilbert spate
(which is still of finite dimensiond), mappingw € Q to |¢,){¢,|. We can then easily define
encoding and decodindg=(D) for blocks of lengthn:

E:Q"-S(Hg) X Qc, (128
D:B(Hg)®B(£3(Qc))—BS", (129

whereE is a Markov kernel() is afinite sef andD is CPTP. The quantification of classical and
quantum resources we adopt unchanged, and the fidelity condition reads as follows: the combined
encoding and decoding gives rise to a Markov kernel

DoE:Q"—BS", (130
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and, using the abbreviation
(D°E)(w1-“wn)=f (DeE)(do|wy--wy) 0, (131
B(Hpg)
we require that
Fo | Po o 0P (90, (DEN 0y o) =1- € (132
Qn n

Let us denote by: the measure induced By and this Markov kernel o) X S(Hg) X Q¢ :

m(FaXGge):= JF P(dw)E(Ggclw). (133

A

We denote its restriction@narginal$ to factorsQ,=Q, S(Hg), Qc by P=pua, us, Q:=pc,
respectively, and analogously,c, etc.

With the help of Radon—Nikodym derivatives we can always construct the Bayesian “in-
verse” Markov kernel

q:Qc—QaXS(Hg) (139

that gives rise to the same joint distribution:

JG pc(di)a(Faglj)=u(FagX Ge). (139

In fact, uc-almost everywhere,

du(FapX{j
A(Faeli) = “(d%m{”) (136

To follow the procedure of Sec. Il we have to define the relevant information quarifities
their properties, see Refs. 36 and):37

First, S(A:C) can be expressed @(uac|ua® uc), in terms of the relative entropgor
Kullback—Leibler divergengeof two measures

dM(X)), (137

D(MH)\)’:f M(dX)|09(r(X)

where ¢t(x)/d\(x) denotes the Radon—Nikodym derivative. If this does not epistimost
everywhere, we definB(u||\)=c. It is a fact that in Eq(137) the Radon—Nikodym derivative
always exists, and it can be checked that in the finite case the new definition coincides with the
old.

Second,S(A:B|C)=fgcq(dj)S(A:B|C=j), with S(A:B|C=]j) denoting the quantum mu-
tual information associated to the conditional probability meag(réj) on Q< S(Hg): for any
such distribution\, with first marginal\ , and Markov kerneL:Q ,— S(H),

S)\(AZB)IS(J’ )\B(da')o)—f )\A(dw)S<f L(d0'|w)0'). (1398
S(H) Qp S(H)

Again, it is possible to check that for discrete probability spaces we obtain the same expressions
as before.
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The proofs of Lemmas 3.1 and 3.2 and of Theorem 3.5 are directly adapted to this language,
essentially replacing all sums representing probability averages by inte@tats. that even the
“continuity in € part in the latter applies as the functiofsandg depend only ore andd.) This
is possible since the monotonicity and convexity properties we used are still true in the infinite
setting.

At the end of the proof we arrive at encodings mapping Q t0 |¢,){¢,|®Z;p(j|w)|j)
x(j| (i.e., the corresponding Markov kernel maps the point mass at,){¢,,| times a discrete
measure of)¢). Such encodings we denot(),—Q,” and we get

Q*(R)= inf {S(A:B|C):S(A:C)<R}. (139

P:QA—Qc,|Qc|<e

Dropping the finiteness of)c can only decrease the lower bound, and we arrive at the
following general version of Theorem 3.5:
Theorem 10.1:For the ensembl€=({},P, ¢),

Q*(R)=M(&R):= inf {S(A:B|C):S(A:C)<R},
p:Qp—Qc

with

S(A:C)=D(u|Peq),

saslo)- [ q(dj)S( | atelileased |

whereu is the measure o , X Q¢ induced by P and the Markov kerne{-9-), q is its marginal
on Q¢ and ¢ -|-) is the Bayesian Markov kern€lc—Q, . O

B. Adaptation of the coding theorem

The obstacles to an application of our coding scheme, Proposition 4.1, are the potentially
infinite range of the source registé®) and the classical encodindg)¢). Of course, when in the
previous subsection we allowed the latter to be infinite, we only nMdenaller, and at that point
it was not clear that this was a good move.

The purpose of the present subsection is to show that it is possible to approximate the effect
of an infinite encoding by a strictly finite one: finitely many possible state® @md finitely many
classical symbols. This will inevitably introduce some error, which we will have to counter by a
suitably adapted notion of typical subspace.

