Searches for light- and heavy-flavour three-jet resonances in pp collisions at $\sqrt{s} = 8$ TeV

CERN Collaboration

CERN, Switzerland

A search for three-jet hadronic resonance production in pp collisions at a centre-of-mass energy of 8 TeV has been conducted by the CMS Collaboration at the LHC with a data sample corresponding to an integrated luminosity of 19.4 fb$^{-1}$. The search method is model independent, and events are selected that have high jet multiplicity and large values of jet transverse momenta. The signal models explored assume R-parity-violating supersymmetric gluino pair production and have final states with either only light-flavour jets or both light- and heavy-flavour jets. No significant deviation is found between the selected events and the expected standard model multijet and t\bar{t} background. For a gluino decaying into light-flavour jets, a lower limit of 650 GeV on the gluino mass is set at a 95% confidence level, and for a gluino decaying into one heavy- and two light-flavour jets, gluino masses between 200 and 835 GeV are, for the first time, likewise excluded.

1. Introduction

Hadronic multijet final states at hadron colliders offer a unique window on many possible extensions of the standard model (SM), although with the view partly obscured by large backgrounds due to SM processes. Many of these extensions predict resonances, such as heavy coloured fermions transforming as octets under $SU(3)_c$ [1–4] or supersymmetric gluinos that undergo R-parity-violating (RPV) decays to three quarks [5–7]. Recent studies from the Fermilab Tevatron Collider and the CERN Large Hadron Collider (LHC) employed the jet-ensemble technique. For this technique, jets are associated into unique combinations of three jets (triplets). Additional selection requirements are imposed to suppress the large backgrounds due to SM processes and to enhance sensitivity to strongly decaying resonances. These analyses set lower mass limits based upon resonance fits for gluinos undergoing RPV decays. The CDF Collaboration at the Tevatron excluded gluino masses below 144 GeV [8] using data from pp collisions at 1.96 TeV, while the CMS Collaboration at the LHC excluded masses below 460 GeV [9,10] with data from pp collisions at 7 TeV. An additional search at the LHC by the ATLAS Collaboration, also based on data collected with pp collisions at 7 TeV, has extended these limits to 666 GeV [11].

Presented here are the results of dedicated searches for pair-produced three-jet resonances in multijet events from pp collisions, with one search being inclusive with respect to parton flavours and the second requiring at least one jet from the resonance decay to be identified as a bottom-quark jet (b jet). This latter, heavy-flavour search is the first of its kind and probes additional RPV couplings. The results are based on a data sample of pp collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.4 ± 0.5 fb$^{-1}$ [12] collected with the CMS detector [13] at the LHC in 2012. Events with at least six jets, each with high transverse momentum (p_T) with respect to the beam direction, are selected and investigated for evidence of three-jet resonances consistent with strongly coupled supersymmetric particle decays. The event selection criteria are optimised in the context of the gluino signal mentioned above [5–7], using a simplified model where the gluinos decay with a branching fraction of 100% to quark jets. However, the generic features of the selection criteria provide a model-independent basis that can be used when examining extensions of the SM, since any exotic three-jet resonance with a narrow width, sufficient cross section, and high-p_T jets would be expected to produce a significant bump on the smoothly falling SM background of our search. Additionally, low trigger thresholds and the application of b-jet identification make it possible to use SM top quark–antiquark (t\bar{t}) events to validate the analysis techniques.

