THE 54Mn CLOCK AND ITS IMPLICATIONS FOR COSMIC RAY PROPAGATION AND Fe ISOTOPE STUDIES

J. E. Grove*, B. T. Hayes, R. A. Mewaldt
California Institute of Technology, Pasadena, CA 91125 USA
W. R. Webber
University of New Hampshire, Durham, NH 03824 USA

*current address: E.O. Hulburt Center for Space Research, NRL, Washington DC, 20375 USA

Abstract

Radioactive 54Mn, suggested as a clock for measuring the lifetime of heavy cosmic rays, has a poorly known β-decay half-life estimated to be in the range from $\sim 10^5$ to 10^7 yr. Some years ago Koch et al. concluded from measurements of the Mn/Fe ratio that a significant fraction of low-energy (<1 GeV/nuc) 54Mn produced by Fe fragmentation had decayed. Using a propagation code that includes improved fragmentation cross-sections, and data from HEAO-3 and other spacecraft, we have re-examined the evidence for 54Mn decay. We conclude that present cosmic ray data cannot distinguish the possibility of 54Mn decay in cosmic rays, but point out that this question has important implications for studies of the 54Fe abundance in cosmic ray source material, as well as for cosmic ray propagation studies.

Introduction: Manganese has three isotopes that are either stable or long-lived on cosmic ray time scales. Of these 54Mn is stable, while 55Mn and 54Mn normally decay by electron-capture with half-lives of 3.7×10^9 yr and 312 days, respectively. In high energy cosmic rays that are stripped of their electrons 54Mn and 54Mn can be considered stable with respect to electron-capture (however, see below), but 54Mn can also decay by either β^+ emission to 54Cr or by β^- emission to 54Fe. The half-lives ($t_{1/2}$) for these decays are poorly known; Casse (1973) estimated $t_{1/2} \sim 2 \times 10^6$ yr for β^--decay and $t_{1/2} \sim 10^9$ yr for β^+-decay, while Wilson (1978) estimated that the β^--half-life might range from 6×10^6 to 10^7 yr. Recently the laboratory measurement of Sur et al. (1989) established a limit of $t_{1/2}(\beta^+) > 2 \times 10^7$ yr, and from this and theoretical arguments they deduced a lower limit of $t_{1/2} > 4 \times 10^7$ yr for the β^- decay mode.

Casse (1973) suggested that 54Mn, a product of Fe fragmentation, might serve as a cosmic ray clock analogous to 10Be, and thereby test whether Fe-group and CNO nuclei have had a similar propagation history. Several years ago Koch et al. (1981) reported that Mn had a significantly flatter energy spectrum than other Fe fragments such as Sc, Ti, V, and Cr. They concluded that the observed Mn/Fe ratio was best explained by energy-dependent decay of 54Mn, with the product $n_\beta\tau \sim 0.3$ to 0.6 Myr cm3, where n_β is the average hydrogen density in the confinement region and τ is the 54Mn β-decay mean-life. However, Protheroe and Ormes (1983), using different cross sections, found no evidence for 54Mn decay [see also Mewaldt (1981) and discussion therein]. Although the question of 54Mn decay is best addressed with Mn isotope studies, there are to date no cosmic ray observations that resolve 54Mn.

Using available satellite measurements of the elemental composition and a propagation/solar modulation code in conjunction with new, more accurate cross sections, we re-examine the question of 54Mn decay in cosmic rays, and consider its implications.

The Propagation Model: We model cosmic ray composition using a standard energy-dependent "leaky-box" model for cosmic ray propagation in the galaxy, and the "force-field" approximation for solar modulation. The parameters of the model are described in Mewaldt and Webber (1990). The code includes the latest experimental cross section measurements from the UNH group including those for Fe fragmentation, as well as a newly-developed model to predict unmeasured cross sections (Webber 1989).
Although high energy cosmic rays are generally considered to be fully stripped, there is actually a significant probability for electron attachment, especially at energies below ∼0.5 GeV/nuc (see, e.g., Raisbeck 1975). In the case of short-lived nuclei such as 54Mn and 56Fe, this can lead to in-flight electron-capture decay, since the mean time for stripping the electron is ∼10^4 yr, much longer than the electron-capture lifetime for these (and several other) species. Our code therefore includes electron pickup and subsequent electron-capture decay, using cross sections estimated from Crawford (1979). With this model we obtain excellent fits to available satellite observations of the "secondary/primary" ratio (Sc+Ti+V)/Fe and to various primary species spanning more than two decades in energy (see Mewaldt and Webber 1990).

