Table 3. Selected bond lengths [Å] and angles [°] for SBH01.

<table>
<thead>
<tr>
<th>Bond Distances</th>
<th>Bond Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-N(2)</td>
<td>N(2)-Pd-N(3)</td>
</tr>
<tr>
<td>Pd-N(3)</td>
<td>N(2)-Pd-N(1)</td>
</tr>
<tr>
<td>Pd-N(1)</td>
<td>N(3)-Pd-N(1)</td>
</tr>
<tr>
<td>Pd-Cl</td>
<td>N(2)-Pd-Cl</td>
</tr>
<tr>
<td></td>
<td>N(3)-Pd-Cl</td>
</tr>
<tr>
<td></td>
<td>N(1)-Pd-Cl</td>
</tr>
<tr>
<td></td>
<td>C(1)-N(1)-C(9)</td>
</tr>
<tr>
<td></td>
<td>C(1)-N(1)-Pd</td>
</tr>
<tr>
<td></td>
<td>C(9)-N(1)-Pd</td>
</tr>
<tr>
<td></td>
<td>C(17)-N(2)-C(8)</td>
</tr>
<tr>
<td></td>
<td>C(17)-N(2)-Pd</td>
</tr>
<tr>
<td></td>
<td>C(8)-N(2)-Pd</td>
</tr>
<tr>
<td></td>
<td>C(10)-N(3)-C(18)</td>
</tr>
<tr>
<td></td>
<td>C(10)-N(3)-Pd</td>
</tr>
<tr>
<td></td>
<td>C(18)-N(3)-Pd</td>
</tr>
</tbody>
</table>

Plane dihedral angle
Plane 1 – Plane 2 4.83(5)