2. The CMS experiment

The central feature of the CMS apparatus [13] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are
a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL) that consists of brass layers and scintillator sampling calorimeters. Muons are measured in gas ionisation detectors embedded in the steel return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the axis pointing up (perpendicular to the LHC plane), and the z axis along the anticlockwise-beam direction. The polar angle \(\theta \) is measured with respect to the positive z axis, the azimuthal angle \(\phi \) is measured in the x–y plane, and the pseudorapidity \(\eta \) is defined as \(\eta = -\ln(\tan(\theta/2)) \). Energy deposits from hadronic jets are measured using the ECAL and HCAL. The energy resolution for photons with \(p_T > 60 \text{ GeV} \) varies between 1.1% and 2.6% over the solid angle of the ECAL barrel, and from 2.2% to 5% in the endcaps. The HCAL, when combined with the ECAL, measures jets with a resolution \(\Delta E/E \approx 60/\sqrt{E} \text{ GeV} \) or 5% [14]. The ECAL provides coverage in pseudorapidity \(|\eta| < 1.479 \) in a barrel region and \(1.479 < |\eta| < 3.0 \) in two endcap regions. In the region \(|\eta| < 1.74 \), the HCAL cells have widths of 0.087 in \(\eta \) and 0.087 in \(\phi \). In the \(\eta-\phi \) plane, and for \(|\eta| < 1.48 \), the HCAL cells map on to 5 × 5 ECAL crystals arrays to form calorimeter towers projecting radially outwards from close to the nominal interaction point. At larger values of \(|\eta| \), the size of the towers increases, and the matching ECAL arrays contain fewer crystals. Within each tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower energies, subsequently used to provide the energies and directions of hadronic jets.

The CMS detector uses a two-tier trigger system to collect data. Events satisfying the requirements at the first level are passed to the high-level trigger (HLT), whose output is recorded and limited to a total rate of \(\sim 350 \text{ Hz} \). An HLT requirement based on at least six jets, reconstructed with only calorimeter information, is used to select events. With the jets ordered in descending \(p_T \) values, the \(p_T \) threshold at the HLT for the fourth jet is 60 GeV and, for the sixth jet, 20 GeV. For events passing all offline requirements described in Section 4, the total trigger efficiency is at least 95%.

The CMS particle-flow algorithm [15] combines calorimeter information with reconstructed tracks to identify individual particles such as photons, leptons, and neutral and charged hadrons. The photon energy is obtained directly from calibrated measurements in the ECAL. The energy of electrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects and calibrated for the non-linear response of the calorimeters. Finally, the energy of a neutral hadron is obtained from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects and calibrated for the non-linear response of the calorimeters. In data, a small residual correction factor is included to correct for differences in jet response between data and simulation. The combined corrections are approximately 5–10%, and their corresponding uncertainties range from 1–5%, depending on the pseudorapidity and energy of the jet. Jet quality criteria [21] are applied to remove misidentified jets, which arise primarily from calorimeter noise. In both data and simulated signal events, more than 99.8% of all selected jets satisfy these criteria.

3. Signal event simulation

Pair-produced gluinos are used to model the signal. Gluino production and decay are simulated using the Pythia [22] event generator (v6.424), with each gluino decaying to three quarks through the \(\lambda_{ud} \) quark RPV coupling [23], where \(u \) and \(d \) refer to any up- or down-type quark, respectively. Two different scenarios are considered for this coupling, resulting in both an inclusive search similar to previous analyses [8–11] and a new heavy-flavour search. For the first case, the coupling of \(\lambda_{12} \), where the three numerical subscripts of \(\lambda \) refer to the quark generations of the corresponding u–d–d quarks, is set to a non-zero value, giving a branching fraction of 100% for the gluino decay to three light-flavour quarks. The second case, represented by \(\lambda_{112} \) or \(\lambda_{223} \), covers gluino decays to one b quark and two light-flavour quarks. The mass of the generated gluino signal ranges from 200 to 500 GeV in 50 GeV steps, with additional mass points at 750, 1000, 1250, and 1500 GeV. For the generation of this signal, all superpartners except the gluino are taken to be decoupled and heavy (i.e. beyond the reach of the LHC), the natural width of the gluino resonance is taken to be much smaller than the mass resolution of the detector of approximately 4–8% in the mass range investigated, and no intermediate particles are produced in the gluino decay. Simulation of the CMS detector response is performed using the Geant4 [24] package.