Comparison with Cosmic Ray Observations: Figure 1 shows calculated Mn/Fe ratios for three assumed 54Mn β−-decay lifetimes, based on a "solar system" source abundance of (Mn/Fe)S = 0.0106 (Anders and Grevesse 1989), and a density of nH = 0.3 cm^{-3} in the cosmic ray confinement region, as deduced from 10Be and 26Al studies (see summary in Mewaldt 1989). The cosmic ray data in Figure 1 include satellite measurements from HEAO-3, IMP-8, and Voyager-2. Note that 80% to 90% of observed Mn is produced by the fragmentation of Fe.

Figure 1: A comparison of measured and calculated Mn/Fe ratios for various assumed 54Mn β−-decay halflives. The calculations assume an interstellar H density of 0.3 cm^{-3}. References to the measurements: circles (Engelmann et al. 1989); square (IMP-8; Simpson 1983); cross (Voyager-2; Ferrando et al. 1989).

A second approach to this problem, shown in Figure 2, uses the ratio of Mn to the Fe-secondsaries Sc+Ti+V (Mewaldt 1981), since such "secondary/secondary" ratios are less sensitive to uncertainties in the energy dependence of the pathlength distribution and the Fe total interaction cross section. From Figures 1 and 2 we find that with a Mn source abundance composition equal to that in the solar system, the available cosmic ray data are consistent with t_1/2 ≈ 2×10^5 yr as found by Koch et al., but inconsistent with halflives as short as 10^6 yr.

Figure 2: Measured and calculated Mn/(Sc+Ti+V) ratios for various assumed 54Mn halflives. For references, see Figure 1.
However, since the source abundance of Mn is not independently known, we should also consider "non-solar" source abundances of Mn. Figures 3 and 4 demonstrate that by adjusting the Mn/Fe ratio at the source excellent fits can be achieved to the observations for 54Mn β^--lifetimes ranging anywhere from $\sim 10^5$ to $>10^8$ yr. (Note that $t_{1/2} > 10^8$ yr is essentially equivalent to 54Mn stability on cosmic ray time scales.) Of the possibilities in Figures 3 and 4 $t_{1/2} \sim 10^5$ yr provides the best fit, but we consider the entire range of half-lives to give an acceptable fit. While these lifetime possibilities might be distinguished by Mn measurements at >50 GeV/nuc (see Figure 4) or by Mn isotope measurements, such data are not now available. We therefore conclude, contrary to Koch et al. (see also Sur et al. 1989), that presently available cosmic ray data cannot distinguish whether any appreciable fraction of 54Mn undergoes β-decay in cosmic rays (see also Mewaldt 1981).

Figure 3: Measured and calculated Mn/Fe ratios as in Figure 1, except that the source abundances of Mn have been adjusted as indicated to fit the observations (see also Figure 3).

Figure 4: Measured and calculated Mn/(Sc+Ti+V) ratios as in Figure 2, except that the source abundances of Mn (in the form of 54Mn) have been adjusted as indicated to fit the observations.

Implications for Fe Isotope Studies: Because the β^- decay of 54Mn produces 54Fe, the interpretation of this interesting Fe isotope in cosmic rays is subject to the uncertainties in 54Mn decay discussed above. Figure 5 shows the calculated dependence of the 54Fe/56Fe ratio on the assumed 54Mn β^--decay half-life. Note that for an assumed solar system source composition (54Fe/56Fe = 0.063) the resulting 54Fe/56Fe ratio at 1 AU can vary from <0.08 to >0.10; at present this entire range is consistent with existing cosmic ray Fe isotope studies (see, e.g., Grove et al. 1990). To our knowledge, this complication to Fe isotope studies has not been pointed out previously. It is clear that future studies of Fe isotopes should at the same time measure the isotopic composition of Mn.
Figure 5: Expected $^{54}\text{Fe}/^{56}\text{Fe}$ ratio for various assumed ^{54}Mn β-decay half-lives. The calculations assume a solar system (S.S.) source ratio as indicated.

Conclusions: In summary, we conclude that the role of ^{54}Mn decay in cosmic rays is unlikely to be understood by elemental composition measurements such as those considered here; rather, precise measurements of the isotopic composition of cosmic ray Mn will be required. Even then, it appears unlikely that ^{54}Mn can achieve its potential as a cosmic ray clock until either its β-decay lifetime is established independently, or its isotopic composition in cosmic rays is measured over a broad energy interval. The latter objective is possible with a combination of low-energy isotope measurements planned for Ulysses, CRRES, SAMPEX, WIND, and Geotail, along with high energy measurements planned for Astromag.

Acknowledgements: This work was supported in part by NASA under grants NAG8-678 and NGR 05-002-160. We appreciate the assistance of T. L. Garrard.

References: