overwhelms the solar contribution, an inference further supported by the fact that the highest \(^{14} \text{N}/^{18} \text{Ar\ ratios\ are observed among grains with the lowest\}^{36} \text{Ar\ amounts (Fig. 1).}}

RADIONIC CRHOMIUM-53 IN CI CARBONATES: NEW EVIDENCE OF EARLY AQUEOUS ACTIVITY. I. D. Hutcheon, D. L. Phinney, and R. Hutchison.

Our data indicate that two (at least) independent processes are involved in producing Al-rich chondrules. The compositions of M5-2 and K9-1 imply that igneous plagioclase was incorporated into an otherwise relatively unfractionated precursor. Chondrules 11-1, C4-1, C4-2, C2-1, and C3-1 have compositions consistent with evaporation as the main cause of refractory-element enrichment. Later reintroduction of volatiles is required for C3-1 and is likely for the others. Later addition of volatile elements may in part explain why the chondrules do not fall precisely on the evaporation trend in CMAS composition space [5]. However, none of the chondrules described here can be modeled by simple mixtures of CAIs and volatile-rich material of near-solar composition.

Acknowledgments: Supported by NASA grant NAGW 3297 to G. J. Wasserburg, Caltech Div. Contrib. 5820 (966).