4. Event selection

Events recorded with the six-jet trigger described above are required to contain at least one reconstructed primary vertex [16]. Since this analysis targets pair-produced three-jet resonances that naturally yield high jet multiplicity, we require events to contain at least six jets with \(|\eta| < 2.5 \). To ensure that the trigger is fully efficient, we impose minimal requirements that the \(p_T \) thresholds of the fourth and sixth jets are at least 60 and 20 GeV, respectively, though we impose higher thresholds for two of our three selections, as described below.

We use the jet-ensemble technique [8,9] in this analysis to combine the six highest-\(p_T \) jets in each event into all possible unique triplets. Each event that satisfies all selection requirements will yield 20 combinations of jet triplets. For signal events, no more than two of these triplets can be correct reconstructions of the pair-produced gluinos, with the remaining 18 triplets being incorrect combinations of jets. Thus, background triplets arising from SM multijet events are supplemented by “incorrect” jet-triplet combinations from the signal events themselves. To obtain sensitivity to the presence of a three-jet resonance, an additional requirement is placed on each jet triplet to preferentially remove SM background and incorrectly combined signal triplets. This selection criterion exploits the constant invariant mass of correctly reconstructed signal triplets and the observed linear correlation between the invariant mass and scalar sum of jet \(p_T \) for background triplets and incorrectly combined signal triplets:

\[
M_{jjj} < \left(\sum_{i=1}^{3} p_T^i \right) - \Delta, \tag{1}
\]

where \(M_{jjj} \) is the triplet invariant mass, the \(p_T \) sum is over the three jets in the triplet (triplet scalar \(p_T^j \)), and \(\Delta \) is an empirically
the peak position of as broad a range of gluino masses as possible given the restrictions imposed by the trigger. We find that the peak position of \(\Delta = 110 \text{ GeV} \) to be the optimal choice, yielding the lowest value of the peak of \(M_{\text{jjj}} \). This simple \(\Delta \) requirement, rather than model-specific invariant mass requirements, maintains the model-independent sensitivity of our analysis to any three-jet resonance, not just that of our signal model.

Tightening the selection requirement on the \(p_T \) value of the sixth jet can reduce background stemming from SM multijet production. The optimisation of this requirement to maximise signal significance is performed as follows.

As illustrated in Fig. 2 for a gluino mass of 400 GeV, the triplet invariant mass distribution for signal events has the shape of a Gaussian peak on top of a broad base of incorrect three-jet combinations. We define the Gaussian peak to be the signal. Following Ref. [25], we use a four-parameter function (Eq. (2)) that is representative of the estimated background in the data (see Section 5) and characterised by a steeply and monotonically decreasing shape:

\[
\frac{dN}{dx} = P_0 \left(1 - \frac{x}{\bar{x}} \right)^{P_1} \left(\frac{x}{\bar{x}} \right)^{P_2 + P_3 \log \frac{x}{\bar{x}}} ,
\]

where \(N \) is the number of triplets and \(x \) is the triplet invariant mass. The parametrised signal and background estimates used in the optimisation procedure can be seen in the inset of Fig. 2.

Using these two components, signal triplets from the Gaussian peak and background triplets from the background estimate, we define the signal significance as the ratio of the number of signal triplets to the square root of the number of signal triplets plus the number of background triplets obtained from data. The number of signal and background triplets is calculated within a window around the mass peak with a width corresponding to twice

determined parameter. Fig. 1 shows a plot of the triplet invariant mass versus triplet scalar \(p_T \) for simulated events with 400 GeV gluinos decaying to light-flavour jets.

The value of \(\Delta \) is chosen so that the analysis is sensitive to as broad a range of gluino masses as possible given the restrictions imposed by the trigger. We find that the peak position of the \(M_{\text{jjj}} \) distribution in data depends on the value of \(\Delta \). From a study of this peak position versus \(\Delta \), we find \(\Delta = 110 \text{ GeV} \) to be the optimal choice, yielding the lowest value of the peak of \(M_{\text{jjj}} \). This simple \(\Delta \) requirement, rather than model-specific invariant mass requirements, maintains the model-independent sensitivity of our analysis to any three-jet resonance, not just that of our signal model.

Tightening the selection requirement on the \(p_T \) value of the sixth jet can reduce background stemming from SM multijet production. The optimisation of this requirement to maximise signal significance is performed as follows.

