Calculation of beta-decay half-lives of proton-rich nuclei of intermediate mass

G. T. Biehle and P. Vogel

Physics Department, 130-33, California Institute of Technology, Pasadena, California 91125

(Received 26 June 1992)

We present the results of a calculation of the beta-decay half-lives of several proton-rich even-even nuclei of intermediate mass: 84Sr, 78Sr, 72Zr, 82Zr, 84Mo, 85Mo, 86Ru, 87Ru, 92Pd, and 86Cd. The calculation is based upon the random phase approximation with the quasiparticle formalism and takes into account the residual particle-particle interaction.

PACS number(s): 23.40.Hc, 27.50. + e, 27.60. + j

Ever since Takahashi et al. [1] calculated in 1973 estimates for the beta-decay half-lives of virtually all beta-unstable nuclei, there has been a large effort to improve these estimates for neutron-rich nuclei because of applications in r-process theory and in the fate of fission products [2]. The theoretical effort to improve the estimates of half-lives of proton-rich nuclei has not been commensurate, although Hirsch et al. [3] and Muto et al. [4] presented calculations for light nuclei ($Z \leq 30$). (See, however, also Refs. [5–7].) In this Brief Report we present the results of an effort to improve the estimates for half-lives of several proton-rich nuclei of intermediate mass. These half-lives play a role in rp-process theory [8], that is, the process in which protons are quickly added onto C, N, O, and other “metals” with intervening fast positron decays resulting in heavy proton-rich nuclei. This process occurs in certain astrophysical contexts in which the temperature is greater than about 10⁸ K. In particular, this process is predicted to occur in massive stars with degenerate neutron cores (if they exist) [9], and information about the longer-lived (≥ 1 s) beta-unstable nuclei would allow one to predict the nuclear abundances on the surfaces of these stars [10]. For this reason we undertook the calculation of half-lives of some proton-rich even-even nuclei of intermediate mass.

We are interested in even-even nuclei which have 0⁺ ground states, so that the calculation is relatively simple. The positron-decay half-life $t_{1/2}$ is given by the following formula:

$$\frac{1}{t_{1/2}} = \sum_m \frac{B(GT)_m g_A^2}{6160 \text{ s}} f(\Delta E_m, Z),$$

where m labels the accessible 1⁺ states in the daughter nucleus, $B(GT)_m$ is the Gamow-Teller β^+ strength (equivalent to $|\langle m | \sigma^+ | i \rangle|^2$ in this case), g_A is the axial-vector-current coupling constant (which we set to 1.25), and $f(\Delta E_m, Z)$ is the Fermi function (including Coulomb and relativistic corrections), which describes the size of phase space.

We obtain energy levels of the daughter nucleus and evaluate $B(GT)$ using the random phase approximation based on the quasiparticle formalism (QRPA). (The generalization of the QRPA to charge-changing modes is due to Halbleib and Sorensen [11]. Particle-particle interactions were first included in the QRPA by Cha [12].) The formalism is described in detail in Vogel and Zirnbauer [13] and in Engel et al. [14]. In these papers the authors use the δ force as the residual interaction and describe the following four parameters: α_0, α_1 (the particle-hole interaction constants in the $S = 0$ and $S = 1$ channels, respectively), α_0', and α_1' (the particle-particle interaction constants). Although these constants are theoretically related, the authors present an argument that they can be treated independently in this calculation. Using the values given in Ref. [14], we set $g_{\text{pair}} = -270$ MeV fm³ when we solve the BCS equations, and we set $\alpha_0 = -890$ MeV fm³ and $\alpha_1 = -1010$ MeV fm³ for the RPA portion of our calculations. Because we are looking at positron decay of proton-rich nuclei, our results do not depend on α_0 in the RPA calculations. Our results do, however, depend strongly on the value of α_1', so we must take care to choose it carefully.