Lemma 10.2: Foe>0 there exists a partition af(H) into m< C(d)(dz Borel sets each of
which has radius at most: in each partS; there exists a state;; such that for allpe S, ||p
—ai|l;=<e. The constant Cd) depends only on.d

Proof: The set of states ort{ is affinely isomorphic to the set of positive complex
dXx d-matrices with trace 1, which is contained in the set of self-adjoint complex matrices with all
d? real and imaginary parts of entries in the interval1,1]: this is ad?-dimensional hypercube.
This can be partitioned into 62d3)c'26*d2 many small hypercubes of edge lengtlid®v2). It is
easy to check that for any,o in the same small cub@p—of;<e. O

For a source Q,P,¢) such a partition entails a partitiofi of ) into at mostm measurable
piecesZ;, with w; e Z; such thaligowi><<pwi| =o;. (We need only consider pieces that intersect the
image of¢.) A central role will be played by the “contraction” of the infinite ensembl¢o the
finite ensemble‘,”:{gowi,ls(i): P(Z;)} which is obtained by identifying all oZ; to the single
stateg,, .

We have already defined the setli’)iltypical sequences; 5, and now can define the follow-
ing typical set forP:
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Téy= U Z,XXZ,. (140

|ET;5

It obviously inherits the large probability property @ s:
. 1
PONTE 9=1— 2 (141

Before we can describe the coding scheme we have to introduce a variant of the conditional
typical sequences and subspaces: for a chawhél- 7 and 8,e>0 define

TG 51 ={3:Vij NG} [13) = NG DW( )] < 8N + eN(i D} (142

(Our previous notion is recovered wi#=0, and in the sequet will be small, compared t&
which we shall choose largeObserve that this is a union of conditional type classes. Using Eq.
(78) it is quite easy to show that

179 s(D|<(n+1)171 exp(nH(w|F>|)+Ei NG [1D)[ 7 m(e+ SN[ ™)

<+ exp(nH(WIP)) +n| 7 (e) +nn(8|Zl/Vn)), (143

where we have used the inequalifyx+y)=< n(x) + n(y) and concavity ofz.
Similarly, for a collection of state¥V;, which we endow with fixed diagonalizatior,
=E}’=1W(j li)ejji)(ej;il, we can define the projector

H\(/G,)a(l)’: > leg (el (144
IeT{) )
and get from Eq(143 the estimate
TrIL{) 5(1) < (n+1) % exp(nH(W|P,) + ndp(e)+np(8|Z1/Vn)). (145

Its other most important property that we shall use is the following: consider a producirstate
=01®"-® 0o, such that, with somé=i---i,,

1
HN<I|I>k;iki W) =e (149
Then we claim that
@ |Z]
Tr(aHW,(,(I))zl—?. (147

The proof goes as follows: the left hand side above does not change if we repldne oy
=3lepi (i, lowleyi (e, because the projector is a sum of one-dimensional projectors
|eJ|,>(eJ“|. Thus we may assume that, has diagonal form in the chosen eigenbasis\/\lpI:
o =2;Sc(i)l ey ) (eyi |-

Note that the left hand side of Eql47) can be rewritten asS{1®---®Sn)(7*V§Y)5(I)), a
classical probability. Now it is immediate from the definition of the latter{ Eet (142)] and from
the condition(146) on o that

T4 s(1)DTs.s(1), (148
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with the channeB(j|i)= [1/N(i|1)] Sk =iSk(]). Hence

|7l

A (149

1\
<sl®---®sn><¢vs?5<l))><sl®---®&><7§5<l>>>(1—y> =1

the second line by Chebyshev’s inequality.

After these preparations we are ready to prove the infinite source version of Proposition 4.1:

Proposition 10.3: Let€=({,,P,¢) be a source. For a probability distribution P di and a
Markov kernel - |-):Qx—Qc, €>0, there exists a partitionZ of Q4 into m— 1<C(d)e*‘12
measurable sets, corresponding to &fine partition of the state space, and fér0 a visible
code(E,D) such that

2

. 4m
Vo=(or-0)eTs; Fleu)(eu).(DE)(w)=1-—.

and sending
nS(A:C)+nKm?5(8/\n)+K'm?log(n+1) classical bits
nS(A:B|C)+n(3dmfn(26m%/n)+3d7(e))+dmlog(n+1) quantum bits

Proof: We can find the partition by Lemma 10.2 and the discussion thereatfter.
Consider now thémeasurablecoarse-graining map