As illustrated in Fig. 2 for a gluino mass of 400 GeV, the triplet invariant mass distribution for signal events has the shape of a Gaussian peak on top of a broad base of incorrect three-jet combinations. We define the Gaussian peak to be the signal. Following Ref. [25], we use a four-parameter function (Eq. (2)) that is representative of the estimated background in the data (see Section 5) and characterised by a steeply and monotonically decreasing shape:

\[
\frac{dN}{dx} = P_0 \left(1 - \frac{x}{\bar{x}} \right)^{P_1} \left(\frac{x}{\bar{x}} \right)^{P_2 + P_3 \log \frac{x}{\bar{x}}} ,
\]

where \(N \) is the number of triplets and \(x \) is the triplet invariant mass. The parametrised signal and background estimates used in the optimisation procedure can be seen in the inset of Fig. 2.

Using these two components, signal triplets from the Gaussian peak and background triplets from the background estimate, we define the signal significance as the ratio of the number of signal triplets to the square root of the number of signal triplets plus the number of background triplets obtained from data. The number of signal and background triplets is calculated within a window around the mass peak with a width corresponding to twice
High-mass signal events, for both the light- and heavy-flavour signal models, have a more spherical shape than background events, which typically contain back-to-back jets and thus have a more linear shape. To significantly reduce the background in the high-mass searches, we use a sphericity variable, which is the root of the number of signal-plus-background events. No sphericity requirement is used for the low-mass, heavy-flavour selection.

To conclude, we define three different search regions for this analysis with specific selection criteria applied as previously discussed and summarised in Table 1.

5. Background estimation and signal extraction

The dominant background for this search comes from SM multijet events, which arise from perturbative QCD processes of order $O(\alpha^2)$ and higher. The invariant mass shape of incorrectly combined signal triplets is found to be similar to that of the background from SM multijet processes, such that the combined distribution is consistent with that of SM multijets alone. Moreover, because the normalisation of the background component (P_s in Eq. (2)) is unconstrained, any incorrectly combined signal triplets, if present, would be absorbed into the background estimate. The triplet invariant mass distribution for the background decreases smoothly with increasing mass, and we model this background using a four-parameter function (Eq. (2)) fit directly to the data, except in the case of the low-mass, heavy-flavour search.

For the low-mass, heavy-flavour search, there is an additional background contribution from all-hadronic $t\bar{t}$ events. These events are modelled using the MadGraph [27] generator, and the expected number of $t\bar{t}$ events is determined from the next-to-next-to-leading-order (NNLO) cross section of $245.8^{+8.7}_{-10.5}$ pb [28]. The shape of the contribution from SM multijet processes is modelled with a statistically independent data sample, constructed by imposing a veto on b-tagged jets while retaining all other selection requirements. This sample is referred to as the b-jet control region, and the combination of simulated $t\bar{t}$ events and the background from SM multijet processes, modelled by this control region, gives the total SM background estimate for the low-mass, heavy-flavour analysis.

A comparison of the background estimate to the data is performed, in which the data are fit using a binned maximum likelihood method with either the four-parameter function of Eq. (2) for the inclusive analysis and the high-mass, heavy-flavour analysis, or

Table 1

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>Inclusive search</th>
<th>Heavy-flavour search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass range</td>
<td>400–1500 GeV</td>
<td>200–600 GeV</td>
</tr>
<tr>
<td>Δ</td>
<td>110 GeV</td>
<td>110 GeV</td>
</tr>
<tr>
<td>Min. fourth-jet p_T</td>
<td>110 GeV</td>
<td>80 GeV</td>
</tr>
<tr>
<td>Min. sixth-jet p_T</td>
<td>110 GeV</td>
<td>60 GeV</td>
</tr>
<tr>
<td>Min. sphericity</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Fig. 3. The sphericity variable for events from data, simulated background from SM multijet processes (shaded area), and simulated gluino signal masses of 300 (open diamonds), 750 (open triangles), and 1250 GeV (open squares), where the gluinos decay to light-flavour jets. Event-level selection requirements for the inclusive, low-mass search are applied, except for the triplet-level diagonal selection (Eq. (1)). All distributions are normalised to unit area. The simulated SM multijet events are generated using MadGraph [27] with showering performed by Pythia.

