Thermodynamic features in the H-T plane of superconducting UBe$_{13}$

B. Ellman and T. F. Rosenbaum

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637

J. S. Kim and G. R. Stewart*

Department of Physics, The University of Florida, Gainesville, Florida 32611

(Received 23 August 1991)

We present specific-heat C measurements of a high-quality polycrystal of UBe$_{13}$ for $0.2 \leq T \leq 1.2$ K and $0 \leq H \leq 80$ kG. Field-sweep data, $C(H)$ at fixed T, reveal two broad peaks in the superconducting state for $T < 0.6$ K. The low-field feature occurs at $H \approx 20$ kG, independent of temperature. Conventional temperature scans, $C(T)$ at fixed H, presumably smear this feature beyond recognition.

The spin degrees of freedom play an essential role in heavy-fermion superconductivity. In UPt$_3$, not only may spin fluctuations provide the pairing mechanism, but the existence of antiferromagnetic order below T_c (with a magnetic moment $\sim 0.02\mu_B$) allows the possibility of multiple superconducting phases. Similarly, recent magnetic x-ray and neutron-scattering studies of UR$_2$-Si$_2$ establish the microscopic coexistence of antiferromagnetism (with a magnetic moment $\sim 0.04\mu_B$) and superconductivity. Magnetic-susceptibility and heat-capacity measurements on thoriated CeCu$_2$Si$_2$ show a significant bulk ordered moment coexisting with the superconductivity in that heavy-fermion system.

The situation for UBe$_{13}$ is less settled. When doped with thorium, magnetic correlations arise and for Th substitution between 2% and 4% two transitions are observed in the low-temperature specific heat. For pure UBe$_{13}$, magnetostriction data indicate the onset of antiferromagnetic order at $T_N \approx 8.8$ K $\sim 10T_c$, but there is no direct evidence to date for magnetic ordering below T_c. On the basis of muon spin resonance and low-field measurements of superconducting UBe$_{13}$, Heffner et al. rule out either magnetism or a second phase transition at low fields below T_c. In contrast, Rauchschwalbe suggests two superconducting order parameters for UBe$_{13}$ from an analysis of a break in the upper critical-field slope at $H \sim 20$ kG. We report here multiple thermodynamic signatures in pure UBe$_{13}$ for $T/T_c < 0.6$ at $H \approx 20$ kG.

The key difference in our heat-capacity measurements is that we fix temperature T and sweep magnetic field H, in contrast to the conventional approach of fixing H and varying T. Varying the magnetic field introduces the technical complexity of recalibrating the thermometer attached to the sample at every one of typically 8 magnetic-field points. It provides, however, sensitivity to thermodynamic features when the phase boundary of interest is essentially parallel to the temperature axis in the H-T plane, features which would be smeared beyond recognition in a temperature sweep at fixed H. The specific heat $C(H)$ at fixed T has proved successful in revealing sharp features in the H-T plane of UPt$_3$, even in a sample with one broad peak in C/T vs T at any H. Furthermore, the functional form of $C(H)$ for $T < T_c$ provides information about the nature of the excitation spectrum in the superconducting state.

The UBe$_{13}$ sample used in our work is an arc-melted, high-purity polycrystal of mass 0.08 g. Preparation specifics have been provided elsewhere. In zero magnetic field, the superconducting transition temperature $T_c = 0.925$ K, the Sommerfeld constant $\gamma = 1.0$ J/mol K, and the specific-heat jump at T_c, $\Delta C/C = 1.8$ (see Fig. 1). The experiments were performed using standard heat-pulse techniques in a helium dilution refrigerator for $0.2 \leq T \leq 1.2$ K and $0 \leq H \leq 80$ kG. As discussed above, the thermometer was a carbon chip whose magnetoresistance made it necessary to recalibrate it at every magnetic-field point during field sweeps. The heater was made of Au/Cr and was field independent to better than 0.03% over the entire magnetic-field range. The nuclear Zeeman contribution to the specific heat from Be (non-negligible for $H > 40$ kG at the lowest temperatures) has been subtracted from all the data.