T:o—ie{l,...m—1}or weZ. (150

Applying T to Q4 [and the identity map td(Hg) and ] leads to a new distributiom’ on
Qa X B(Hg) X Q¢, with Q, ={1,...m—1}. By the data-processing inequafity’ we have

S(A’:C)<S(A:C) and S(A’:B|C)<S(A:B|C). (151

Next we change the quantum part of the encoding by collecting all the weight of afjiece
into ¢; =@, We can do this by a similar coarse-graining map

T:o0—>|e) i for oeZz;. (152

The resulting distribution will be denoted ky/': it is supported on a finite s€} . and a finite set
of statese; (in fact, the “contracted” ensembl€’ of the discussion after Lemma 10.3t is
generated by a Markov kern@tQ . — Q, which in this case is simply a finite collection of
(conditiona) distributionsp(-|i) on Q. Note that this is a valid encoding in the sense of the
definition of M(&’,R), in the main section. Let us denote the corresponding conditional quantum
mutual information byS(A’:B’|C).

By definition of S(A’:B|C) and the partitionZ, we have

S(A":B'|C)<S(A’:B|C)+2d7(eld), (153

using Fannes’ inequalit{52) twice.
To end this step-by-step discretization, we may change the encoding to a stochastic matrix
p":Qa—{1,...m}=:Q¢, by the considerations of Sec. [$ee also Proposition 9,3such that
S(A’:B’|C")<S(A’:B’|C) and S(A’:C")=S(A":C). (154

So, finally, we are in a position to apply the coding method of Proposition 4.1, with the sole
difference that we use for the quantum encoding the projd&fﬂr&(l) instead of our previous
conditional typical projector, antis such thatw;--w,€Z, .
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The fidelity estimate is obtained just like there, only using Eift7). The classical rate
estimate we copy from Proposition 4.1, and for the quantum rate estimate, we follow its derivation
in the proof, using Eq(145) to estimate the range of the projectdﬂ%f)’ s(1): we have to send

nS(A’:B'|C’)+n(3dmfy(26m?/yn)+dn(e))+dmlog(n+1) (155

quantum bits, which, by Eq$151)—(154), yields our desired estimate. O
This immediately leads to the result that we wanted:
Theorem 10.4:For any ensembl€=({,P,¢),

Q*(R)=M(&R).

Proof: ThatM (&,R) is a lower bound t®Q* is proved by Theorem 10.1. For its achievability
choosee>0 and a Markov kerngb such that bott§(A:C)<R andS(A:B|C)<M(&,R) +e.

Choose now a partitior2 according to Proposition 10.3, fixinpn. Now chooseé large
enough, so that according to that proposition a code exists which has fideligyoh a state set
of probability 1— €, i.e., it has average fidelity-12e on the ensemble. By the proposition it has
cbit rateS(A:C)+0(1) and qubit rate

S(A:B|C)+27(€)+0(1)<M(&R)+27(e) + e+0(1), (156)

asn—o. As e was arbitrary, our claim is proved. O

C. On the AVS in the infinite setting

With the help of the above Proposition 10.3 the case of an arbitarily varying source of an
infinite ensemble is dealt with easily, in much the same way as we did in the finitesEs&Sec.
VI):

Formally, of course, an arbitrarily varying source is a tripfe, P, ¢), where() and ¢ are a
measurable space and a measurable map into states, as befor,isred set of probability
distributions on().

With the definitions of encoding and decoding from Sec. X A we require

VP"e P”L)np@”(dwl"'wn)F(|%)(%l,(DC’E)(w))Bl— €. (157)

Denoting the trade-off function &@* (R,P), we obtain the expected result:
Theorem 10.5:Q* (R,P)=M(P,R), with

M(P,R)= supM(P,R),
PeQ

whereQ=conv(P) is the convex hull oP.

Proof: The inequality =" is obvious, like in the finite case: the adversary can certainly
always mock up an i.i.d. sourd@e Q, hence Theorem 10.1 applies.