Fig. 4. Comparison of the three-jet invariant mass distribution in data with the background estimate for the inclusive analysis (red solid curve) obtained from a maximum likelihood fit to the data. The error bars on the black data points display the statistical uncertainties. The bin widths increase with mass to match the expected resolution. The bottom plot shows, for each bin, the difference of the data and fit divided by the statistical uncertainty in the data. No statistically significant deviations from the data are observed. The light magenta dotted line and hatched area show the distribution and pulls for a simulated 500 GeV gluino that decays into light-flavour jets. Similarly, the expectation for a 750 GeV gluino is shown by a dark blue dashed line and shaded area.

O(α^2) and higher. The invariant mass shape of incorrectly combined signal triplets is found to be similar to that of the background from SM multijet processes, such that the combined distribution is consistent with that of SM multijets alone. Moreover, because the normalisation of the background component (P_s in Eq. (2)) is unconstrained, any incorrectly combined signal triplets, if present, would be absorbed into the background estimate. The triplet invariant mass distribution for the background decreases smoothly with increasing mass, and we model this background using a four-parameter function (Eq. (2)) fit directly to the data, except in the case of the low-mass, heavy-flavour search.
Fig. 5. Comparison of the three-jet invariant mass distribution in data with the background estimate for the heavy-flavour analysis. The left plot shows the results from the low-mass selection. The background contribution from the b-jet control region is shown as the light blue shaded area, while that from simulated t\bar{t} events is shown as the dark red shaded area. The right plot shows the high-mass sample with resolution-based binning. The error bars on the black data points display the statistical uncertainties. The bottom plots show the difference of the data and the background estimate divided by the statistical uncertainty in the data in each bin. The light magenta dashed line and hatched area show the distribution and pulls for a simulated 500 GeV gluino that decays into heavy-flavour jets.

As a validation of the analysis technique, we consider the t\bar{t} triplets as a signal with the background solely composed of triplets from SM multijet processes, whose shape is modelled by the b-jet control region, with the small amount of simulated t\bar{t} events without b tags subtracted. The t\bar{t} cross section is extracted based on the contribution of its signal triplets and is compared with the theoretical prediction for the cross section of 245.8 pb. The measurement yields a result of 205 ± 28 pb (combined statistical and systematic uncertainties), which is within less than two standard deviations from the theoretical value, thereby showing our technique can successfully reconstruct hadronically decaying t\bar{t} events.

To obtain an estimate of the number of signal triplets expected after all selection criteria are applied, the sum of a Gaussian function that represents the signal and a four-parameter function (Eq. (2)) that models the incorrectly combined signal triplets is fit to the simulated M_{jjj} distribution for each gluino mass. The Gaussian component of the fit provides the estimate for the expected number of signal triplets. The factors in this overall triplet signal efficiency are the event acceptance, governed by the kinematic and b-tagging selections, and the triplet rate, which represents the number of selected triplets per selected event. This triplet rate is the product of the average number of triplets per event times the proportion of triplets contained in the Gaussian signal peak compared with the full distribution. Width and acceptance-times-efficiency ($A \times \epsilon$) are both parametrised as functions of gluino mass, as shown in Fig. 6. The width of the Gaussian function modelling the signal varies according to the detector resolution, ranging from 17 to 70 GeV for gluino masses from 200 to 1500 GeV. The $A \times \epsilon$ ranges from about 0.003 to 0.033 for the inclusive search for gluino masses from 400–1500 GeV, and, for the heavy-flavour search, from 0.005 to 0.04 for masses from 200–600 GeV, and from 0.008 to 0.015 for masses from 600–1500 GeV. For high-mass gluinos, the $A \times \epsilon$ flattens slightly because of the decreased efficiency to reconstruct triplets in the Gaussian signal peak.

