Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H₂O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H₂ in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov.

1. Introduction

The ATMOS experiment was designed to measure the solar-absorption spectra of Earth’s atmosphere from space and determine profile of the vertical volume mixing ratio (VMR) of trace and minor species spectroscopically active in the IR. The instrument is a Fourier-transform interferometer that measures solar absorption at a spectral resolution of ≈ 0.01 cm$^{-1}$ (48-cm optical path difference). Its spectral response is 600–4800 cm$^{-1}$ over several bandpass filters. Atmospheric Trace Molecule Spectroscopy (ATMOS) has returned data from inside and outside the Arctic and Antarctic vortices, from midlatitudes, and from subtropics over four Space Shuttle flights: Spacelab 3 and the Atmospheric Laboratory for Applications and Science (ATLAS)-1, -2, and -3 missions. In Fig. 1 we illustrate the observation geometry during a sunset occultation, and in Fig. 2 we illustrate the geographical distribution of ATMOS retrievals for the four flights. In Table 1 and Fig. 3 we summarize observations within each spectral filter. Details about the instrument are in Ref. 1, and its deployment on the Shuttle is described in Ref. 2.

ATMOS Version 2 retrievals used an onion-peeling algorithm.$^{3-5}$ This approach was successful for stratospheric measurements (see Ref. 2 and references therein). However, for ATLAS-1 and -2 missions the instrument suntracker (using visible wavelengths) often lost lock on the Sun as the ray passed through the optically thick lower-stratospheric aerosol layer created by the eruption of
Mt. Pinatubo in 1991. Significantly lower aerosol loading during the ATLAS-3 mission in 1994 allowed good-quality spectra at tropospheric tangent altitudes, but Version 2 profile retrievals were often unrealistic at tangent heights in the upper troposphere (Fig. 4). Additionally, Version 2 software was designed to fit the absorption of only one gas at a time; generally, absorptions of nontarget gases were calculated a priori from an assumed vertical VMR profile and remained fixed while the target gas was fitted. This rarely presented a problem in the stratosphere where the spectral lines of different gases tend to be well resolved, and only occasionally would it be necessary to fit sequentially (and iterate on) two or more gases in one spectral window. However, at lower tangent heights the stronger tropospheric absorption by minor gases, such as H2O, CO2, N2O, and CH4, as well as increased pressure broadening, often caused spectral lines of interest to overlap on the wings. A sequential and iterative-fitting procedure for tropospheric retrievals would have been too time-consuming to use routinely. Instead for Version 3, a robust method of simultaneously fitting multiple gases within a window is employed. This is combined with a global-fit algorithm to retrieve a vertical VMR profile simultaneously at all altitudes within an occultation. This procedure is much more efficient at tropospheric tangent heights. The ATMOS Version 3 tropospheric retrievals of gases such as CO, C2H2, C2H6, OCS, HCN, and H2O are significantly improved over Version 2, and retrievals of gases such as O3, NO, NO2, and HNO3 have been extended to lower altitudes.

2. Algorithm Description

The ATMOS Version 3 processing scheme is adapted from that of the Jet Propulsion Laboratory MkIV Fourier-transform IR interferometer program (the GGG code in Ref. 6). The MkIV instrument,7 similar to the ATMOS spectrometer, retrieves vertical gas profiles from solar-absorption spectra from balloon