For the opposite inequality, we start by choosingen0 and a partitionZ according to

Proposition 10.3. Every distributioR in P gives rise to a distributiof € 7,,_;, and we denote
P:={P:PeP}. (158

Note that, because the m&p— P is affine linear, we ge@=conv(P).
Now for 6>0 we introduce again the set

T=  Tps, (159
bed
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and it is easy to segompare Eq(141)] that

T?:=U Z; X--XZ, (160
leT * "

carries - & 2 of the probability of everyP"e P". On the other hand, becaugeis a union of
type classes, we can find “fewP ,...,P, T<(n+1)" such that the correspondir‘@lﬁ cover
7. The coding is very simple: on seeing a state ., the encoder finds the indéxof the piece
Z, in the partitionZ" such thatw;---w,€ Z,, and the type of. If | € 7, he looks upt such that
I e 75, 5 and uses the coding scheme of Proposition 10.%for(Note that he needs not even send

the type ofl as that is part of the protocol of Proposition 10.@hoosingé large enough this
recipe gives a code with high fidelity for eveB' e P"; by construction and Proposition 10.3, it
has rates oR+0(1) chits andM (P,R) +f(€)+0(1) qubits, with a functiorf(¢) that tends to O
ase—0. O

To end this discussion, we would like to point out that a similar treatment of remote state
preparation can be done: in fact, as we discussed in Sec. VIIl, we always use the “1 ebit
+ 1 cbit per qubit” techniquéTheorem 8.1 on top of an efficient trade-off coding. To do this for
an infinite ensemble one only has to understand that the bound of Theorem 8.1 is strong enough
to allow approximation of the set of projectédompressedproduct statesp,, ® - ®¢, , at

negligible additional classical cost.

XIl. DISCUSSION AND CONCLUSIONS

Our main result is a simple formula for the trade-off between quantum and classical resources
in visible compression. The formula expresses the trade-off cQfR) in terms of a single-
letter optimization over conditional probability distributions of bounded size. This unexpectedly
simple resolution places optimal trade-off coding into a small but growing class of problems in
quantum information theory whose answers are not only known in principle but can be calculated
in practice.(Another notable recent addition is the entanglement-assisted capacity of a quantum
channef?

At a conceptual level, for any given ensemblef quantum state€Q* (R) can be thought of
as a quantitative description of how “classical” the ensemble is. Any deviation from classicality is
captured in the trade-off curve in the form of inefficiency of the classical storage. The amount of
information that can be extracted from many copieg @fhile causing negligible disturbance, for
example, can be read directly off the curve by identifying the point at which classical resources
begin to become inefficient as compared to quantum. Much more subtle indicators of classicality
are also available irQ*(R), however. We saw, for instance, that for the parametrized BB84
ensembleQ* (R) had a kink at the point corresponding to partitioning the ensemble into nearly
orthogonal subensembles.

Going beyond the compression of ensembles, we saw that it is possible to formulate a version
of our main result in the setting of arbitrarily varying sources, corresponding to the situation in
which the encoder and decoder have only partial or even no knowledge of the distribution of input
states. Despite this handicap, compression is frequently still possible and we once again find that
the trade-off curve can be calculated via a tractable optimization problem. For ensembles with
symmetry, the problem can even often be reduced to calcul®i@R) for one particular en-
semble. Thus, for any given set of pure states, including the whole manifold of states on a given
Hilbert space, these tools allow us to calculate the rate of exchange from qubit storage to classical
storage. The answer is given, of course, not in terms of a single number but as the trade-off curve.
(Like in any market, the going rate depends on supply.

Our view thatQ* (R) encodes the balance of quantum and classical information in a given
ensemble or set of states is further bolstered by the role it was found to play in optimal remote
state preparation. In this context, the minimal amount of classical communication required for any
given rate of entanglement consumption can, once again, be read directly off the quantum-

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



4440 J. Math. Phys., Vol. 43, No. 9, September 2002 Hayden, Jozsa, and Winter

classical trade-off curve. That the comparatively exotic process of remote state preparation should
reduce, via Theorem 8.1, to visible compression is a tremendous simplification.

Of course, while we have seen that the results of this article resolve some basic questions
about trading different types of resources in quantum information, most related questions remain
open. To begin, it is possible to trade entanglement, quantum communication and classical com-
munication all together in a generalized type of remote state preparation. Since our results here
describe the two extremes when first entanglement and then quantum communication are not
permitted, it seems likely that similar techniques could resolve the full trade-off surface. More
ambitiously, one could define channel capacities for noisy quantum channels that interpolate
between the fully quantum and classical capacities by studying the usefulness of a channel for
simultaneously sending quantum and classical information. The problem analogous to the trade-
off question studied here would be to determine the achievalgien of quantum-classical rate
pairs. Unfortunately, given that neither the fully classical nor fully quantum extremes are fully
understood, it may be a long time before we develop tools capable of analyzing that problem.