6. Systematic uncertainties

Systematic uncertainties in the signal acceptance are assigned in the following manner. For uncertainties related to the jet energy scale (JES) [20], the jet energy corrections are varied within their uncertainties for each signal mass, and then the entire selection procedure is repeated to determine the parametrised values of the $A \times \epsilon$. The largest difference from the nominal values is taken as a systematic uncertainty. To evaluate the systematic uncertainty associated with the level of simulated ISR and FSR for signal events, i.e. the spontaneous emission of gluons from incoming or outgoing participants of the hard interaction, dedicated signal samples are generated where the relative amounts of ISR and FSR are coherently increased or decreased with respect to the nominal setting of the Pythia event generator [29]. The parameter controlling the amount of ISR (PARP(67)) is varied around its central value of 2.5 by ±0.5 and that for the FSR (PARP(71)) is varied from 2.5 to 8, with a nominal value of 4.0. For each sample, the rederived $A \times \epsilon$ is compared to the nominal value, and the difference is taken as the systematic uncertainty. Analogously, an uncertainty is assigned to account for the effects of multiple pp
collisions in an event (pileup) by reweighting all MC signal samples such that the distribution of the number of interactions per bunch crossing is shifted, high and low, by one standard deviation compared with that found in data [30]. For the analyses using b tagging, an uncertainty is assigned based on the scale factor that comprises the differences in b-tagging efficiencies in data compared with simulation [26]. The same procedure as outlined above is repeated, where the b-tagging scale factors are varied within their uncertainties, and the effect on $A \times \epsilon$ is evaluated. Uncertainties in the fit parameters of the Gaussian signal are used as an additional systematic uncertainty for each mass point. Finally, an overall systematic uncertainty of 2.6% is assigned to the integrated luminosity measurement [12]. The ranges in the values of these uncertainties are summarised in Table 2. Systematic uncertainties related to the signal and background shapes are discussed in Section 7.

7. Results and limits

The three-jet invariant mass distributions are examined for a Gaussian signal peak on top of the smoothly falling background distribution. As has been described, this analysis uses different selection criteria to search for resonances coupling to light-flavour and to heavy-flavour quarks, with the latter search done separately in low-mass and high-mass regions. In the analysis of each of the three selections, the background normalisation parameter is unconstrained and is therefore determined by the SM multijet component of the combined fit. For the function describing the background, the initial values of its parameters are taken from the background-only hypothesis fit to the data, while they are allowed to float in the background-plus-signal hypothesis fits for the limit calculation. The signal is modelled with Gaussians defined by the width and $A \times \epsilon$ curves shown in Fig. 6. The uncertainties in the expected number of signal triplets are included as log-normal constraints, where the uncertainty for the width of the Gaussian includes a 10% systematic uncertainty to account for jet resolution effects [20]. For the tt background estimate, uncertainties in both the shape and normalisation are included. In addition to those already discussed in the previous section, uncertainties due to ambiguities in the parton shower matching procedure between the MADGRAPH and PYTHIA event generators, as well as those due to the dependence on the renormalisation and factorisation scale, are taken into account.

Upper limits are placed on the cross section times branching fraction for the production of three-jet resonances. A modified-frequentist approach, using the CL$_s$ [31,32] technique and a profile likelihood as the test statistic, is employed. Limits are calculated with the frequentist asymptotic calculator implemented in the RooStats [33,34] package. The full CL$_s$ calculations give similar limits within a few percent, and closure tests where a fixed signal is injected yield consistent coverage. The observed and expected 95% confidence level (CL) upper limits on the gluino pair-production cross section times branching fraction as a function of gluino mass are presented in Fig. 7. The solid red lines in the figure show the next-to-leading-order (NLO) plus next-to-leading-logarithm (NLL) cross sections for gluino pair production [35–39], and the dashed red lines indicate the corresponding one-standard-deviation (σ) uncertainties, which range between 15% and 43%. To quote final results, we use the points where the -1σ-uncertainty curve for the NLO + NLL cross section crosses the expected and observed-limit curves. We additionally quote the result where the central theoretical curve intersects the limit curves.