Deviation within planes

<table>
<thead>
<tr>
<th>Plane 1</th>
<th>N1</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0162 (0.0016)</td>
<td>0.0047 (0.0019)</td>
<td>0.0094 (0.0021)</td>
<td>0.0055 (0.0020)</td>
<td>-0.0007 (0.0020)</td>
<td>-0.0125 (0.0020)</td>
<td>-0.0038 (0.0021)</td>
<td>0.0176 (0.0020)</td>
<td>0.0031 (0.0018)</td>
<td>-0.0072 (0.0019)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plane 2</th>
<th>N3</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
<th>C13</th>
<th>C14</th>
<th>C15</th>
<th>C16</th>
<th>C17</th>
<th>C18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0353 (0.0015)</td>
<td>0.0312 (0.0018)</td>
<td>0.0586 (0.0019)</td>
<td>-0.0138 (0.0020)</td>
<td>-0.0431 (0.0021)</td>
<td>-0.0359 (0.0020)</td>
<td>0.0353 (0.0021)</td>
<td>0.0589 (0.0020)</td>
<td>-0.0215 (0.0017)</td>
<td>-0.0344 (0.0019)</td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [°] for SBH01.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
<th>Angle</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-N(2)</td>
<td>1.962(2)</td>
<td>C(17)-N(2)-Pd</td>
<td>114.81(15)</td>
<td>114.53(15)</td>
<td></td>
</tr>
<tr>
<td>Pd-N(3)</td>
<td>2.0017(19)</td>
<td>N(10)-N(3)-C(18)</td>
<td>28.36(17)</td>
<td>28.30(17)</td>
<td></td>
</tr>
<tr>
<td>Pd-N(1)</td>
<td>2.0114(19)</td>
<td>C(18)-N(3)-Pd</td>
<td>111.71(15)</td>
<td>119.9(2)</td>
<td></td>
</tr>
<tr>
<td>Pd-Cl</td>
<td>2.3298(7)</td>
<td>N(1)-C(1)-C(2)</td>
<td>121.9(3)</td>
<td>121.9(3)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.331(3)</td>
<td>N(1)-C(1)-H(1)</td>
<td>115.8(16)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(9)</td>
<td>1.366(3)</td>
<td>C(2)-C(1)-H(1)</td>
<td>115.9(3)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(17)</td>
<td>1.380(3)</td>
<td>C(3)-C(2)-C(1)</td>
<td>119.9(3)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.386(3)</td>
<td>C(3)-C(2)-H(2)</td>
<td>119.9(3)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>N(3)-C(10)</td>
<td>1.329(3)</td>
<td>C(3)-C(2)-H(2)</td>
<td>124(2)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>N(3)-C(18)</td>
<td>1.377(3)</td>
<td>C(1)-C(2)-H(2)</td>
<td>116(2)</td>
<td>122.3(16)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.399(4)</td>
<td>C(2)-C(3)-C(4)</td>
<td>120.6(3)</td>
<td>122.6(19)</td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>1.337(4)</td>
<td>C(2)-C(3)-H(3)</td>
<td>116.7(19)</td>
<td>122.6(19)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>0.79(3)</td>
<td>C(4)-C(3)-H(3)</td>
<td>116.7(19)</td>
<td>122.6(19)</td>
<td></td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>1.405(4)</td>
<td>C(3)-C(4)-C(5)</td>
<td>124.1(2)</td>
<td>122.6(19)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>0.87(3)</td>
<td>C(3)-C(4)-C(9)</td>
<td>117.4(3)</td>
<td>117.4(3)</td>
<td></td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>1.419(4)</td>
<td>C(5)-C(4)-C(9)</td>
<td>118.4(2)</td>
<td>118.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.422(3)</td>
<td>C(6)-C(5)-C(4)</td>
<td>119.3(3)</td>
<td>119.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.357(4)</td>
<td>C(6)-C(5)-H(5)</td>
<td>121.0(17)</td>
<td>121.0(17)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>0.93(3)</td>
<td>C(4)-C(5)-H(5)</td>
<td>119.7(17)</td>
<td>121.0(17)</td>
<td></td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>1.408(4)</td>
<td>C(5)-C(6)-C(7)</td>
<td>122.1(13)</td>
<td>122.1(13)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>0.93(3)</td>
<td>C(5)-C(6)-H(6)</td>
<td>124.8(17)</td>
<td>124.8(17)</td>
<td></td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>1.376(4)</td>
<td>C(7)-C(6)-H(6)</td>
<td>113.0(17)</td>
<td>113.0(17)</td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>0.87(3)</td>
<td>C(8)-C(7)-C(6)</td>
<td>121.4(3)</td>
<td>121.4(3)</td>
<td></td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>1.429(3)</td>
<td>C(8)-C(7)-H(7)</td>
<td>114.3(19)</td>
<td>114.3(19)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.395(3)</td>
<td>C(6)-C(7)-H(7)</td>
<td>124.3(19)</td>