We plot in Fig. 2 a series of specific-heat field sweeps for $T < T_c (H = 0)$. At the higher temperatures it is possible to determine the upper critical field, delineated by the essentially field-independent response of $C(H)$ in the normal state. H_{c2} moves out of our magnetic-field window, however, by $T = 0.4$ K. At the lower temperatures ($T \leq 0.6$ K), $C(H)$ rises with increasing magnetic field as the vortices supply quasiparticles, dropping to the normal-state value of the specific heat with the approach...
FIG. 2. Specific heat C of UBe$_{13}$ as a function of magnetic field H at a series of temperatures $T < T_c (H=0)$. $C(H)$ is essentially independent of H in the normal state. Two peaks appear in the superconducting state for $T < 0.6 \text{ K}$, most clearly distinguished at $T = 0.5 \text{ K}$.

to H_c. The quadratic form of $C(H)$ as $H \rightarrow 0$ apparent from $T = 0.2$ and 0.3 K gives way to a more linear dependence on magnetic field for larger $T/T_c (H=0)$. At corresponding values of $T/T_c (H=0)$ in UPt$_3$ (Ref. 11) $C(H)$ is also proportional to H, suggesting a similar excitation spectrum.

The UBe$_{13}$ data of Fig. 2 reveal an additional feature in $C(H)$ at an intermediate field, $H = 20 \text{ kG}$, for $T < 0.6 \text{ K}$. This secondary maximum can be observed most clearly at $T = 0.5 \text{ K}$, but it can be discerned as well at the three lower temperatures. We plot in Fig. 3 a putative phase diagram for UBe$_{13}$ in the H-T plane based on the structure

do the upper critical field, taken as the midpoint of the sharp rise in $C(H)$ at large H. The open circles mark the position of the partially buried peak at lower field as a function of T.

Although the origin of multiple thermodynamic features in magnetic field and temperature for UBe$_{13}$ is not known, we can make some general observations regarding Fig. 3. First, it is clear from the nearly temperature-independent behavior of the lower boundary that cuts in $C(H,T)$ along H, as reported in this experiment, are required to see it. Second, the position of the lower boundary at $H = 20 \text{ kG}$ coincides with the change in slope of the upper critical-field curves reported previously by at least three groups.10,13,14 Such a kink is consistent with

our H_c data of Fig. 3; additional points would be required to define it conclusively on the basis of specific-heat data. The boundary at $H = 20 \text{ kG}$ also coincides with an anomaly in the magnetostriction observed8 at $T = 0.6 \text{ K}$. Third, the appearance of two features below $T = 0.6 \text{ K}$ is at the same temperature posited for the emergence of a second superconducting order parameter in the Rauchschwalbe analysis16 of H_c data. However, that proposed phase diagram predicts a lower boundary at $H = 70 \text{ kG}$, in contrast to the calorimetric features at $H = 20 \text{ kG}$.

If there are indeed two distinct phases, then the question remains as to their nature, particularly in view of the precedents in other heavy-fermion compounds of the microscopic interplay of magnetism and superconductivity. The work of Heffner \textit{et al.}9 indicates that the lower phase cannot have a significant local magnetic moment ($\mu < 0.01\mu_B$). Many alternatives still exist, however, given the likely higher-order pairing in UBe$_{13}$. The possible role of quadrupolar coupling15 may also predispose the system to a magnetic-field-induced crossover. The effects of symmetry-breaking fields other than the magnetic field, such as uniaxial stress,16 may be able to help narrow the possibilities.

In summary, specific-heat measurements as a function of H at fixed T reveal both the transition into the normal state at $H_c(T)$ and a secondary maximum at $H = 20 \text{ kG}$ for $T < 0.6 \text{ K}$. The lower-field feature occurs at a kink in the slope of $H_c(T)$ and suggests the possibility of distinct phases in superconducting UBe$_{13}$.

We are indebted to G. Aeppli for pointing out Ref. 10. The work at The University of Chicago was supported by NSF Grant No. DMR 8816817. The work at The University of Florida was supported by DOE Grant No. DE-FG05-86ER45268.
Also at The Universität Augsburg, Germany.