Measurements of $t\bar{t}$ Spin Correlations and Top-Quark Polarization
Using Dilepton Final States in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al. *
(CMS Collaboration)
(Received 15 November 2013; published 5 May 2014)

Spin correlations and polarization in the top quark–antiquark system are measured using dilepton final states produced in pp collisions at the LHC at $\sqrt{s} = 7$ TeV. The data correspond to an integrated luminosity of 5.0 fb$^{-1}$ collected with the CMS detector. The measurements are performed using events with two oppositely charged leptons (electrons or muons), a significant imbalance in transverse momentum, and two or more jets, where at least one of the jets is identified as originating from a b quark. The spin correlations and polarization are measured through asymmetries in angular distributions of the two selected leptons, unfolded to the parton level. All measurements are found to be in agreement with predictions of the standard model.

DOI: 10.1103/PhysRevLett.112.182001 PACS numbers: 14.65.Ha, 13.85.-t, 13.88.+e

Measurements of spin correlations and polarization in the top quark–antiquark ($t\bar{t}$) system provide direct access to the properties of the bare top quark, as well as a test of the validity of perturbative quantum chromodynamics in the $t\bar{t}$ production process [1]. Such measurements are of particular interest given the anomalies in the $t\bar{t}$ forward-backward production asymmetry observed at the Tevatron [2,3]. The top-quark lifetime has been measured as $3.29^{+0.90}_{-0.63}$ \times 10^{-25} s [4], much shorter than the spin decorrelation time scale of $m_t/\Lambda_{QCD}^2 \approx 10^{-21}$ s [5], where m_t is the top-quark mass, measured as 173.20 ± 0.87 GeV [6], and Λ_{QCD} is the QCD scale parameter. Consequently, the information about the spin of the top quark at production is transferred directly to its decay products and can be accessed from their angular distributions. In the standard model (SM), top quarks are produced with a small amount of polarization arising from electroweak corrections to the QCD-dominated production process. For models beyond the SM, couplings of the top quark to new particles can alter the QCD-dominated production process. For low $t\bar{t}$ invariant masses, the production is dominated by the fusion of pairs of gluons with the same helicities, resulting in the creation of top-quark pairs with antiparallel spins. At larger invariant masses, the dominant production is via the fusion of gluons with opposite helicities, resulting in $t\bar{t}$ pairs with parallel spins. These have the same configuration as $t\bar{t}$ events produced via qq annihilation [5].

In the decay $t\bar{t} \rightarrow \ell^+\ell^-bf^-\bar{b}$, in the laboratory frame, the difference in azimuthal angles of the charged leptons ($\Delta\phi_{\ell^+\ell^-}$) is sensitive to $t\bar{t}$ spin correlations and can be measured precisely without reconstructing the full event kinematics [5]. The top-quark spin can also be studied using θ_γ, which is the angle of a charged lepton in the rest frame of its parent top quark or antiquark, measured in the helicity frame (i.e., relative to the direction of the parent quark in the $t\bar{t}$ center-of-momentum frame). The CDF, D0, and ATLAS spin correlation and polarization measurements used template fits to angular distributions and observed results consistent with SM expectations [10–15]. In this analysis, the measurements are made using angular asymmetry variables unfolded to the parton level, allowing direct comparisons between the data and theoretical predictions.

The top-quark polarization P in the helicity basis is given by $P = 2A_\rho$, where the asymmetry variable A_ρ is defined as

$$A_\rho = \frac{N[\cos(\theta_\gamma) > 0] - N[\cos(\theta_\gamma) < 0]}{N[\cos(\theta_\gamma) > 0] + N[\cos(\theta_\gamma) < 0]}.$$

Here the number of events N is counted using the θ_γ measurements of both positively and negatively charged leptons (θ^{+}_γ and θ^{-}_γ), assuming CP invariance.

For $t\bar{t}$ spin correlations, the variable

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) - N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) + N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}$$

provides excellent discrimination between correlated and uncorrelated t and \bar{t} spins, while the variable

$$A_{c_1c_2} = \frac{N(c_1c_2 > 0) - N(c_1c_2 < 0)}{N(c_1c_2 > 0) + N(c_1c_2 < 0)},$$

where $c_1 = \cos(\theta^{+}_\gamma)$ and $c_2 = \cos(\theta^{-}_\gamma)$, provides a direct measure of the spin correlation coefficient C_{heq} using the

* Full author list given at the end of the article.
helicity angles of the two leptons in each event: \(C_{\text{hel}} = -4A_{\text{el}} \) [16].

The results presented in this Letter are based on data that correspond to an integrated luminosity of 5.0 fb\(^{-1}\) of proton-proton (pp) collisions at \(\sqrt{s} = 7 \text{ TeV} \), provided by the LHC and recorded by the Compact Muon Solenoid (CMS) detector in 2011.

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is equipped with a variety of particle detection systems. Charged-particle trajectories are measured with silicon pixel and strip trackers covering the pseudorapidity region \(|\eta| < 2.5 \), where \(\eta = -\ln(\tan(\theta/2)) \), with \(\theta \) the polar angle of the trajectory of the particle with respect to the counterclockwise-beam direction. A crystal electromagnetic calorimeter and a brass and scintillator sampling hadron calorimeter surround the inner tracking volume and provide high-resolution measurements of energy used to reconstruct electrons, photons, and particle jets. The calorimetry covers the region \(|\eta| < 5.0 \), thereby providing reliable measurements of momentum imbalance in the plane transverse to the beams. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke of the solenoid. A trigger system selects the most interesting collisions for analysis. A more detailed description of the CMS detector is given in Ref. [17].

For this analysis, pp collisions are selected using triggers that require the presence of at least two leptons with large transverse momentum (\(p_T \)). Electron candidates [18] are reconstructed by associating tracks from the inner tracker with energy clusters in the electromagnetic calorimeter. Muon candidates [19] are reconstructed by combining information from the outer muon detector with the tracks reconstructed by the inner tracker. Additional lepton identification criteria are applied for both lepton flavors in order to reject hadronic jets that are misidentified as leptons [18,19]. Both electrons and muons are required to be isolated from other activity in the event. This is achieved by imposing a maximum value of 0.15 on the ratio of the scalar sum of supplementary track \(p_T \) and calorimeter transverse energy deposits within a cone of \(\Delta R \equiv \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3 \) around the lepton candidate direction, to the transverse momentum of the candidate [20].

Event selection is applied to reject events other than those from \(\tau \) production in the dilepton final state. Events are required to have exactly two opposite-sign, isolated leptons (\(e^+e^- \), \(e^\pm\mu^\mp \), or \(\mu^+\mu^- \)). The electrons (muons) are required to have \(p_T > 20 \text{ GeV} \) and to lie within \(|\eta| < 2.5 \) (2.4). The reconstructed lepton trajectories must be consistent with a common interaction vertex. Events with an \(e^+e^- \) or \(\mu^+\mu^- \) pair with invariant mass in the Z-boson mass “window” (between 76 and 106 GeV) or below 20 GeV are removed to suppress Z/\(\gamma \) and heavy-flavor resonance production.

The jets and the momentum imbalance in each event are reconstructed using a particle-flow technique [21]. The anti-\(k_T \) clustering algorithm [22] with a distance parameter of 0.5 is used for jet clustering. Corrections are applied to the energies of the reconstructed jets, based on the results of simulations and studies using exclusive dijet and \(\gamma \) + jets data [23]. At least two jets with \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.5 \), separated by \(\Delta R > 0.4 \) from leptons passing the analysis selection, are required in each event. At least one of these jets must be consistent with the decay of heavy-flavor hadrons (a “b jet”), identified by the combined secondary vertex \(b \)-tagging algorithm [24]. The algorithm is based on the reconstruction of a secondary decay vertex, and gives a \(b \)-tagging efficiency of about 70% (depending on \(p_T \) and \(\eta \)) with misidentification probabilities of approximately 1.5% and 20% for jets originating from light partons (\(u, d, \) and \(s \) quarks, and gluons) and c quarks, respectively. The missing transverse energy \(E_T^{\text{miss}} \) is defined as the magnitude of the momentum imbalance, which is the negative of the vector sum of the momenta of all reconstructed particles in the plane transverse to the beam. The \(E_T^{\text{miss}} \) is measured in the event is required to exceed 40 GeV in events with same-flavor leptons, to further suppress the \(Z/\gamma \) + jets background.