<td>124.3(19)</td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>0.91(2)</td>
<td>C(7)-C(8)-N(2)</td>
<td>129.2(2)</td>
<td>129.2(2)</td>
<td></td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>1.354(4)</td>
<td>C(7)-C(8)-C(9)</td>
<td>117.1(2)</td>
<td>117.1(2)</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>0.87(2)</td>
<td>N(2)-C(8)-C(9)</td>
<td>113.7(2)</td>
<td>113.7(2)</td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>1.413(4)</td>
<td>N(1)-C(9)-C(4)</td>
<td>120.7(2)</td>
<td>120.7(2)</td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>0.92(3)</td>
<td>N(1)-C(9)-C(8)</td>
<td>117.7(2)</td>
<td>117.7(2)</td>
<td></td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>1.408(4)</td>
<td>C(4)-C(9)-C(8)</td>
<td>121.6(2)</td>
<td>121.6(2)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.412(3)</td>
<td>N(3)-C(10)-C(11)</td>
<td>114.5(15)</td>
<td>114.5(15)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(18)</td>
<td>1.359(4)</td>
<td>N(3)-C(10)-H(10)</td>
<td>123.8(15)</td>
<td>123.8(15)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>0.85(2)</td>
<td>C(11)-C(10)-H(10)</td>
<td>119.7(3)</td>
<td>119.7(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>1.397(4)</td>
<td>C(12)-C(11)-C(10)</td>
<td>122.5(16)</td>
<td>122.5(16)</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>0.91(3)</td>
<td>C(12)-C(11)-H(11)</td>
<td>117.7(16)</td>
<td>117.7(16)</td>
<td></td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>1.389(3)</td>
<td>C(10)-C(11)-H(11)</td>
<td>120.5(2)</td>
<td>120.5(2)</td>
<td></td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>0.90(3)</td>
<td>C(11)-C(12)-C(13)</td>
<td>112.9(16)</td>
<td>112.9(16)</td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>1.434(3)</td>
<td>C(11)-C(12)-H(12)</td>
<td>117.4(16)</td>
<td>117.4(16)</td>
<td></td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>2.358(8)</td>
<td>C(13)-C(12)-H(12)</td>
<td>118.4(2)</td>
<td>118.4(2)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Pd-N(3)</td>
<td>165.10(8)</td>
<td>C(14)-C(13)-C(18)</td>
<td>122.4(2)</td>
<td>122.4(2)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Pd-N(1)</td>
<td>178.03(6)</td>
<td>C(14)-C(13)-C(12)</td>
<td>117.2(2)</td>
<td>117.2(2)</td>
<td></td>
</tr>
<tr>
<td>N(3)-Pd-N(1)</td>
<td>96.41(6)</td>
<td>C(15)-C(14)-C(13)</td>
<td>119.6(2)</td>
<td>119.6(2)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Pd-Cl</td>
<td>98.45(6)</td>
<td>C(15)-C(14)-H(14)</td>
<td>121.6(18)</td>
<td>121.6(18)</td>
<td></td>
</tr>
<tr>
<td>N(3)-Pd-Cl</td>
<td>119.5(2)</td>
<td>C(13)-C(14)-H(14)</td>
<td>118.8(18)</td>
<td>118.8(18)</td>
<td></td>
</tr>
<tr>
<td>N(1)-Pd-Cl</td>
<td>128.99(19)</td>
<td>C(14)-C(15)-C(16)</td>
<td>122.1(3)</td>
<td>122.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)-N(1)-C(9)</td>
<td>111.53(15)</td>
<td>C(14)-C(15)-H(15)</td>
<td>120.5(16)</td>
<td>120.5(16)</td>
<td></td>
</tr>
<tr>
<td>C(1)-N(1)-Pd</td>
<td>130.4(2)</td>
<td>C(16)-C(15)-H(15)</td>
<td>117.4(16)</td>
<td>117.4(16)</td>
<td></td>
</tr>
<tr>
<td>C(9)-N(1)-Pd</td>
<td>114.81(15)</td>
<td>C(17)-C(16)-C(15)</td>
<td>121.5(3)</td>
<td>121.5(3)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>121.9(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)-H(16)</td>
<td>116.4(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(17)-C(16)</td>
<td>130.3(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(17)-C(18)</td>
<td>113.7(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-C(17)-C(18)</td>
<td>116.0(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)-C(18)-C(13)</td>
<td>120.7(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)-C(18)-C(17)</td>
<td>117.0(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(18)-C(17)</td>
<td>122.2(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Anisotropic displacement parameters (Å² x 10⁴) for SBH01. The anisotropic displacement factor exponent takes the form: -2π² [h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₁₄</th>
<th>U₁₅</th>
<th>U₁₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>292(1)</td>
<td>283(1)</td>
<td>266(1)</td>
<td>28(1)</td>
<td>20(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>Cl</td>
<td>584(4)</td>
<td>366(4)</td>
<td>376(3)</td>
<td>102(3)</td>
<td>0(3)</td>
<td>-39(3)</td>
</tr>
<tr>
<td>N(1)</td>
<td>300(10)</td>
<td>354(13)</td>
<td>283(10)</td>
<td>8(9)</td>
<td>33(8)</td>
<td>104(9)</td>
</tr>
<tr>
<td>N(2)</td>
<td>316(10)</td>
<td>297(12)</td>
<td>290(10)</td>
<td>14(9)</td>
<td>12(8)</td>
<td>-4(8)</td>
</tr>
<tr>
<td>N(3)</td>
<td>261(9)</td>
<td>287(12)</td>
<td>301(10)</td>
<td>18(8)</td>
<td>7(8)</td>
<td>32(8)</td>
</tr>
<tr>
<td>C(1)</td>
<td>416(14)</td>
<td>366(17)</td>
<td>332(14)</td>
<td>28(12)</td>
<td>67(11)</td>
<td>92(13)</td>
</tr>
<tr>
<td>C(2)</td>
<td>511(17)</td>
<td>600(20)</td>
<td>277(14)</td>
<td>63(14)</td>
<td>75(12)</td>
<td>198(15)</td>
</tr>
<tr>
<td>C(3)</td>
<td>420(15)</td>
<td>540(20)</td>
<td>312(14)</td>
<td>-88(14)</td>
<td>-5(12)</td>
<td>142(13)</td>
</tr>
<tr>
<td>C(4)</td>
<td>302(12)</td>
<td>437(17)</td>
<td>347(14)</td>
<td>-73(12)</td>
<td>30(10)</td>
<td>131(11)</td>
</tr>
<tr>
<td>C(5)</td>
<td>385(14)</td>
<td>469(19)</td>
<td>402(16)</td>
<td>-175(14)</td>
<td>-17(12)</td>
<td>62(12)</td>
</tr>
<tr>
<td>C(6)</td>
<td>427(15)</td>
<td>382(18)</td>
<td>496(17)</td>
<td>-98(14)</td>
<td>35(12)</td>
<td>-31(13)</td>
</tr>
<tr>
<td>C(7)</td>
<td>437(15)</td>
<td>397(18)</td>
<td>369(15)</td>
<td>-8(13)</td>
<td>69(12)</td>
<td>-33(12)</td>
</tr>
<tr>
<td>C(8)</td>
<td>246(11)</td>
<td>314(14)</td>
<td>340(13)</td>
<td>-35(11)</td>
<td>41(9)</td>
<td>47(10)</td>
</tr>
<tr>
<td>C(9)</td>
<td>257(11)</td>
<td>331(15)</td>
<td>328(13)</td>
<td>-27(11)</td>
<td>28(9)</td>
<td>87(10)</td>
</tr>
<tr>
<td>C(10)</td>
<td>329(13)</td>
<td>289(15)</td>
<td>368(14)</td>
<td>25(12)</td>
<td>18(10)</td>
<td>32(10)</td>
</tr>
<tr>
<td>C(11)</td>
<td>381(14)</td>
<td>336(16)</td>
<td>393(15)</td>
<td>-77(13)</td>
<td>-46(11)</td>
<td>23(12)</td>
</tr>
<tr>
<td>C(12)</td>
<td>405(14)</td>
<td>475(19)</td>
<td>271(13)</td>
<td>-25(12)</td>
<td>-14(11)</td>
<td>83(12)</td>
</tr>
<tr>
<td>C(13)</td>
<td>289(12)</td>
<td>404(16)</td>
<td>299(13)</td>
<td>23(11)</td>
<td>-4(10)</td>
<td>60(10)</td>
</tr>
<tr>
<td>C(14)</td>
<td>393(14)</td>
<td>480(18)</td>
<td>274(13)</td>
<td>77(13)</td>
<td>21(11)</td>
<td>23(12)</td>
</tr>
<tr>
<td>C(15)</td>
<td>389(14)</td>
<td>441(18)</td>
<td>412(15)</td>
<td>162(14)</td>
<td>30(11)</td>
<td>-14(12)</td>
</tr>
<tr>
<td>C(16)</td>
<td>400(14)</td>
<td>334(16)</td>
<td>397(15)</td>
<td>32(12)</td>
<td>-14(11)</td>
<td>-53(12)</td>
</tr>
<tr>
<td>C(17)</td>
<td>231(11)</td>
<td>325(14)</td>
<td>309(12)</td>
<td>26(10)</td>
<td>19(9)</td>
<td>30(9)</td>
</tr>
<tr>
<td>C(18)</td>
<td>232(11)</td>
<td>318(14)</td>
<td>300(12)</td>
<td>41(10)</td>
<td>20(9)</td>
<td>31(9)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^{-3}$) for SBH01.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>1560(30)</td>
<td>8359(18)</td>
<td>12198(18)</td>
<td>33(7)</td>
</tr>
<tr>
<td>H(2)</td>
<td>2530(40)</td>
<td>9000(20)</td>
<td>13670(20)</td>
<td>54(9)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3860(30)</td>
<td>10350(20)</td>
<td>13710(20)</td>
<td>53(8)</td>
</tr>
<tr>
<td>H(5)</td>
<td>4900(30)</td>
<td>11661(19)</td>
<td>12710(20)</td>
<td>43(7)</td>
</tr>
<tr>
<td>H(6)</td>
<td>4930(30)</td>
<td>12330(20)</td>
<td>11030(20)</td>
<td>56(9)</td>
</tr>
<tr>
<td>H(7)</td>
<td>3760(30)</td>
<td>11580(20)</td>
<td>9610(20)</td>
<td>48(8)</td>
</tr>
<tr>
<td>H(10)</td>
<td>-370(30)</td>
<td>7590(17)</td>
<td>8220(17)</td>
<td>30(6)</td>
</tr>
<tr>
<td>H(11)</td>
<td>-780(30)</td>
<td>7568(18)</td>
<td>6422(17)</td>
<td>30(7)</td>
</tr>
<tr>
<td>H(12)</td>
<td>300(30)</td>
<td>8714(17)</td>
<td>5440(20)</td>
<td>43(7)</td>
</tr>
<tr>
<td>H(14)</td>
<td>1760(30)</td>
<td>10215(18)</td>
<td>5490(20)</td>
<td>40(7)</td>
</tr>
<tr>
<td>H(15)</td>
<td>2850(30)</td>
<td>11415(18)</td>
<td>6403(18)</td>
<td>34(7)</td>
</tr>
<tr>
<td>H(16)</td>
<td>2930(30)</td>
<td>11421(19)</td>
<td>8139(19)</td>
<td>40(7)</td>
</tr>
</tbody>
</table>
Crystal Structure Analysis of:

(BQA)NiCl (9) - SBH05

Contents

Table 1. Crystal data
Figures Figures for publication
Table 2. Atomic Coordinates
Table 3. Selected bond distances and angles
Table 4. Full bond distances and angles (for deposit)
Table 5. Anisotropic displacement parameters
Table 6. Hydrogen atomic coordinates
Table 7. Observed and calculated structure factors (for deposit)
Table 1. Crystal data and structure refinement for SBH05.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{C}{18}\text{H}{12}\text{ClN}_3\text{Ni})</td>
</tr>
<tr>
<td>Formula weight</td>
<td>364.47</td>
</tr>
<tr>
<td>Crystallization Solvent</td>
<td>Chloroform/hexanes</td>
</tr>
<tr>
<td>Crystal Habit</td>
<td>Block</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.23 x 0.20 x 0.20 mm(^3)</td>
</tr>
<tr>
<td>Crystal color</td>
<td>Dark red</td>
</tr>
<tr>
<td>Preliminary Photos</td>
<td>Rotation</td>
</tr>
<tr>
<td>Type of diffractometer</td>
<td>CCD area detector</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å MoK(\alpha)</td>
</tr>
<tr>
<td>Data Collection Temperature</td>
<td>98(2) K</td>
</tr>
<tr>
<td>(\theta) range for 9182 reflections used in lattice determination</td>
<td>2.27 to 28.05(^\circ)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 8.9635(7)) Å</td>
</tr>
<tr>
<td></td>
<td>(b = 11.4785(9)) Å</td>
</tr>
<tr>
<td></td>
<td>(c = 14.9909(12)) Å</td>
</tr>
<tr>
<td></td>
<td>(\beta = 107.3220(10)) (^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>1472.4(2) Å(^3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>(P2_1/n)</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.644 Mg/m(^3)</td>
</tr>
<tr>
<td>(F(000))</td>
<td>744</td>
</tr>
<tr>
<td>Data collection program</td>
<td>Bruker SMART</td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>2.27 to 28.26(^\circ)</td>
</tr>
<tr>
<td>Completeness to (\theta = 28.26(^\circ)</td>
<td>94.9 %</td>
</tr>
<tr>
<td>Index ranges</td>
<td>(-11 \leq h \leq 11, -15 \leq k \leq 14, -19 \leq l \leq 19)</td>
</tr>
<tr>
<td>Data collection scan type</td>
<td>(\omega) scans at 6 (\phi) settings</td>
</tr>
<tr>
<td>Data reduction program</td>
<td>Bruker SAINT v6.1</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>20863</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3452 ([R_{int} = 0.0827])</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.500 mm(^{-1})</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7535 and 0.7213</td>
</tr>
</tbody>
</table>
Table 1 (cont.)

Structure solution and Refinement

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure solution program</td>
<td>SHELXS-97 (Sheldrick, 1990)</td>
</tr>
<tr>
<td>Primary solution method</td>
<td>Patterson method</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-97 (Sheldrick, 1997)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>$3452 / 0 / 256$</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Unrestrained</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.442</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I), 2730 reflections]</td>
<td>$R_1 = 0.0317, wR_2 = 0.0615$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0426, wR_2 = 0.0627$</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>$w = 1/\sigma^2(Fo^2)$</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.002</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.309 and -0.377 eÅ3</td>
</tr>
</tbody>
</table>

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(${gt}$) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2\times 10^3$) for SBH05. U_{eq} is defined as the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>5505(1)</td>
<td>1402(1)</td>
<td>9157(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>Cl</td>
<td>7662(1)</td>
<td>1696(1)</td>
<td>8804(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>4937(2)</td>
<td>35(1)</td>
<td>8423(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>3572(2)</td>
<td>1231(1)</td>
<td>9362(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>5738(2)</td>
<td>2703(1)</td>
<td>9968(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5734(3)</td>
<td>-549(2)</td>
<td>7955(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5171(3)</td>
<td>-1557(2)</td>
<td>7450(2)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3738(3)</td>
<td>-1972(2)</td>
<td>7423(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2846(2)</td>
<td>-1389(2)</td>
<td>7915(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1326(3)</td>
<td>-1727(2)</td>
<td>7918(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>554(3)</td>
<td>-1066(2)</td>
<td>8387(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>1202(2)</td>
<td>-66(2)</td>
<td>8886(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2695(2)</td>
<td>298(2)</td>
<td>8922(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3494(2)</td>
<td>-380(2)</td>
<td>8410(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>6954(3)</td>
<td>3410(2)</td>
<td>10277(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>6962(3)</td>
<td>4327(2)</td>
<td>10892(2)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5693(3)</td>
<td>4516(2)</td>
<td>11183(2)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4364(2)</td>
<td>3804(2)</td>
<td>10870(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2984(3)</td>
<td>3936(2)</td>
<td>11116(2)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>1764(3)</td>
<td>3190(2)</td>
<td>10760(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>1848(2)</td>
<td>2266(2)</td>
<td>10164(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>3197(2)</td>
<td>2078(2)</td>
<td>9916(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>4451(2)</td>
<td>2881(2)</td>
<td>10262(1)</td>
<td>27(1)</td>
</tr>
</tbody>
</table>
Table 3. Selected bond lengths [Å] and angles [°] for SBH05.

<table>
<thead>
<tr>
<th></th>
<th>Bond distances</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-N(2)</td>
<td>1.8586(14)</td>
<td>N(2)-Ni-N(3)</td>
</tr>
<tr>
<td>Ni-N(3)</td>
<td>1.8973(16)</td>
<td>N(2)-Ni-N(1)</td>
</tr>
<tr>
<td>Ni-N(1)</td>
<td>1.8973(16)</td>
<td>N(3)-Ni-N(1)</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>2.1779(5)</td>
<td>N(2)-Ni-Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(3)-Ni-Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)-Ni-Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(1)-N(1)-C(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(1)-N(1)-Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(9)-N(1)-Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-N(2)-C(17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-N(2)-Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(17)-N(2)-Ni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(10)-N(3)-C(18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(18)-N(3)-Ni</td>
</tr>
</tbody>
</table>

Plane dihedral angle

Plane 1 – Plane 2 3.48(8)

Deviations within planes

<table>
<thead>
<tr>
<th></th>
<th>Plane 1</th>
<th>Plane 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>-0.0051 (0.0013)</td>
<td>N3</td>
</tr>
<tr>
<td>C1</td>
<td>-0.0173 (0.0016)</td>
<td>C10</td>
</tr>
<tr>
<td>C2</td>
<td>-0.0107 (0.0018)</td>
<td>C11</td>
</tr>
<tr>
<td>C3</td>
<td>0.0018 (0.0017)</td>
<td>C12</td>
</tr>
<tr>
<td>C4</td>
<td>0.0256 (0.0017)</td>
<td>C13</td>
</tr>
<tr>
<td>C5</td>
<td>0.0077 (0.0017)</td>
<td>C14</td>
</tr>
<tr>
<td>C6</td>
<td>-0.0242 (0.0017)</td>
<td>C15</td>
</tr>
<tr>
<td>C7</td>
<td>-0.0189 (0.0016)</td>
<td>C16</td>
</tr>
<tr>
<td>C8</td>
<td>0.0201 (0.0014)</td>
<td>C17</td>
</tr>
<tr>
<td>C9</td>
<td>0.0210 (0.0015)</td>
<td>C18</td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [°] for SBH05.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Ni(2)</td>
<td>1.8586(14)</td>
</tr>
<tr>
<td>Ni-Ni(3)</td>
<td>1.8973(16)</td>
</tr>
<tr>
<td>Ni-Ni(1)</td>
<td>1.8973(16)</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>2.1779(5)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.323(2)</td>
</tr>
<tr>
<td>N(1)-C(9)</td>
<td>1.373(2)</td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.375(2)</td>
</tr>
<tr>
<td>N(2)-C(17)</td>
<td>1.384(2)</td>
</tr>
<tr>
<td>N(3)-C(10)</td>
<td>1.326(2)</td>
</tr>
<tr>
<td>N(3)-C(18)</td>
<td>1.367(2)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.392(3)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.886(17)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.359(3)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.83(2)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.408(3)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.99(2)</td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.404(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.418(3)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.357(3)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.89(2)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.398(3)</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.92(2)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.849(19)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.426(2)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.398(3)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.868(18)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.351(3)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.91(2)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.406(3)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.910(19)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.400(3)</td>
</tr>
<tr>
<td>C(13)-C(18)</td>
<td>1.415(3)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.366(3)</td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>0.92(2)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.403(3)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.97(2)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.919(19)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.426(3)</td>
</tr>
<tr>
<td>N(2)-Ni-N(3)</td>
<td>84.70(6)</td>
</tr>
<tr>
<td>N(2)-Ni-N(1)</td>
<td>84.60(6)</td>
</tr>
<tr>
<td>N(3)-Ni-N(1)</td>
<td>169.10(6)</td>
</tr>
<tr>
<td>N(2)-Ni-Cl</td>
<td>174.77(5)</td>
</tr>
<tr>
<td>N(3)-Ni-Cl</td>
<td>95.62(5)</td>
</tr>
<tr>
<td>N(1)-Ni-Cl</td>
<td>95.23(5)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(9)</td>
<td>118.13(18)</td>
</tr>
<tr>
<td>C(1)-N(1)-Ni</td>
<td>129.25(15)</td>
</tr>
<tr>
<td>C(9)-N(1)-Ni</td>
<td>112.61(12)</td>
</tr>
<tr>
<td>C(8)-N(2)-C(17)</td>
<td>129.05(15)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>121.9(12)</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16)</td>
<td>117.7(12)</td>
</tr>
<tr>
<td>C(16)-C(17)-N(2)</td>
<td>131.17(17)</td>
</tr>
<tr>
<td>C(16)-C(17)-C(18)</td>
<td>117.33(17)</td>
</tr>
<tr>
<td>N(2)-C(17)-C(18)</td>
<td>111.50(15)</td>
</tr>
<tr>
<td>N(3)-C(18)-C(13)</td>
<td>122.24(17)</td>
</tr>
<tr>
<td>N(3)-C(18)-C(17)</td>
<td>115.85(16)</td>
</tr>
<tr>
<td>C(13)-C(18)-C(17)</td>
<td>121.92(17)</td>
</tr>
</tbody>
</table>
Table 5. Anisotropic displacement parameters ($\AA^2 \times 10^4$) for SBH05. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$

<table>
<thead>
<tr>
<th></th>
<th>U^{11}</th>
<th>U^{22}</th>
<th>U^{33}</th>
<th>U^{12}</th>
<th>U^{13}</th>
<th>U^{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>188(1)</td>
<td>313(2)</td>
<td>250(1)</td>
<td>24(1)</td>
<td>82(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>Cl</td>
<td>286(3)</td>
<td>646(4)</td>
<td>501(3)</td>
<td>21(3)</td>
<td>223(2)</td>
<td>-51(2)</td>
</tr>
<tr>
<td>N(1)</td>
<td>277(8)</td>
<td>313(9)</td>
<td>242(8)</td>
<td>-1(7)</td>
<td>94(7)</td>
<td>64(7)</td>
</tr>
<tr>
<td>N(2)</td>
<td>199(8)</td>
<td>267(9)</td>
<td>265(8)</td>
<td>-14(7)</td>
<td>91(6)</td>
<td>-10(6)</td>
</tr>
<tr>
<td>N(3)</td>
<td>241(8)</td>
<td>285(9)</td>
<td>270(8)</td>
<td>51(7)</td>
<td>52(7)</td>
<td>-20(7)</td>
</tr>
<tr>
<td>C(1)</td>
<td>328(12)</td>
<td>450(14)</td>
<td>330(12)</td>
<td>16(10)</td>
<td>124(10)</td>
<td>99(10)</td>
</tr>
<tr>
<td>C(2)</td>
<td>547(15)</td>
<td>493(15)</td>
<td>316(12)</td>
<td>-38(11)</td>
<td>166(11)</td>
<td>203(12)</td>
</tr>
<tr>
<td>C(3)</td>
<td>586(16)</td>
<td>324(12)</td>
<td>280(11)</td>
<td>-29(10)</td>
<td>61(11)</td>
<td>87(11)</td>
</tr>
<tr>
<td>C(4)</td>
<td>417(12)</td>
<td>250(10)</td>
<td>220(9)</td>
<td>49(8)</td>
<td>7(8)</td>
<td>57(9)</td>
</tr>
<tr>
<td>C(5)</td>
<td>445(13)</td>
<td>273(12)</td>
<td>338(12)</td>
<td>7(9)</td>
<td>22(10)</td>
<td>-81(10)</td>
</tr>
<tr>
<td>C(6)</td>
<td>321(12)</td>
<td>378(13)</td>
<td>385(12)</td>
<td>45(10)</td>
<td>53(10)</td>
<td>-86(10)</td>
</tr>
<tr>
<td>C(7)</td>
<td>272(11)</td>
<td>331(12)</td>
<td>362(11)</td>
<td>13(9)</td>
<td>123(9)</td>
<td>-17(9)</td>
</tr>
<tr>
<td>C(8)</td>
<td>255(10)</td>
<td>251(10)</td>
<td>230(9)</td>
<td>45(8)</td>
<td>52(8)</td>
<td>18(8)</td>
</tr>
<tr>
<td>C(9)</td>
<td>261(10)</td>
<td>263(10)</td>
<td>212(9)</td>
<td>50(8)</td>
<td>34(8)</td>
<td>37(8)</td>
</tr>
<tr>
<td>C(10)</td>
<td>278(11)</td>
<td>395(13)</td>
<td>354(12)</td>
<td>42(10)</td>
<td>40(9)</td>
<td>-47(10)</td>
</tr>
<tr>
<td>C(11)</td>
<td>399(13)</td>
<td>384(14)</td>
<td>458(14)</td>
<td>4(11)</td>
<td>0(11)</td>
<td>-141(11)</td>
</tr>
<tr>
<td>C(12)</td>
<td>518(15)</td>
<td>314(13)</td>
<td>369(12)</td>
<td>-59(10)</td>
<td>19(11)</td>
<td>-35(11)</td>
</tr>
<tr>
<td>C(13)</td>
<td>418(12)</td>
<td>301(11)</td>
<td>261(10)</td>
<td>10(9)</td>
<td>45(9)</td>
<td>30(9)</td>
</tr>
<tr>
<td>C(14)</td>
<td>524(15)</td>
<td>372(13)</td>
<td>369(12)</td>
<td>-89(10)</td>
<td>185(11)</td>
<td>56(11)</td>
</tr>
<tr>
<td>C(15)</td>
<td>411(13)</td>
<td>461(14)</td>
<td>471(14)</td>
<td>-47(11)</td>
<td>240(11)</td>
<td>74(11)</td>
</tr>
<tr>
<td>C(16)</td>
<td>289(11)</td>
<td>380(12)</td>
<td>382(12)</td>
<td>-68(10)</td>
<td>133(9)</td>
<td>-15(10)</td>
</tr>
<tr>
<td>C(17)</td>
<td>254(10)</td>
<td>277(10)</td>
<td>240(9)</td>
<td>17(8)</td>
<td>87(8)</td>
<td>0(8)</td>
</tr>
<tr>
<td>C(18)</td>
<td>294(11)</td>
<td>268(11)</td>
<td>230(9)</td>
<td>26(8)</td>
<td>62(8)</td>
<td>19(8)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters (Å$^2 \times 10^{-3}$) for SBH05.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U$_{iso}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>6670(20)</td>
<td>-277(15)</td>
<td>7972(12)</td>
<td>21(5)</td>
</tr>
<tr>
<td>H(2)</td>
<td>5710(30)</td>
<td>-1870(20)</td>
<td>7152(16)</td>
<td>53(7)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3260(20)</td>
<td>-2668(18)</td>
<td>7063(14)</td>
<td>40(6)</td>
</tr>
<tr>
<td>H(5)</td>
<td>920(20)</td>
<td>-2355(18)</td>
<td>7594(14)</td>
<td>36(6)</td>
</tr>
<tr>
<td>H(6)</td>
<td>-440(20)</td>
<td>-1247(17)</td>
<td>8407(14)</td>
<td>39(6)</td>
</tr>
<tr>
<td>H(7)</td>
<td>640(20)</td>
<td>322(18)</td>
<td>9145(14)</td>
<td>36(6)</td>
</tr>
<tr>
<td>H(10)</td>
<td>7730(20)</td>
<td>3256(15)</td>
<td>10062(13)</td>
<td>21(5)</td>
</tr>
<tr>
<td>H(11)</td>
<td>7850(20)</td>
<td>4764(17)</td>
<td>11069(13)</td>
<td>34(5)</td>
</tr>
<tr>
<td>H(12)</td>
<td>5670(20)</td>
<td>5120(17)</td>
<td>11573(13)</td>
<td>40(6)</td>
</tr>
<tr>
<td>H(14)</td>
<td>2900(20)</td>
<td>4540(18)</td>
<td>11498(14)</td>
<td>40(6)</td>
</tr>
<tr>
<td>H(15)</td>
<td>800(20)</td>
<td>3295(17)</td>
<td>10916(14)</td>
<td>41(6)</td>
</tr>
<tr>
<td>H(16)</td>
<td>990(20)</td>
<td>1796(16)</td>
<td>9951(13)</td>
<td>28(5)</td>
</tr>
</tbody>
</table>
Crystal Structure Analysis of:
(o-NMe₂Ph-QA)Pt(1,2-η²-6-σ-cycloocta-1,4-dienyl) 10a - JCP09