Table 1. Number of Occultations Analyzed for ATMOS Version 3 Retrievals

<table>
<thead>
<tr>
<th>Filter and Bandwidth (cm⁻¹)</th>
<th>Average Signal to Noise (1σ std. dev.)</th>
<th>Spacelab 3</th>
<th>ATLAS-1</th>
<th>ATLAS-2</th>
<th>ATLAS-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter 1 600–1200</td>
<td>242 ± 48</td>
<td>1 SR</td>
<td>7 SR</td>
<td>11 SR</td>
<td>—</td>
</tr>
<tr>
<td>Filter 2 1100–2000</td>
<td>167 ± 39</td>
<td>3 SS</td>
<td>7 SS</td>
<td>4 SS</td>
<td></td>
</tr>
<tr>
<td>Filter 3 1580–3400</td>
<td>74 ± 11</td>
<td>1 SR</td>
<td>1 SR</td>
<td>8 SR</td>
<td>—</td>
</tr>
<tr>
<td>Filter 4 3100–4700</td>
<td>98 ± 35</td>
<td>3 SS</td>
<td>1 SS</td>
<td>7 SS</td>
<td></td>
</tr>
<tr>
<td>Filter 9 600–2450</td>
<td>122 ± 40</td>
<td>1 SR</td>
<td>15 SR</td>
<td>20 SR</td>
<td>29 SR</td>
</tr>
<tr>
<td>Filter 12 600–1400</td>
<td>255 ± 36</td>
<td>3 SS</td>
<td>11 SS</td>
<td>9 SS</td>
<td>34 SS</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>83</td>
<td>93</td>
<td>30 SS</td>
<td>179</td>
</tr>
</tbody>
</table>

aSunrise.
bSunset.
platforms and total column measurements from the ground. For ATMOS, the retrieval software was configured for space-based observation. Simplified illustrations of the global-fit retrieval procedure are shown in Figs. 5–7. Details of the forward modeling and inversion procedure are in Ref. 8. However, here, we discuss features of the software that are specific to ATMOS.

The spectra used in Version 3 are the same as those used in Version 2. The telluric limb spectra were ratioed against an averaged, near-simultaneous exoatmospheric spectrum (determined at altitudes greater than 165 km and free of telluric absorptions). This procedure removed solar and instrumental features, such as the spectral responses of the detector and filters, and lines of residual H$_2$O and CO$_2$ in the housing. Self-calibrated limb-transmittance spectra (i.e., on a scale of zero to unity) were produced, greatly simplifying later calculations (see, for example, Fig. 1 in Ref. 9).

A. Model Atmosphere

For Version 3 the atmosphere is modeled as homogeneous 1-km-thick layers centered from 0.5 to 99.5 km in altitude. Between these layers, temperature and gas VMRs are assumed to vary linearly with altitude. Preliminary determinations of atmospheric temperature–pressure profiles with Version 3 software and temperature-sensitive CO$_2$ lines, similar to the analyses in Ref. 10, did not produce temperature-pressure profiles statistically different from those of Version 2. The same temperature–pressure profiles retrieved for Version 2 were therefore used in Version 3. Between 12 and 18 km, temperatures retrieved from ATMOS spectra were merged with National...
Centers for Environmental Prediction (NCEP) profiles interpolated to the tangent-point locations with NCEP temperatures used at altitudes below 12 km. Temperature errors are estimated to be 2 K between 18 and 70 km for filters 1 and 12 and 4 K below 18 km. For other filters, temperature error is estimated to be 4 K at all altitudes below 70 km.

B. Zenith Angle/Tangent Pressure Determination

The Version 3 algorithm requires the zenith-pointing angle of the instrument to ray trace from the instrument to the Sun and determine the tangent height and pressure of a spectrum. The zenith angle is determined by iterative adjustment to match a retrieved and an a priori CO$_2$ slant column (the integrated amount of CO$_2$ in the line of sight). This a priori CO$_2$ slant column is determined with an assumed VMR profile. Assumed CO$_2$ profiles used for ATLAS-1, -2, and -3 retrievals were the same as for Version 2 (Fig. 8). However, the Spacelab 3 profile was increased uniformly by 6 ppm below a 90-km altitude for better agreement with National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory CO$_2$ flask analyses. These pressure retrievals were made to a maximum altitude of 100 km. No provision was made for the effects of non local thermodynamic equilibrium (LTE). However, note that a previous study of ATMOS Spacelab 3 results found that CO$_2$ (v_3) vibrational temperatures were very close to LTE up to 100 km for solar-absorption measurements.