The production of gluinos undergoing RPV decays into light-flavour jets is excluded at 95% CL for gluino masses below 650 GeV, with a less conservative exclusion of 670 GeV based upon the theory value at the central scale. The respective expected limits are 755 and 795 GeV. These results extend the limit of 460 GeV [10] obtained with the 7 TeV CMS dataset. Gluinos whose decay includes a heavy-flavour jet are excluded for masses between 200 and 835 GeV, which is the most stringent mass limit to date for this model of RPV gluino decay, with the less conservative exclusion up to 855 GeV from the central theoretical value. The respective expected limits are 825 and 860 GeV. While a smaller phase space is probed in the heavy-flavour search, the limits extend to higher masses because of the reduction of the background.

Table 2

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES</td>
<td>3–16%</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>5–11%</td>
</tr>
<tr>
<td>Pileup</td>
<td>1–5%</td>
</tr>
<tr>
<td>b tagging</td>
<td>1–7%</td>
</tr>
<tr>
<td>Signal fit</td>
<td>4–12%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Fig. 6. The signal parametrisation shown as a function of gluino mass for the inclusive search. The Gaussian signal width (left) and the $A \times \epsilon$ parametrisation (right) versus signal mass are both shown. The hatched bands represent the combined statistical and systematic uncertainties.
8. Summary

A search for hadronic resonance production in pp collisions at a centre-of-mass energy of 8 TeV has been conducted by the CMS experiment at the LHC with a data sample corresponding to an integrated luminosity of 19.4 fb\(^{-1}\). The approach is model independent, with event selection criteria optimised using the RPV supersymmetric model for gluino pair production in a six-jet final state. Two different scenarios for this RPV decay have been considered: gluinos decaying exclusively to light-flavour jets, and gluinos undergoing RPV decay into light-flavour jets. No significant deviation has been found between the standard model background expectations and the measured mass distributions. The production of gluinos undergoing RPV decay into light-flavour jets has been excluded at 95% CL for masses below 650 GeV. Gluinos that include a heavy-flavour jet in their decay have been excluded at 95% CL for masses between 200 and 835 GeV, which is the most stringent limit to date for this model of gluino decay.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSMT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSMT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); RSEID and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TNP,IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

V. Brigleivic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr.

Charles University, Prague, Czech Republic

A.A. Abdelalim, Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Errola, G. Fedi, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shrivpuri

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Pakinat Mehdiaabadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Grunewald

University College Dublin, Dublin, Ireland

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia

PN. Lebedev Physical Institute, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin⁷, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic³⁵, M. Djordjevic, M. Ekmedzic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Rutgers, The State University of New Jersey, Piscataway, USA

K. Rose, S. Spanier, Z.C. Yang, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

* Corresponding author.
E-mail address: George.Alverson@cern.ch (G. Alverson).
† Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
6 Also at Universidad Estadual de Campinas, Campinas, Brazil.
7 Also at California Institute of Technology, Pasadena, USA.
8 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
9 Also at Zewail City of Science and Technology, Zewail, Egypt.
10 Also at Suez Canal University, Suez, Egypt.
11 Also at Cairo University, Cairo, Egypt.
12 Also at Fayoum University, El-Fayoum, Egypt.
13 Also at British University in Egypt, Cairo, Egypt.
14 Now at Ain Shams University, Cairo, Egypt.
15 Also at National Centre for Nuclear Research, Swierk, Poland.
16 Also at Université de Haute Alsace, Mulhouse, France.
17 Also at Universidad de Antioquia, Medellin, Colombia.
18 Also at Joint Institute for Nuclear Research, Dubna, Russia.
19 Also at Brandenburg University of Technology, Cottbus, Germany.
20 Also at The University of Kansas, Lawrence, USA.
21 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
22 Also at Eötvös Loránd University, Budapest, Hungary.
23 Also at Tata Institute of Fundamental Research – EHEP, Mumbai, India.
24 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.