Rosenbaum et al. respond: The work of Nimtz et al. presented in the preceding Comment is not directly related to the work of Rosenbaum et al.¹

(1) Figure 1 in the Comment is misleading because it compares the temperature dependence of Hall data (ρ_{xy}) from Ref. 1 with magnetoresistance data (ρ_{zz}) from Refs. 6 and 9. A major point of Ref. 1 was indeed that ρ_{xx}, ρ_{xy}, and ρ_{zz} show an abrupt rise at the same critical magnetic field. This provides evidence for the three-dimensional nature of the metal-insulator transition in Hg$_{1-x}$Cd$_x$Te (which we believe to be a Wigner transition). It does not follow that the temperature dependences of ρ_{xx} and ρ_{zz} are directly comparable. In fact, such a comparison is specious. Magnetoresistance data on the samples used in Ref. 1 show that ρ_{zz} does not saturate at low temperature, but continues to rise, in contradiction to Fig. 1.

(2) Figure 2 also compares apples with oranges. Rosenbaum et al. measure a critical temperature; Nimtz et al. measure an activation energy. This activation energy may tell something about the temperature variation of the gap in a highly correlated fluid, but it does not bear on the critical behavior of the electron lattice. Nimtz et al. are measuring the properties of the correlated fluid at kelvin temperatures; Rosenbaum et al. are measuring the transition from solid to fluid at millikelvin temperatures. We note that the linear relation $B_c \propto T$ follows naturally¹ from the idea of a melting transition between Wigner crystal and correlated fluid.

Finally, we have subsequently measured² nonlinear current-voltage characteristics on these same samples of Hg$_{0.76}$Cd$_{0.24}$Te which provide compelling evidence for the bulk nature of the insulating state. We find the onset of nonlinear conductivity at applied electric fields less than 1 mV/cm, consistent with collective transport produced by the sliding of a Wigner crystal pinned by disorder.

T. F. Rosenbaum
Stuart B. Field
The James Franck Institute and Department of Physics
The University of Chicago
Chicago, Illinois 60637

D. A. Nelson
Honeywell Electro-Optics Division
Lexington, Massachusetts 02172

P. B. Littlewood
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Received 14 May 1985
PACS numbers: 71.30.+h, 71.55.Jv, 72.20.My