C. Selection of Microwindows

As noted above, previous versions of the ATMOS retrieval software could fit the absorption of only one target gas at a time. The ability of Version 3 retrieval software to fit simultaneously absorptions of several gases allows a more flexible selection of spectral microwindows for retrieval of several gases with more reliable tropospheric results. Wherever possible the spectral lines and altitude ranges of target gases were chosen to keep absorption depths between 10% and 50% (for a good signal in the former case and to avoid saturation in the latter). Lines with ground-state energies below 400 cm$^{-1}$ were selected to reduce errors from temperature uncertainty. It was not always possible to use such unsaturated, temperature-insensitive lines, particularly at low altitudes where much of the spectra could be blacked out. In this case, weaker high-J lines in a P or R branch with a concomitant increase in temperature sensitivity were used. Spectral ranges used in Version 3 retrievals are illustrated in Fig. 3, and a full listing of microwindows is available at the ATMOS web site, http://atmos.jpl.nasa.gov/atmos.

D. Spectral Line Lists

The spectral line lists used for Version 3 retrievals are the same as those used by MkIV retrievals and largely correspond to the ATMOS main and supplemental line lists. Differences between the line lists, and their effect on retrievals, are described below.
1. $\text{CCl}_2\text{F}_2, \text{CCl}_3\text{F}, \text{CHCIF}_2, \text{HNO}_4, \text{N}_2\text{O}_5, \text{CCl}_4, \text{CF}_4$ and SF_6

For Version 2 retrievals, measured cross sections were used for the forward model calculations for the broad or unresolved spectral features of these molecules.12 For the MkIV/ATMOS Version 3 line list, pseudo-lines derived from these cross-section data were utilized, such lines preserving the individual band strengths. Comparison between retrievals of stratospheric ATMOS Version 2 and Version 3 indicated no significant systematic biases introduced by using such pseudo-lines.

2. HNO_3

As described in Ref. 12, Version 2 analyses of ATMOS spectral data encompassing both the v_2 and v_5 bands indicated a systematic bias in retrieved profiles between the bands. For consistency across ATMOS spectral filters the strengths of v_2 band lines were therefore scaled by 1.1 for Version 2 results, which were within the estimated error of the line strengths. However, a later review of HNO_3 spectroscopy results indicated that, among different researchers, band strengths reported were more consistent for the v_2 band than for the v_5 band.13 Thus for Version 3 results we elected to use the HITRAN 1996 line compilation,14 with the v_5 band strengths unchanged, but the strengths of the v_2 lines scaled by 0.9. ATMOS Version 3 HNO_3 retrievals are therefore higher than those of Version 2 by $\sim 10\%$.

3. CH_3D

The line parameters provided in Ref. 15 were employed. This allowed a larger number of CH_3D lines to be used in Version 3 analyses; however, the profile results were comparable with those of Version 2.

E. Diurnal Corrections for NO and NO$_2$

The stratospheric concentrations of NO and NO$_2$ are photochemically sensitive and can vary along the line of sight, significantly so with the changing solar zenith angle across the terminator. Below 25 km, vertical VMR profiles uncorrected for this effect can be in error by 20\% for NO$_2$ and more than 100\% for NO.16 Diurnal corrections for ATMOS Version 2 NO and NO$_2$ are discussed in Ref. 16, and for Version 3 we use a similar procedure described in Ref. 17. Diurnally corrected and uncorrected NO and NO$_2$ retrievals are given at the ATMOS web site.

3. Error Budget

The precision and accuracy of retrieved mixing ratio profiles can vary widely depending on species, spectral filter, and altitude. The signal-to-noise error calculation for mixing ratio retrievals uses a different scheme than that of Version 2.5 Errors have therefore been reevaluated for Version 3. Despite the wider spectral windows and improved fitting, a more conservative scheme for error estimation tends to make the Version 3 random errors the same as or higher than those of Version 2.

A. Random Error

Random errors for retrievals include a finite signal to noise, uncertainty in the tangent pressure, uncertainty in the temperature profiles, and zero baseline offset. An estimated tangent pressure error by a filter is illustrated in Fig. 9, while a total random error for selected gases and filters is shown in Figs. 10 and 11. Complete data for all gases and filters are available at the ATMOS web site (http://atmos.jpl.nasa.gov/atmos/).

1. Finite Signal to Noise

The signal-to-noise ratio (SNR) of a particular spectrum is estimated from the root mean square of the fluctuations in a nonabsorbing region. For individual spectra, SNRs determined by Version 2 process-
ing were used in Version 3. The SNR of individual spectra is source noise limited, improves with either longer wavelengths or smaller spectral filter bandpasses, and decreases with increased atmospheric attenuation, particularly by the presence of moderate-to-heavy aerosol loading or cloud cover.

