CaltechAUTHORS
  A Caltech Library Service

Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

Toft, S. and Smolčić, V. and Magnelli, B. and Karim, A. and Zirm, A. and Michalowski, M. and Capak, P. and Sheth, K. and Schawinski, K. and Krogager, J.-K. and Wuyts, S. and Sanders, D. and Man, A. W. S. and Lutz, D. and Staguhn, J. and Berta, S. and McCracken, H. and Krpan, J. and Riechers, D. (2014) Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies. Astrophysical Journal, 782 (2). Art. No. 68. ISSN 0004-637X. http://resolver.caltech.edu/CaltechAUTHORS:20140515-150334225

[img]
Preview
PDF - Published Version
See Usage Policy.

1014Kb
[img]
Preview
PDF - Submitted Version
See Usage Policy.

3746Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20140515-150334225

Abstract

Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^(+40)_(-29) Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://arxiv.org/abs/1401.1510 arXivDiscussion Paper
http://iopscience.iop.org/0004-637X/782/2/68/PublisherArticle
http://dx.doi.org/10.1088/0004-637X/782/2/68DOIArticle
ORCID:
AuthorORCID
McCracken, H.0000-0002-9489-7765
Additional Information:© 2014 American Astronomical Society. Received 2013 September 4; accepted 2013 October 31; published 2014 January 29. S.T. acknowledges the support of the Lundbeck Foundation and is grateful for the hospitality and support of the Institute for Astronomy, University of Hawaii, during the visit when this work was initiated. The research leading to these results has received funding from the European Union’s Seventh Framework programme under grant agreement 229517. K. Schawinski gratefully acknowledges support from the Swiss National Science Foundation Grant PP00P2_138979/1. M.J.M. acknowledges the support of the FWO-Vlaanderen and the Science and Technology Facilities Council. K. Sheth acknowledges support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. J.S. acknowledges support through NSF ATI grants 1020981 and 1106284. We thank M. Barro for sharing additional information about his compact star-forming galaxies. We thank D. Watson and J. Hjorth for helpful discussions. The Dark Cosmology Centre is funded by the Danish National Research Foundation.
Group:COSMOS
Funders:
Funding AgencyGrant Number
Lundbeck FoundationUNSPECIFIED
European Research Council (ERC)229517
Swiss National Science Foundation GrantPP00P2_138979/1
FWO-VlaanderenUNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
National Radio Astronomy ObservatoryUNSPECIFIED
NSF ATIAST-1020981
NSF ATIAS-1106284
Danish National Research FoundationUNSPECIFIED
Subject Keywords:cosmology: observations; galaxies: evolution; galaxies: high-redshift; galaxies: starburst; Galaxy: formation; submillimeter: galaxies
Record Number:CaltechAUTHORS:20140515-150334225
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20140515-150334225
Official Citation:Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies S. Toft et al. 2014 ApJ 782 68
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:45778
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:15 May 2014 22:39
Last Modified:19 May 2017 18:13

Repository Staff Only: item control page