Local magnetometry at high fields and low temperatures using InAs Hall sensors
E. Pugel, E. Shung, T. F. Rosenbaum, and S. P. Watkins

Citation: Applied Physics Letters 71, 2205 (1997); doi: 10.1063/1.120443
View online: http://dx.doi.org/10.1063/1.120443
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/71/15?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions

Three-axis Hall transducer based on semiconductor microtubes

Mobile high-temperature superconductor dc superconducting quantum interference device cooled by a pulse-tube cooler

InAs/Al 0.2 Ga 0.8 Sb quantum well Hall sensors with improved temperature stability

Measurement of the magnetic induction vector in superconductors using a double-layer Hall sensor array
Appl. Phys. Lett. 72, 2891 (1998); 10.1063/1.121450
Local magnetometry at high fields and low temperatures using InAs Hall sensors

E. Pugel, E. Shung, and T. F. Rosenbaum

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637

S. P. Watkins
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A IS6, Canada

(Received 13 June 1997; accepted for publication 6 August 1997)

We characterize the temperature (0.3 ≤ T ≤ 300 K), magnetic field (0 ≤ \(H \) ≤ 80 kOe), and thickness (0.1, 0.5, and 2.5 \(\mu \)m) dependence of the Hall response of high purity InAs epilayers grown using metalorganic chemical vapor deposition. The high sensitivity, linearity, and temperature independence of the response make them attractive for local Hall probe magnetometry, and uniquely qualified for high field applications below liquid helium temperatures. As a stringent test of performance, we use a six element micron-sized array to monitor the internal field gradient during vortex avalanches at milliKelvin temperatures in a single crystal of \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \).

The recent development of high purity InAs epilayers with specular surfaces using metalorganic chemical vapor deposition (MOCVD) techniques has led us to explore the high magnetic field behavior of these films and to exploit them as the active elements of Hall probe arrays. In this letter, we describe how high fields actually reduce the pronounced temperature dependence of the Hall response observed in the low field limit, apparently by suppressing the competition between bulk and surface conduction. A response up to 20 m\(\Omega \)/G from mK to room temperature is possible for micron-sized sensors with no saturation up to at least 80 kOe. As a test of the sensitivity and reproducibility of these InAs magnetometers, we map out the spatial variation of the vortex density in single crystals of \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \) cooled to milliKelvin temperatures. The absence of quantum Hall steps at low \(T \) makes these sensors uniquely qualified for high field measurements below liquid helium temperatures.

Narrow gap semiconductors like InSb and InAs derive their large Hall effect from a small effective mass which permits metallic conduction at an unusually low carrier density.\(^3\) The potential of InAs for local magnetometry was recognized nearly 30 years ago by Simpkins\(^4\) and single crystals of InAs have been used by Konczykowski, Holtzberg, and Lejay\(^5\) and by Koziol and Franse\(^6\) for global magnetization measurements of superconductors. True local measurements down to low temperature have not been reported, although the high sensitivity, linearity, and temperature independence of thin InAs epilayers make them attractive for many applications.

We compare in Fig. 1 the Hall resistance as a function of applied field at mK temperatures for 0.1-\(\mu \)m-thick polycrystalline Bi on a sapphire substrate, 0.1-\(\mu \)m-thick InAs on a GaAs substrate, and a GaAs two-dimensional electron gas heterojunction.\(^7\) Bismuth is a semiconductor with low carrier density commonly used as a Hall probe. Its response is more than an order of magnitude smaller than InAs, with a ten-

\(^{a}\)Electronic mail: tfr@rainbow.uchicago.edu

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 131.215.70.231 On: Tue, 08 Jul 2014 15:45:29
towards saturation for $H>30$ kOe. Furthermore, the Hall constant of Bi depends strongly on temperature and Bi films are notoriously sensitive to cracking under thermal cycling, often leading to performance degradation. By comparison, the Hall resistance of InAs remains essentially linear in H up to high field and we find 0.05% change in $R(H,T)$ after numerous thermal cycles between room and liquid helium temperatures. The formidable response of the GaAs–AlGaAs heterojunction makes it an excellent material choice at liquid nitrogen temperatures, but as is clear in Fig. 1, the development of quantum Hall plateaus excludes low temperature applications over a sizable field range.

Not only does the Hall resistance of InAs depend linearly on H, but its slope changes less than 10% over 3 decades in temperatures ($0.3<T<300$ K). This permits highly accurate magnetization measurements as a function of both field and temperature. We demonstrate the weak temperature dependence in Fig. 2, comparing $R(H,T=5$ K) and $R(H,T=300$ K) for a 0.1-μm-thick InAs film. In fact, the response changes by only 2% over the lowest two decades in T (Fig. 2 inset).

The dependence of the Hall response on the thickness of the InAs epilayers is more complicated and results from the competition between conduction in a surface accumulation layer, which contributes most of the free carriers, and a high purity bulk layer which dominates transport at intermediate temperatures. As the 0.1 μm InAs prelayer is thickened, the Hall mobility increases, but the effective sheet concentration decreases as more mobile, but sparser bulk carriers join the surface layer conduction. The low field response is enhanced at the cost of significant temperature dependence. We show in Fig. 3, however, that the temperature dependence in thicker films (e.g., 0.5 μm) is effectively quenched for $H>20$ kOe, reverting to the 0.1 μm prelayer-type behavior where surface and GaAs interface scattering dominate.

The choice of InAs film thickness then depends on the experiment at hand. If precise temperature scans are required at fields below 20 kOe or if the field lines of local objects like vortices in superconductors or domain walls in ferromagnets need to be imaged, then the 0.1-μm-thick InAs sensor is the appropriate choice. For experiments where the absolute size of the Hall signal is pivotal, then thicker epilayers may be more suitable. Such devices can have higher peak sensitivity, but with a significant temperature dependent response. We plot in Fig. 4 performance contours in the H–T plane for a 2.5-μm-thick, high-mobility InAs device. The bulk conduction provides up to a factor of three enhancement (60 mΩV/G at $T=77$ K), but only for $H<20$ kOe and 10

FIG. 1. Comparison of the Hall response as a function of magnetic field H at $T=0.3$ K for three magnetometer materials. Note the change of vertical scale between panels. The GaAs–AlGaAs data is from Ref. 7.

FIG. 2. The Hall resistance vs magnetic field H at room and liquid helium temperatures for a 0.1-μm-thick epilayer of InAs. The essentially linear response is only weakly temperature dependent. (Inset) The Hall coefficient changes 2% between 0.3 and 30 K, making device calibration simple.

FIG. 3. The Hall resistance at $T=25$, 50, and 100 K normalized to its $T=5$ K value vs magnetic field for 0.1- and 0.5-μm-thick InAs films. The bulk carrier conduction of the thicker film is frozen out for $H>20$ kOe, reducing the temperature dependence.
InAs epilayer grown on GaAs into a six element Hall probe vortex avalanches in the high field quantum limit in a single crystal of YBa$_2$Cu$_3$O$_{7-\delta}$. We have measured the local field gradient, H, significant field and temperature dependence.

As a stringent test of magnetometer performance, we have measured the local field gradient (Bean profile10) during vortex avalanches in the high field quantum limit11 in a single crystal of YBa$_2$Cu$_3$O$_{7-\delta}$. We processed a 0.1 μm InAs epilayer grown on GaAs into a six element Hall probe array with active areas (8 μm x 8 μm) spaced 20 μm apart using conventional photolithography and wet chemical etching in HCl:HNO$_3$:H$_2$O (1:1.5). Contacts were prepared using pure In dots annealed at 200 $^\circ$C for 2 h under a flow of 5% H_2 and 95% N_2. The magnetometer was affixed via a thin layer of grease to the regularly-shaped (650 μm x 400 μm x 20 μm thick) platelet along an axis of symmetry. Four-probe resistance measurements were made using an ac lock-in technique in the frequency independent and ohmic limits.

We plot in Fig. 5 the internal magnetic field B as a function of the distance d from the edge of the crystal upon ramping the external field H down from 75 to 64 kOe at T = 0.35 K. The nonmonotonic variation of $B(d)$ reflects the hysteretic nature of the response. The magnetization jumps labeled a and b in the hysteresis loop shown in the inset correspond to changes of a thousand vortices under the gaussmeter. These avalanches show up clearly in the field profile, where the uneven spacing between curves near the center of the crystal contrasts with the approximately even spacing at the edge where $B = H$.

The resolution of the InAs elements is <50 mG, at least 20 times better than comparable Bi probes,12 and is set here by the number of digits on the resistance bridge. For an 8 μm x 8 μm magnetometer, this corresponds to a sensitivity \sim0.1ϕ_0, where ϕ_0 is the fundamental unit of flux. The great sensitivity and temperature independence of InAs gaussmeters promise high-resolution studies down to the individual vortex level in both the quantum and classical regimes.13

The authors are grateful to H. Jaeger for illuminating discussions. The work at the University of Chicago was supported by the National Science Foundation (Contract No. DMR91-20000) through the Science and Technology Center for Superconductivity. EP acknowledges support from Argonne National Laboratory Department of Educational Programs. SPW acknowledges the support of the Natural Sciences and Engineering Research Council of Canada.