Simulated \(\tau \) events are generated using \textsc{mc@nlo} 3.41 [25], with \(m_\tau = 172.5 \text{ GeV} \), and showered and fragmented using \textsc{herwig} 6.520 [26]. Simulations with different values of \(m_\tau \) and the factorization and renormalization scales are produced in order to evaluate the associated systematic uncertainties.

The dilepton \(\tau \) selection classifies events with \(\tau \) leptons as signal only when the \(\tau \) decays leptonically. Other \(\tau \) topologies, such as the lepton + jets and all-hadronic decays, are classified as background. The background samples of \(W + \text{jets}, Z/\gamma \text{ + jets, diboson, and single-top-quark events are generated using MADGRAPH [27] or POWHEG [28], and showered and fragmented using PYTHIA6.4.22} [29]. Next-to-leading order (NLO) cross sections are used for all background samples.

For both signal and background events, multiple pp interactions in the same or nearby bunch crossings (pileup) are simulated using PYTHIA and superimposed on the hard collision. Events are then simulated using a \textsc{geant4}-based model [30] of the CMS detector, and finally reconstructed and analyzed with the same software used to process collision data.

The trigger efficiency for dilepton events that pass the analysis selection criteria is determined using a tag-and-probe method as in Ref. [31]. For the \(e^+e^-, e^\pm\mu^\mp \), and \(\mu^+\mu^- \) channels this gives \(p_T \) and \(\eta \)-dependent efficiencies of approximately 100%, 95%, and 90%, respectively [32]. These efficiencies are used to weight the simulated events to account for the trigger requirement. The lepton selection efficiencies (reconstruction, identification, and isolation) are consistent between data and the simulation [31,33]. To account for the difference between the \(b \)-tagging
These events are not used in the measurement of no analytic solutions, for both the data and the simulation. Reweighting the top-quark \(p_T\) in the simulation to match the data improves the modeling of the lepton and jet \(p_T\) distributions, and is applied to the MC@NLO \(t\bar{t}\) sample used in this Letter. Because of the dependence of the spin correlations on the \(t\bar{t}\) invariant mass, and thus the top-quark \(p_T\), the \(p_T\) reweighting increases the fraction of top-quark pairs with antiparallel spins in the simulation. The simulation is used only for the unfolding, which is primarily sensitive to changes in acceptance, where the effect of the \(p_T\) reweighting largely cancels in the ratio. Still, the top-quark \(p_T\) spectrum modeling is one of the largest sources of uncertainty.

After all weights are applied, a total of 740 background events are expected. There are 9824 events observed in the data, and the remaining 9084 events are assumed to be signal (dileptonic \(t\bar{t}\)). The average acceptance for signal events is 18\%, and describes the fraction of all produced signal events that are expected to be selected.

While the \(\Delta\phi_{l^-l^+}\) measurement relies purely on leptonic information, the measurements based on \(\theta^*_{l^-}\) require the reconstruction of the entire \(t\bar{t}\) system. Each event has two neutrinos, and there is also ambiguity in combining \(b\) jets with leptons, resulting in up to eight possible solutions for the \(t\bar{t}\) system. The analytical matrix weighting technique [20] is used to find the most probable solution, assuming \(m_t = 172.5\text{ GeV}\). In events with only one \(b\)-tagged jet, the second \(b\) jet is assumed to be the untagged jet with the largest \(p_T\). Solutions are assigned a weight, based on the probability of observing such a configuration, and the \(t\bar{t}\) kinematic quantities are taken from the solution with the largest weight. To improve the efficiency of the technique in the presence of mismeasured jets, the solution for each event is integrated over parametrized jet and \(E_T^{\text{miss}}\) resolution functions. Despite this step, \(\approx 14\%\) of the events still provide no analytic solutions, for both the data and the simulation. These events are not used in the measurement of \(\theta^*_{l^-}\), which is accounted for as an additional event selection requirement.

The backgrounds from \(Z/\gamma^* + \text{jets}\) production and events with a jet misidentified as a lepton are estimated using both control data samples and simulation. The results agree within their uncertainties. The \(Z/\gamma^* + \text{jets}\) background outside the \(Z\)-boson mass window is estimated using the ratio of simulated events inside the window to the number outside the window to scale the observed event yield inside the window [20]. The contribution in this region from other processes, where the two leptons do not come from a \(Z\) boson, is estimated from \(e^\pm\mu^\pm\) data and subtracted prior to performing the scaling. The background with at least one misidentified lepton (nondileptonic \(t\bar{t}\), \(W + \text{jets}\), and multijet events) is estimated from control samples in data using a parametrization of the probability for a jet to be misidentified as a lepton, determined using events collected with jet triggers of different energy thresholds. For both electrons and muons, an associated “loose” lepton candidate is defined based on relaxed isolation requirements [35]. The lepton misidentification rates are parametrized as a function of lepton \(p_T\) and \(\eta\), and are applied as weights to events containing exactly one lepton candidate and one or more loose lepton candidates.

The simulation is chosen as the method to predict the background event yields and shapes, with systematic uncertainties based on comparisons with the estimates using data. The backgrounds from single-top-quark and diboson events are estimated from simulation, found in agreement with data in recent CMS measurements [36,37]. The measured distributions are distorted from the true underlying distributions by the limited acceptance of the detector and the finite resolution of the measurements. An unfolding procedure is applied to correct the data for these effects, which yields the parton-level distributions of the variables under study, where the full covariance matrix is used to evaluate the uncertainties and bin-to-bin correlations.

The background-subtracted measured distribution \(\hat{b}\) is related to the underlying parton-level distribution \(\bar{x}\) by the matrix equation \(\hat{b} = S\bar{\bar{x}}\), where \(A\) is a diagonal matrix describing the acceptance in each bin of the measured distribution and \(S\) is a smearing matrix describing the migration of events between bins due to the reconstruction techniques and finite detector resolution. The \(A\) and \(S\) matrices are modeled using the MC@NLO \(t\bar{t}\) simulation, and the results are available in graphical form in the Supplemental Material [38].

A regularized unfolding algorithm is employed using the singular value decomposition method [39]. The effects of large statistical fluctuations in the algorithm are greatly reduced by introducing a regularization term in the unfolding procedure. The unfolding procedure is validated using pseudoexperiments by verifying the pull distributions and linearity for the observables under study.

Various systematic uncertainties affect the measurements. These are mainly related to the performance of the detector and the modeling of the signal and background processes.

The uncertainty due to the jet energy scale corrections affects the analytical matrix weighting technique \(t\bar{t}\) solutions as well as the event selection. It is estimated by varying the jet energy scale of jets within their uncertainties (typically 1\%–2\%) [23], with propagation to the \(E_T^{\text{miss}}\). The uncertainty in the lepton energy scale, which affects mainly the lepton \(p_T\) distributions, is estimated by varying the energy scale of electrons by 0.5\% (the uncertainty in muon energies is negligible), as estimated from comparisons between data and simulated \(Z\)-boson events.

The uncertainty in the background subtraction is obtained by varying the normalization of each background component by 50\% for single-top-quark and diboson
production and by 100% for the backgrounds from $Z/\gamma^* + \text{jets}$ production and from misidentified leptons.

The $t\bar{t}$ modeling and simulation uncertainties are evaluated by rederiving the A and S matrices using simulated events with variations in the parameter of interest: the factorization and renormalization scales are together varied up and down by a factor of 2; the top-quark mass is varied by ± 1 GeV around $m_t = 172.5$ GeV; the parton distribution functions are varied using the PDF4LHC prescription [40]; the jet energy resolution is varied by 5%, depending on the η of the jet [23]; the simulated pileup multiplicity distribution is changed within its uncertainty; and the scale factors between data and the simulation for the b-tagging efficiency, trigger efficiency, and lepton selection efficiency are varied by their uncertainties. In the simulated $t\bar{t}$ events, the τ spin is not propagated correctly to its decay products. This affects the angular distributions of the electrons and muons coming from τ decays. The corresponding systematic effect is estimated by reweighting the τ decay distributions to reproduce the SM expectations. A 100% systematic uncertainty is applied to the top-quark p_T reweighting, since the origin of the effect is not yet fully understood, and the resulting systematic uncertainty is quoted separately.

Finally, the results of the unfolding linearity tests are used to estimate the systematic uncertainty in the unfolding procedure. The contributions to the total systematic uncertainty (from their sum in quadrature) for each asymmetry variable are presented in Table I.

The background-subtracted and unfolded distributions for $\Delta \phi_{f+\bar{f}}$, $\cos(\theta_{\mu^+}^*) \cos(\theta_{\mu^-}^*)$, and $\cos(\theta_{\tau}^*)$ are shown in Fig. 1, normalized to unit area so that they represent parton-level differential cross sections in each variable. The data are compared to the predictions of the MC@NLO $t\bar{t}$ sample.

TABLE I. Systematic uncertainties in the background-subtracted and unfolded values of $A_{\Delta \phi}$, $A_{c_1c_2}$, and A_p.

<table>
<thead>
<tr>
<th>Asymmetry variable</th>
<th>$A_{\Delta \phi}$</th>
<th>$A_{c_1c_2}$</th>
<th>A_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>0.002</td>
<td>0.012</td>
<td>0.009</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Background</td>
<td>0.003</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>Fact. and renorm. scales</td>
<td>0.001</td>
<td>0.010</td>
<td>0.004</td>
</tr>
<tr>
<td>Top-quark mass</td>
<td>0.001</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>Parton distribution functions</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.002</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>b-tagging scale factor</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Lepton selection</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>τ decay polarization</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Unfolding</td>
<td>0.004</td>
<td>0.020</td>
<td>0.002</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.006</td>
<td>0.025</td>
<td>0.014</td>
</tr>
<tr>
<td>Top p_T reweighting uncertainty</td>
<td>0.012</td>
<td>0.010</td>
<td>0.008</td>
</tr>
</tbody>
</table>

FIG. 1 (color online). Background-subtracted and unfolded differential cross sections for $\Delta \phi_{f+\bar{f}}$, $\cos(\theta_{\mu^+}^*) \cos(\theta_{\mu^-}^*)$, and $\cos(\theta_{\tau}^*)$. The error bars represent statistical uncertainties only, while the systematic uncertainty band is represented by the hatched area. The bin contents are correlated due to the unfolding.
TABLE II. Parton-level asymmetries. The uncertainties in the unfolded results are statistical, systematic, and the additional uncertainty from the top-quark p_T reweighting. The uncertainties in the simulated results are statistical only, while the uncertainties in the NLO calculations for correlated and uncorrelated $t\bar{t}$ spins come from scale variations up and down by a factor of 2. The prediction for $A_{c_{1c_2}}$ is exactly zero in the absence of spin correlations by construction.

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>Data (unfolded)</th>
<th>MC@TNLO</th>
<th>NLO (SM, correlated)</th>
<th>NLO (uncorrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\Delta \phi}$</td>
<td>$0.113 \pm 0.010 \pm 0.006 \pm 0.012$</td>
<td>0.110 ± 0.001</td>
<td>$0.115^{+0.014}_{-0.016}$</td>
<td>$0.210^{+0.013}_{-0.008}$</td>
</tr>
<tr>
<td>$A_{c_{1c_2}}$</td>
<td>$-0.021 \pm 0.023 \pm 0.025 \pm 0.010$</td>
<td>-0.078 ± 0.001</td>
<td>-0.078 ± 0.006</td>
<td>0</td>
</tr>
<tr>
<td>A_P</td>
<td>$0.005 \pm 0.013 \pm 0.014 \pm 0.008$</td>
<td>0.000 ± 0.001</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

and to NLO calculations for $t\bar{t}$ production with and without spin correlations [16,41].

The asymmetries determined from the unfolded distributions are also parton-level quantities, and are measured to be $A_{\Delta \phi} = 0.113 \pm 0.010 \pm 0.006 \pm 0.012$, $A_{c_{1c_2}} = -0.021 \pm 0.023 \pm 0.025 \pm 0.010$, and $A_P = 0.005 \pm 0.013 \pm 0.014 \pm 0.008$, where the uncertainties are statistical, systematic, and from top-quark p_T reweighting, respectively. These results are compared to the simulated and theoretical [16,41] values in Table II. The $A_{\Delta \phi}$ result indicates the presence of $t\bar{t}$ spin correlations, and strongly disfavors the uncorrelated case.

In summary, this Letter presents measurements related to $t\bar{t}$ spin correlations and the top-quark polarization in the $t\bar{t}$ dilepton final states (e^+e^-, $e^+\mu^-$, and $\mu^+\mu^-$), using asymmetry distributions unfolded to the parton level. The results are in agreement with the standard model predictions for all three measured variables.

We would like to thank Professor W. Bernreuther and Professor Z.-G. Si for calculating the theoretical predictions of Fig. 1 and Table II for this Letter. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staff at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSE (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.).

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Instituto for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37Deutsches Elektronen-Synchrotron, Hamburg, Germany
38University of Hamburg, Hamburg, Germany
39Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
41University of Athens, Athens, Greece
42University of Ioánnina, Ioánnina, Greece
43FKKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45University of Debrecen, Debrecen, Hungary
PRL 112, 182001 (2014) PHYSICAL REVIEW LETTERS week ending 9 MAY 2014

86LãoLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
87Joint Institute for Nuclear Research, Dubna, Russia
88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
89Institute for Nuclear Research, Moscow, Russia
90Institute for Theoretical and Experimental Physics, Moscow, Russia
91F.N. Lebedev Physical Institute, Moscow, Russia
92Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
95Centro de Investigaciones Energéticasmos y Tecnológicas (CIEMAT), Madrid, Spain
96Universidad Autónoma de Madrid, Madrid, Spain
97Universidad de Oviedo, Oviedo, Spain
98Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
99CERN, European Organization for Nuclear Research, Geneva, Switzerland
100Paul Scherrer Institut, Villigen, Switzerland
101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
102Universitãti Zürich, Zurich, Switzerland
103National Central University, Chung-Li, Taiwan
104National Taiwan University (NTU), Taipei, Taiwan
105Chulalongkorn University, Bangkok, Thailand
106Cukurova University, Adana, Turkey
107Physics Department, Middle East Technical University, Ankara, Turkey
108Bogazici University, Istanbul, Turkey
109Istanbul Technical University, Istanbul, Turkey
110National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
111University of Bristol, Bristol, United Kingdom
112Rutherford Appleton Laboratory, Didcot, United Kingdom
113Imperial College, London, United Kingdom
114Brunel University, Uxbridge, United Kingdom
115Baylor University, Waco, USA
116The University of Alabama, Tuscaloosa, USA
117Boston University, Boston, USA
118Brown University, Providence, USA
119University of California, Davis, Davis, USA
120University of California, Los Angeles, USA
121University of California, Riverside, Riverside, USA
122University of California, San Diego, La Jolla, USA
123University of California, Santa Barbara, Santa Barbara, USA
124California Institute of Technology, Pasadena, USA
125Carnegie Mellon University, Pittsburgh, USA
126University of Colorado at Boulder, Boulder, USA
127Cornell University, Ithaca, USA
128Fairfield University, Fairfield, USA
129Fermi National Accelerator Laboratory, Batavia, USA
130University of Florida, Gainesville, USA
131Florida International University, Miami, USA
132Florida State University, Tallahassee, USA
133Florida Institute of Technology, Melbourne, USA
134University of Illinois at Chicago (UIC), Chicago, USA
135The University of Iowa, Iowa City, USA
136Johns Hopkins University, Baltimore, USA
137The University of Kansas, Lawrence, USA
138Kansas State University, Manhattan, USA
139Lawrence Livermore National Laboratory, Livermore, USA
140University of Maryland, College Park, USA
141Massachusetts Institute of Technology, Cambridge, USA
142University of Minnesota, Minneapolis, USA
143University of Mississippi, Oxford, USA
144University of Nebraska-Lincoln, Lincoln, USA
145State University of New York at Buffalo, Buffalo, USA
Northeastern University, Boston, USA
Northwestern University, Evanston, USA
University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA
Purdue University, West Lafayette, USA
Purdue University Calumet, Hammond, USA
Rice University, Houston, USA
University of Rochester, Rochester, USA
The Rockefeller University, New York, USA
Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
Texas A&M University, College Station, USA
Texas Tech University, Lubbock, USA
Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
University of Wisconsin, Madison, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at California Institute of Technology, Pasadena, USA.
Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Suez Canal University, Suez, Egypt.
Also at Cairo University, Cairo, Egypt.
Also at Fayyum University, El-Fayoum, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Ain Shams University, Cairo, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Universidad de Antioquia, Medellin, Colombia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at The University of Kansas, Lawrence, USA.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India.
Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
Now at King Abdulaziz University, Jeddah, Saudi Arabia.
Also at University of Visva-Bharati, Santiniketan, India.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Sharif University of Technology, Tehran, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.
Also at Purdue University, West Lafayette, USA.
Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
Also at Alcalá de Henares University Nuclear Research Institute, Madrid, Spain.
Also at University of Belgrade, Belgrade, Serbia.
Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at University of Athens, Athens, Greece.