Therefore, to end, we offer two related open problems that are perhaps closer to the realm of
the tractable. First, it would be useful to have a set of rules for extracting qualitative features of the
trade-off curve, such as the location of any kinks and perhaps more detailed differentiability
properties, from the structure of the input staf@sensemblg Second, it would be an interesting
challenge to apply the observations of Sec. IX on symmetry to the explicit calculation of the
trade-off curve for particular examples and, more generally, to find other approaches to simplify-
ing these calculations.
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APPENDIX: PROOFS OF AUXILIARY PROPOSITIONS
1. Proof of Proposition 3.3

Proof: Suppose the classical registerdecomposes into part; andC, with corresponding
joint density operator

pABquZ pi|i><i|A®|§Di><¢i|B®% p(ilj. ) [§) (i1 k) (k[ (A1)
If we define the conditional ensemblég and¢;, then
S(A:B|C1C2):% qjks(gjk)gs(A:B|Cl):; a;S(&) (A2)

by the concavity of the von Neumann entropy.
Therefore, for any map witls(A:C,) <R<H(p), we can always adjoin a second classical
registerC, such thatS(A:C,C,) =R without increasing the conditional mutual informatiori.]

2. Proof of Proposition 3.4

Proof: W.l.o.g. letie{1,...m}. The information quantities in the definition & can be
reexpressed as follows:

S(A:B|C)=; q;S 2 q(ili)| i) {eil |, (A3)
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S<A:C>=H<p>—; giH(al-1i)), (A4)

with q;==2;p;p(j|i) andq;q(ilj)=pip(jli). We ready as a probability distribution on the sB¥,
of all probability distributions oq1,...,m}. Thus the minimization problem in the definition g
can be expressed as finding the infimunief; S(f(q(-|j))) over the set

P(p,R)=1{qp.d. on Pm:; q;q(-lj)=p,; qH(q(-j))=H(p)—R},

wheref is an affine linear function on probability distributions, mapping the distribytida the
quantum state;p;| ¢;){il.

Now we argue structurally: the s&{(p,R) is convex(as a subset of an infinite dimensional
probability simplex with additional linear inequality constrajntand the aim function is linear.
Hence the infimum is an infimum over the extreme point$@h,R), which are, by Caratheodo-
ry’s theorem, distributiong] with support at mostm+ 1, the number of inequalities that define
P(p,R)CP(P,) (see, e.g., Ref. 38In Sec. IX, Proposition 9.3 and Appendix, Sec. 6, we provide
a detailed exposition of a more general form of this result. O

3. Proof of Proposition 5.1

Proof: The “<” inequality follows directly by forming the tensor product of two encodings
for £ and &, with classical rate®R; andR, respectively.

The “=" inequality is shown by choosing an encoding for the tensor product with classical
rate R and then using the chain rule several times for subdiviskasA;A, and B=B,B, as
follows. First observe that

R=S(A,A,:C)=S(A;:C)+S(A,:C|A;) =R, + R, (A5)
and then
S(A1A;:B1B,|C)=S(A;:B;1B;|C) + S(A;:B1B,|C,Aq)
=S(A;:B,|C)+S(A;:B,|C,A,)
=M(&;,Ry)+inf{S(A,:B,|C,A;):S(A;:C|A;)) <R}
=M(&1,R1) +M(&,Ry)
=min{M(&;,Ry) +M(&,Ry):Ry+R,=RY. (A6)

The second last line is seen as follows: in the line above it, the two mutual informations are
conditional onA;, so they both can be written as averages over the valudés, oHence the
inequality follows by the convexity oM in R. O

4. Proof of Proposition 5.2

Proof: It is sufficient to verify that any encoding operator

pABc:% piaii |A®|k><k|A®uk|<oi><<pi|UEB®$ OISR (A7)

for F gives rise to a valid encoding operator

A=) pi|i)<i|A®|<pi><<Pi|B®% PGk adi) (il ®lk)(k/® (A8)
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for £ satisfyingS,(A:B|C) <S,(A: B|C) andS,(A:C)< S,(A:C). ]

5. Proof of Proposition 7.2

Proof: We will first prove the proposition for irreducibl€. Using a trick introduced by
Holevol* we can reduce the problem further to the case of a two-state ensemble: for an ensemble
{piB® aic ,pi} of states(we assume that ap);>0) and two specific indicek andl, define a new
index

o i i#FkI,
JO=10 i can.
(Of course, in the case we have in mind, {heare the pure states from the ensemfl@nd the

o; are commuting mixed states representing the classical informafiben consider the multi-
partite state

(A9)

Q=2 pili)iMelj(Xi0)*epier.