The average SNRs for each spectral filter are listed in Table 1. Where possible the effect of noise error is reduced by (a) averaging retrievals over several spectral windows and/or using broad windows and (b) avoidance of spectra where the target lines have absorptions greater than 50%. Generally spectra with SNRs of 60:1 or below were not used for analyses.

Within a fitted spectral window, uncertainties are calculated from the covariance matrix of the fitted parameters. These uncertainties are proportional to the rms fit over the window and inversely proportional to the depth and number of target-absorption features. As discussed in a study comparing colocated Fourier-transform spectrometers and spectral processing, the scheme used for Version 3 (GGG) results in uncertainties consistent with statistical scatter when the results are truly random. However, if residuals are dominated by systemic features that are consistent spectrum to spectrum, the uncertainties tend to be pessimistic. Details of Version 3 signal-to-noise error calculation are forthcoming.

2. Tangent-Pressure Uncertainty

As described above the tangent pressure is determined by fitting CO$_2$ and determining the pointing angle of the instrument (and therefore the tangent pressure and altitude) to match an assumed CO$_2$ profile. We estimate the tangent-pressure random error as the quadrature sum of the fitting/SNR error in the retrieved column and an estimated error from the temperature-profile uncertainty. Errors in the retrieved CO$_2$ column from the temperature uncertainty tend to be minor (<2%) for all filters except filter 1. Because the CO$_2$ lines used in filter 1 tend to have higher ground-state energies than those used in other filters, the temperature-uncertainty contribution tends to dominate the random error in filter 1 below 60 km. Tangent-pressure uncertainties for each filter are illustrated in Fig. 9.

3. Temperature-Profile Uncertainty

As mentioned, spectral lines were chosen where possible to have ground-state energies of less than 400 cm$^{-1}$; thus errors from temperature uncertainty are generally less than 3%. Weaker high-J lines in a P or R branch used for minor gases, particularly H$_2$O, at lower-stratospheric and upper-tropospheric altitudes produced errors from temperature uncertainty of ~7%.

4. Intensity Offset

Interferograms must be corrected for the nonlinearity of the HgCdTe photoconducting detector of the ATMOS instrument; otherwise serious errors in zero-level intensity offset will be introduced into the spectra. The error in gas retrieval significantly increases with either higher intensity offset or the absorption depth of a spectral feature. A combination of nonlinearity correction to the interferogram (reducing the zero-level intensity offset of the spectra to ~1%), as well as avoidance of spectra features of 50% or more absorption, keeps the intensity-offset error to no more than 3%. A discussion of ATMOS detector nonlinearity corrections and their effect on retrievals is in Ref. 18.

B. Systematic Errors

Systematic errors include spectroscopic-parameter uncertainty, errors in the inversion technique, and error in the assumed CO$_2$ profiles used to determine tangent altitudes. Unlike random error, calculation of systematic error for Version 3 is similar to that of Version 2. Estimated systematic errors for gases are in Table 2 and are similar to those in Ref. 5.

1. Spectroscopic-Parameter Uncertainty

Generally, the largest source of systematic error in gas retrievals is the accuracy of the spectral-line intensities. As noted the spectral-line compilation used in Version 3 closely follows that described in Ref. 12, where line parameters are discussed on a gas-by-gas basis including line-intensity errors.

2. Inversion Technique

As discussed in Ref. 9, the previous retrieval algorithm was extensively intercompared with competing schemes with results agreeing to within 5%. Comparison of Version 2 and Version 3 stratospheric retrievals is generally within this error. The Version 3 software used in analyzing MkIV interferometer data has been extensively intercompared with other algorithms in the analyses of ground-based solar-
absorption spectra with very good agreement. \(^6,19,20\) A comparison of near colocated retrievals from MkIV balloonborne limb spectra and ER-2 aircraft in situ measurements were generally within 5%. \(^21\) We therefore believe that a systematic error of 5% is appropriate for the inversion technique.