We divide the nuclei into two categories, those with $74 \leq A \leq 80$ and those with $80 < A \leq 96$. For the heavier nuclei in our study, we calibrated α_1' using the known decay half-lives of 86Mo, 89Mo, 90Ru, and 90Pd. In order to calculate these half-lives, we identified the lowest-lying 1⁺ state in the daughter nucleus with the ground state given by the QRPA calculation. (This determines the values of ΔE_m, used in the phase space integrals.) Our calculation is for positron decay only, i.e., no electron capture. In three of the calibration nuclei positron decay dominates over electron capture; however, 75% of the decay of 90Mo is due to electron capture. In that case we, therefore, use the proper partial decay rate. In our calculation, almost all (≥ 90%) of the predicted decays occur into the lowest-lying 1⁺ state. Figure 1 shows the log₁₀ of the ratio of calculated positron-decay half-life to experimental half-life versus α_1'. From this figure we see that α_1' may be anywhere within a window from -324 to -333 MeV fm³ and yield values of half-lives correct to within a factor of 3. A value of $\alpha_1' = -329$ MeV fm³ yields a least χ^2_{red} equal to 0.22, where

$$\chi^2_{\text{red}} = \left[\frac{1}{3} \sum \log_{10}(T_{\text{calc}}/T_{\text{exp}}) \right]^{1/2}.$$

Thus we predict that our results in Table I are accurate to about a factor of $10^{0.22} = 1.7$. By comparison, the χ^2_{red}
for these four nuclei using results from Takahashi et al. [1] is 0.59, yielding an estimated accuracy of a factor of $10^{0.59} = 4$.

In order to calculate half-lives of the nuclei listed in Table I, we need to know the positron-decay energies.

Since the masses of the positron-decay parents (and often those of the daughters as well) are not known, we use the predicted masses of Jänecke and Masson [15]. (These seem to reproduce best the known masses of proton-rich nuclei.) We set $\Delta E_m = 0$, that is, the maximum total energy of the positron, to the difference of parent and daughter masses less 0.2 MeV. The 0.2 MeV represents a typical value for the energy difference between the ground state and the lowest-lying 1^+ state of the daughter nucleus. (For these decays, however, $\Delta E_m = 0$ is large enough that the correction is trivial.) The results are shown in Table I. As stated in the previous paragraph, these values are accurate to within a factor of about 2. Electron capture is negligible in these nuclei, contributing less than 3% because of the large decay energies involved. (See Ref. [16].)

Similarly we use the known half-lives of 70Se, 72Kr, 74Kr, and 80Sr to calibrate α' and calculate half-lives for several nuclei with $A \leq 80$. In this case we obtain $\alpha' = -327$ MeV fm3 for the best fit, yielding a least χ^2 equal to 0.32. The results are also shown in Table I. We estimate that the results are accurate to within a factor of about $10^{0.32} = 2$, and again electron capture is negligible.

Also shown in Table I are the predicted half-lives of

TABLE I. Predicted beta-decay half-lives.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$\Delta E_m = 0^a$ (MeV)</th>
<th>Half-lifeb (s)</th>
<th>Takahashi et al. [1] half-life (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74Sr</td>
<td>9.6</td>
<td>0.5</td>
<td>0.03</td>
</tr>
<tr>
<td>76Sr</td>
<td>4.5</td>
<td>8.</td>
<td>3.</td>
</tr>
<tr>
<td>78Zr</td>
<td>10.5</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>80Zr</td>
<td>5.0</td>
<td>7.</td>
<td>3.</td>
</tr>
<tr>
<td>84Mo</td>
<td>5.2</td>
<td>6.</td>
<td>0.8</td>
</tr>
<tr>
<td>86Mo</td>
<td>3.9</td>
<td>90.</td>
<td>16.</td>
</tr>
<tr>
<td>88Ru</td>
<td>5.8</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>92Ru</td>
<td>4.7</td>
<td>16.</td>
<td>5.</td>
</tr>
<tr>
<td>92Pd</td>
<td>6.8</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>99Cd</td>
<td>8.0</td>
<td>0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

a This is the maximum total energy of the positron for a transition to the lowest 1^+ daughter state.

b The estimated accuracy is a factor of 2. See the explanation in the text.
Takahashi et al. It is encouraging that our results are consistent with theirs, which are calculated by a different method; most of the difference is due to different Q values (i.e., $\Delta E_{m=0}$), especially in the case of ^{74}Sr.

The authors wish to acknowledge support from NASA Grant No. NAGW-2920 and U.S. Department of Energy Contract No. DE-FG03-88ER40397.