The definition ofj(i) and the familiar chain rule imply

Note that the second term is an average over the valuggipfof Holevo quantities for the
corresponding reduced ensembles. Therefore, it has only one nonzero contribution, which is

S(A1:BC|Az) = (pxt+ p)x({pi® o ,pi/ (Pkt+ P i=k,)- (A11)
Then, using Eq(A10) and monotonicity ofy under partial trace repeatedly,
x{pi.pi®ai})=S(A;:BC)=S(A,:BC)+S(A;:BC|A,)
=S(A2:B) +(prt P x{pi®oi, pi [ (Pt P fi=k.1)
=S(A2:B) + (pit+ P x({pi . Pi [ (Px+ PO i—k,1)
=S(Az:B)+S(A1:B|A2) =S(A1:B)=x({pi ,pi})-

Assuming that the first and the last Holevo quantities have the same value, we must have equality
in the third line, implying

x{pi®oi,diti=,)=x{pi Aiti=k1), (A12)

with g;=p;/(pxt+ p;). Then, applying the general formula

x({ o ,pi}):Z PiD(wi|w) (A13)

to Eq.(A12), with w==;p;w; andD the relative entropy function, and using the Lindblad mono-
tonicity once more yields

D(pk® oyllakpx® o+ aip @ o) =D (pillakpx+ ipy) - (A14)

(And likewise forl.)
With this we are almost done: invoking a result of Ohya and Pse Ref. 37, Theorem 9.12
we conclude that there exists a CPTP nkRapuch that
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R(pk) = pk® o, (A15)

R(Qkpk+dip1) = dpk®@ o +Qip @ oy, (A16)

from which it follows by linearity that
R(p)=p®0. (A17)

Since CPTP map& and Tg) cannot decrease fidelity we thus must haye p, or o=0.

In the particular case that the initial ensemble is irreducible we conclude that allst be
equal, or else the partial trace ov@rstrictly decreases the Holevo quantity. If the ensengbie
not irreducible, a simple variation on the previous argument shows that, for each of the irreducible
subensembles; , x(&) must be equal tgy of the corresponding subensemble, ® oy , )} of
FBC. Applying our conclusions to these subensembles finishes the proof of the proposifion.
6. Proof of Proposition 9.3

Proof: As explained earlier in the proof of Proposition 3.4, any classical encoding map can be
viewed as a probability distributiog on the setP; of probability distributions orZ with bary-
centerp: p=X;q;q(-|j).

Covariance of the encoding means invariance einder the natural action @& on Pz, i.e.,
g:p—pY. Hence for each distributiop in the support of] we must have all the9 in the support
as well. On the other hand, we need far fewer conditions to obey, as it will turn out:

Assume that the covariant encoding is given by the distributions

1
(q(-1j))? with probability @qj, geG,j=1,....

Now choose representatives,...,i; of the orbits, and observe théiy G-invariance

1
> @qjmclj))g:p (A18)

i.g
if and only if

1
Vr=l..t 2 araa(e il =pdo). (A19)

Similarly, S(A:C)<R if and only if
2 gH(AC=H(P-R (A20)
and, finally, our aim function reads
1 .
S(ABIC) =2 1574iS| 2 a(ilDleg)(eal | (A21)
Now consider the affine linear map frofy, to R'** defined by

Aip—

1
H(p);@%‘, p(gliT):7'=l,...,t>. (A22)

Note that the image of this map is in a certaidimensional subspace becauset-ifl of the
conditions(A19) are satisfied, then thih is also, automatically. Equatiorid19) and (A20) are
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really conditions on thej;-weighted average of the imagas=A(q(- 1)), A=3;q;A;. By Cara-
theodory’s theorer the same average can be obtained by convex combinatibh bfof these,
i.e., by a distributiorg” on thej’s with support containing at most- 1 points. In factq is easily
seen to be expressible as a convex combination of such small support distributions*sayth
weights\,.

To conclude, we observe that our aim function in E&21) is linear in the distributionq:
hence, it is thex ,—weighted sum of similar such expressions with? in place ofq. For one
value ofa at least this is smaller thaB(A:B|C), the correspondingl’® satisfies=;q’ @A,
=A, and hence Eq94A19) and (A20). As explained in the remark preceding the statement of
Proposition 9.3, to obtain &—covariant encoding we can split up eagf|j) (with j in the
support ofg’ @) into theG translated distributionsg( - |j))?, proving the claim. O
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