3. CO\(_2\) Profile

Errors in the assumed CO\(_2\) profile will directly affect determination of a spectrum’s tangent height and thus the retrieved VMR of other gases. Considering the latitudinal variability of CO\(_2\), and differences in the stratospheric and tropospheric mixing ratios, we estimate that assumed CO\(_2\) mixing ratios may be in error by as much as 5 parts per million by volume (ppmv) in the free troposphere. This, in addition to an estimated error of 2–3% in the spectral intensities of the CO\(_2\) lines, \(^22\) translates into a rms systematic error of \(\sim 4\)% in retrieved tangent pressures and VMR. The retrieval software was configured such that only the \(^{16}\)O\(^{12}\)C\(^{16}\)O (\(^{44}\)CO\(_2\)) isotopomer was used except for the region from 1200 to 1400 cm\(^{-1}\) where the weaker absorptions of \(^{18}\)O\(^{12}\)C\(^{16}\)O were used at lower stratospheric and tropospheric altitudes owing to a lack of unsaturated \(^{44}\)CO\(_2\) lines. This introduces an additional systematic bias at tropospheric altitudes for filters 2, 9, and 12 of \(\sim 4\)% in the tangent-pressure determination because of isotopic enrichments relative to standard mean ocean water. Although this enrichment is known to increase in the stratosphere (e.g., Ref. 22), the effect on tangent-pressure determination is less as CO\(_2\) retrievals become more weighted to comparatively stronger but unsaturated \(^{44}\)CO\(_2\) lines.

4. Results

In this section we discuss selected results for key trace and minor species from the Version 3 processing of the ATMOS data. Here Version 3 results are mostly compared with those of Version 2. Elsewhere, however, Version 3 results have been compared with other instruments for H\(_2\)O, \(^23\)–\(^26\) H\(_2\)O+2CH\(_4\), \(^23\)–\(^26\) O\(_3\), \(^27\)–\(^29\) HCl, \(^27\)–\(^29\) and ClONO\(_2\), NO\(_y\), NO\(_x\), N\(_2\)O, and CH\(_4\). \(^27\) Version 3 results have been compared with models for CO, \(^30\) N\(_2\)O, CH\(_4\), H\(_2\)O, and O\(_3\), \(^26\)–\(^31\) HCl, \(^27\)–\(^29\) and ClONO\(_2\), HNO\(_3\), and NO\(_x\). \(^27\)

A. Tropospheric/Stratospheric Chlorine and Fluorine Budgets

The currently accepted understanding of Cl loading in the atmosphere is that (a) the emissions of long-lived Cl-bearing source gases (both natural and anthropogenic), whose total Cl-atom sum is defined as Cl\(_t\), are located at the ground and mix into the global troposphere. (b) Primarily at tropical latitudes they are progressively lifted above the tropopause and are transported throughout the stratosphere where (c) photodissociation by solar UV radiation decomposes them, with (d) the resulting formation of inorganic sinks and reservoirs whose total Cl-atom sum is defined as Cl\(_t\). Therefore the total atmospheric chlorine loading Cl\(_t\) at any altitude can be defined as

\[
Cl_t = [ClCl] + [ClI].
\]

To within \(\sim 3\)% the main sources contributing to Cl\(_t\) are CH\(_3\)Cl, CCl\(_2\)F\(_2\), CCl\(_3\)F, CHClF\(_2\), CCl\(_4\), CH\(_2\)CCl\(_3\), and C\(_2\)Cl\(_2\)F\(_3\), while Cl\(_t\) is approximated to within a similar uncertainty by combining the contributions from HCl, ClONO\(_2\), ClO, and HOCl (except for the polar lower stratosphere where the ClO dimer plays a significant role).

Similarly, the total atmospheric fluorine loading F\(_t\) is defined as

\[
F_t = [CF_3] + [F_x],
\]

which primarily involves contributions to CF\(_3\) by CCl\(_2\)F\(_2\), CCl\(_3\)F, CHClF\(_2\), CF\(_4\), C\(_2\)Cl\(_3\)F\(_3\), and SF\(_6\) and to F\(_2\) by HF, COF\(_2\), and COFCl.

Based on simultaneous or near-simultaneous ATMOS measurements of a large number of the species listed above, stratospheric budgets of Cl\(_t\) and F\(_t\) were readily derived for the 1985 Spacelab 3 mission and of Cl\(_t\) for the 1994 ATLAS 3 Shuttle flight. \(^32\) All results and conclusions regarding these budgets remain valid. Version 3 data, however, allow these earlier investigations to be extended farther down into the troposphere, as shown in Figs. 12 and 13. The important source gases, i.e., CCl\(_2\)F\(_2\),

Table 2. Estimated Accuracy for Gas Retrievals

<table>
<thead>
<tr>
<th>Gas</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>6</td>
</tr>
<tr>
<td>O(_3)</td>
<td>6</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>5</td>
</tr>
<tr>
<td>CO</td>
<td>5</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>5</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>5</td>
</tr>
<tr>
<td>NO(_2)(_2)</td>
<td>6</td>
</tr>
<tr>
<td>HNO(_3)</td>
<td>16</td>
</tr>
<tr>
<td>HF</td>
<td>5</td>
</tr>
<tr>
<td>HCl</td>
<td>5</td>
</tr>
<tr>
<td>OCS</td>
<td>9</td>
</tr>
<tr>
<td>H(_2)CO</td>
<td>Undefined</td>
</tr>
<tr>
<td>HOCI</td>
<td>20</td>
</tr>
<tr>
<td>HNO(_3)</td>
<td>20</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>16</td>
</tr>
<tr>
<td>ClONO(_2)</td>
<td>20</td>
</tr>
<tr>
<td>HCN</td>
<td>6</td>
</tr>
<tr>
<td>CH(_3)Cl</td>
<td>11</td>
</tr>
<tr>
<td>CF(_4)</td>
<td>11</td>
</tr>
<tr>
<td>CCl(_2)F(_2)</td>
<td>9</td>
</tr>
<tr>
<td>CCl(_3)F</td>
<td>11</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>20</td>
</tr>
<tr>
<td>COF(_2)</td>
<td>20</td>
</tr>
<tr>
<td>C(_2)H(_2)</td>
<td>7</td>
</tr>
<tr>
<td>C(_2)H(_4)</td>
<td>11</td>
</tr>
<tr>
<td>CH(_2)ClF(_2)</td>
<td>11</td>
</tr>
<tr>
<td>HDO</td>
<td>7</td>
</tr>
<tr>
<td>SF(_6)</td>
<td>11</td>
</tr>
<tr>
<td>CH(_3)D</td>
<td>7</td>
</tr>
</tbody>
</table>

\(^*\)Not including diurnal correction.
CCl₃F, CHClF₂, and CH₃Cl, contributing to CCl₂ and/or CF₂, can be retrieved down to nearly 6 km at northern mid-latitudes. Clearly such downward extensions of the VMR profiles allow a better comparison with tropospheric in situ measurements. For the four gases just listed this agreement is very good, well within the combined uncertainties of both techniques. One noticeable discrepancy remains with CCl₄ whose VMR in the vicinity of the tropopause is substantially larger than the in situ concentration at the ground; this discrepancy was also present for ATMOS Version 2 results when compared with those from a gas chromatograph operated aboard an ER-2 during the Airborne Southern Hemisphere Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft campaign, it may be caused by line mixing in a strong CO₂ Q branch interfering with the ATMOS-adopted CCl₄ microwindow at 785–807 cm⁻¹.

The Version 3 VMR profiles of HCl, HF, and SF₆, have also been extended to as high as the 62-km altitude, whereas Version 2 retrievals reached 55 km at best. This allows a better estimation of the HCl and HF VMRs in the vicinity of the stratopause. These are good surrogates of the total chlorine and fluorine loadings.

B. H₂O and H₂O + 2CH₄

In Fig. 14 selected Version 2 and 3 H₂O profiles are compared. For illustrative purposes, profiles are compared from different spectral filters, but these were observed in similar air masses (as measured by potential temperature and a scaled potential vorticity; see Ref. 24 or 28). Version 3 profiles, both in Fig. 14 and in general, avoid unrealistically low mixing ratios near the tropopause. Reasonable consistency is maintained in Version 3 across spectral filters, including filter 12, for which H₂O retrievals are new.
The only significant stratospheric reservoirs for hydrogen are \(\text{H}_2\text{O}, \text{CH}_4, \text{and H}_2 \). Oxidations of \(\text{CH}_4 \) and \(\text{H}_2 \) are the only significant local sources of \(\text{H}_2\text{O} \), so changes in the sum \([\text{H}_2\text{O}]+2[\text{CH}_4]\) are indicative of changes in \(\text{H}_2 \) (where \([\cdot]\) is the VMR). In the absence of dehydration and if the stratospheric mixing ratio of \(\text{H}_2 \) is a constant, the sum \([\text{H}_2\text{O}]+2[\text{CH}_4]\) in a stratospheric air mass should be the same as when it entered the stratosphere, and \(\partial[\text{H}_2\text{O}]/\partial[\text{CH}_4] = -2 \) above the hydropause in extratropical and extratropical air masses; deviations from this relationship indicate a net production or destruction of \(\text{H}_2 \). A previous analysis of the data of ATOMS Version 2 showed a broad maximum for \([\text{H}_2\text{O}]+2[\text{CH}_4]\) between 35 and 65 km in northern-latitude extratropical retrievals, evidence for a net oxidation of \(\text{H}_2 \) to \(\text{H}_2\text{O} \),\(^{28}\) However, as discussed in Ref. 24 and illustrated in Fig. 15, a comparison of Version 2 and 3 results shows lower VMR for stratospheric water in this region for Version 3, while the VMRs for \(\text{CH}_4 \) are effectively unchanged. The sum \([\text{H}_2\text{O}]+2[\text{CH}_4]\) is nearly constant throughout the extratropical stratosphere to \(\sim 55 \) km; thus these Version 3 analyses provide no evidence for net changes in \(\text{H}_2 \) in the upper stratosphere. An analysis of the \(\text{H}_2\text{O} \) retrieval process between Versions 2 and 3 indicated that a combination of modified spectral windows, slightly lower tangent heights above 30 km, and algorithmic changes in Version 3 all contributed to the lower \(\text{H}_2\text{O} \) mixing ratios compared with Version 2.

C. \(\text{NO}, \text{NO}_2, \) and \(\text{CO} \)

In Fig. 16 \(\text{NO}, \text{NO}_2, \) and \(\text{CO} \) is compared between Versions 2 and 3. The profiles are averages of

\(\) Fig. 15. Profiles of zonal average mixing ratios of \(\text{CH}_4, \text{H}_2\text{O}, \) and the sum \(\text{H}_2\text{O}+2\text{CH}_4 \) from ATOMS Versions 2 and 3 retrievals. A total of 34 sunsets occultations between 31 and 49° N (filters 3 and 9) from the ATLAS-3 missions were used. Error bars are standard deviations weighted by the inverse square error of the individual retrievals.

\(\) Fig. 16. Comparison of the VMRs of \(\text{NO}, \text{NO}_2, \) and \(\text{CO} \) of Versions 2 and 3, filter 3. Average VMRs are from ATLAS-3 northern protovortex retrievals. The error bars are standard deviations weighted by the inverse square signal-to-noise/fitting error.

ATLAS-3 Filter 3 retrievals in the developing Arctic vortex (the protovortex).\(^{29,40}\) To simplify comparison, profiles are shown without diurnal corrections. For all three gases the averages in Version 3 appear to be somewhat smoother than Version 2. There is good agreement for \(\text{NO}_2 \), while for \(\text{NO} \) and \(\text{CO} \) higher mixing ratios are seen above 5 hPa, although the standard deviations tend to overlap. In the troposphere, retrievals of \(\text{CO} \) are much more realistic in Version 3 than Version 2. Statistically significant retrievals of \(\text{NO} \) and \(\text{NO}_2 \) were often difficult to obtain in the troposphere. With the possible exception of elevated regions of tropospheric \(\text{NO} \) or \(\text{NO}_2 \) (>100 pptv), Version 3 results may provide only an upper limit of these gases in the troposphere.

D. \(\text{HNO}_3 \)

In a manner similar to \(\text{H}_2\text{O} \), Fig. 17 presents sample \(\text{HNO}_3 \) retrievals from Version 2 and 3 across filters 3, 9, and 12 selected for similar scaled potential vorticity (sPV) profiles. Version 3 results reflect increased mixing ratios of \(\sim 10\% \) over Version 2 because of changes in the line strengths described in Subsection 2.D.2.

E. Aerosol Measurements

A new product in the Version 3 ATOMS data set is stratospheric sulfuric-acid aerosol volume. Vertical profiles of the volume of aerosol composed of sulfuric acid and water are retrieved by using the broad spectral features of sulfuric-acid absorption. When data from filter 1, 9, or 12 in the spectral region of 800–1250 cm\(^{-1}\) are used, the aerosol retrievals are most sensitive to total aerosol volume and the weight percent of sulfuric acid. These retrievals are relatively insensitive to the aerosol size distribution. Aerosol volume peaks in the lower stratosphere (near 18–20 km) and ranges from 2 to 3 \(\mu\text{m}^3 \) cm\(^{-3}\) (with approximately 1–15% error) in 1992 to values closer to 0.3–0.6 \(\mu\text{m}^3 \) cm\(^{-3}\) (with an error of 5–30%) in 1994. This reduction in aerosol volume was widely documented
in the years following the eruption of Mt. Pinatubo. Four vertical profiles taken in 1992 in the same region are shown in the Fig. 18. A complete discussion of the retrieval methodology is in Ref. 45.

5. Conclusions

Version 3 of the ATMOS data set, containing retrievals of the volume mixing ratio of some 30 stratospheric and upper-tropospheric species, has been described. The global-fit methodology of Version 3 requires significantly more computing resources than the computationally faster onion-peel algorithm of Version 2, but the increased reliability in tropospheric retrievals by the former technique merits its use. Compared with Version 2, results have been more reliably extended to tropospheric altitudes and in some cases (e.g., HCl and HF) also to higher altitudes. There has been significant improvement in retrievals of upper-tropospheric/lower-stratospheric H$_2$O and CO, but more reliable retrievals have also been made for minor gases such as CH$_4$ and N$_2$O and short-lived species such as C$_2$H$_2$ and C$_2$H$_6$. General agreement is maintained for stratospheric retrievals between Versions 2 and 3, although there are some differences. Version 3 HNO$_3$ is ~10% higher than that of Version 2. Upper-stratospheric water vapor is slightly lower in Version 3 but shows better consistency across the ATMOS spectral filters. Unlike Version 2, Version 3 results show the sum H$_2$O + 2[CH$_4$] to be constant in the upper stratosphere to ~55 km and do not suggest any net consumption of H$_2$. A new product for sulfuric-acid aerosol retrieval has been described, and initial results show the expected decrease in stratospheric sulfuric-acid aerosol in the years following the Mt. Pinatubo eruption. Version 3 retrievals are available at http://atmos.jpl.nasa.gov.

Research on additional gas and aerosol retrievals and validation of current results continue. An improvement to the processing methodology can be made in the zenith angle/pressure-sounding determination by using assumed a priori CO$_2$ profiles more appropriate to a tangent latitude and season as well as compensating for isotopic enrichments in 18O12C16O in spectral regions where use of 16O12C16O cannot be made. Additional improvement to the zenith-angle determination for tropospheric spectra can be made by including water vapor in refraction calculations, although this would likely require an H$_2$O mixing ratio/zenith-angle retrieval iterative loop. With advancements in algorithms and spectroscopic databases, the richness of broadband, high-resolution IR spectra from space allows continual increase in the quality and number of products from even old data sets.

This effort builds on the work of past and present science and processing team members of the ATMOS experiment. We thank them and in particular C. B. Farmer, M. C. Abrams, and the late R. H. Norton. Research at the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract to NASA.

References

1. C. B. Farmer, O. F. Raper, and F. G. O’Callaghan, “Final report on the first flight of the ATMOS instrument during the
Spacelab 3 mission, April 29 through May 6, 1985,” JPL publication 87–32 (Jet Propulsion Laboratory, Pasadena, Calif., 1987).