Contents

Table 1. Crystal data
Figures Figures for publication
Table 2. Atomic Coordinates
Table 3. Selected bond distances and angles
Table 4. Full bond distances and angles (for deposit)
Table 5. Anisotropic displacement parameters
Table 6. Hydrogen atomic coordinates
Table 7. Observed and calculated structure factors (for deposit)

Note: The crystallographic data has been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 158863. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 158863."
Table 1. Crystal data and structure refinement for JCP09.

Empirical formula
$C_{25}H_{27}N_5Pt$

Formula weight
564.59

Crystallization Solvent
Unknown

Crystal Habit
Irregular

Crystal size
$0.22 \times 0.19 \times 0.15 \text{ mm}^3$

Crystal color
Red

Data Collection

Preliminary Photos
Rotation

Type of diffractometer
CCD area detector

Wavelength
$0.71073 \text{ Å MoK} \alpha$

Data Collection Temperature
$98(2) \text{ K}$

θ range for 11348 reflections used in lattice determination
2.72 to 28.28°

Unit cell dimensions
$a = 7.5521(7) \text{ Å}$
$b = 10.7997(9) \text{ Å}$
$c = 13.4693(12) \text{ Å}$

$1034.23(16) \text{ Å}^3$

Volume
2

Z
Triclinic

Crystal system
P-1

Space group

Density (calculated)
1.813 Mg/m^3

F(000)
552

Data collection program
Bruker SMART

θ range for data collection
1.60 to 28.31°

Completeness to $\theta = 28.31^\circ$
92.4%

Index ranges
$-9 \leq h \leq 10$, $-14 \leq k \leq 14$, $-17 \leq l \leq 17$

ω scans at 5ϕ settings

Data collection scan type

Data reduction program
Bruker SAINT v6.2

Reflections collected
15396

Independent reflections
4745 [$R_{int} = 0.0365$]

Absorption coefficient
6.800 mm^{-1}

Absorption correction
SADABCS

Max. and min. transmission
1.000000 and 0.728175
Table 1 (cont.)

Structure solution and Refinement

<table>
<thead>
<tr>
<th>Structure solution program</th>
<th>SHELXS-97 (Sheldrick, 1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary solution method</td>
<td>Direct methods</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-97 (Sheldrick, 1997)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4745 / 0 / 370</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Unrestrained</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.255</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I), 4350 reflections]</td>
<td>R1 = 0.0204, wR2 = 0.0410</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0237, wR2 = 0.0413</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>w=1/σ^2(Fo^2)</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.001</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.488 and -0.577 e Å^-3</td>
</tr>
</tbody>
</table>

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of F^2 > 2σ(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for JCP09. U(eq) is defined as the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>1524(1)</td>
<td>8161(1)</td>
<td>2612(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2236(3)</td>
<td>9381(2)</td>
<td>4192(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>2511(3)</td>
<td>6874(2)</td>
<td>3235(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>4564(3)</td>
<td>3466(2)</td>
<td>20(1)</td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>2064(4)</td>
<td>10646(3)</td>
<td>4633(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2606(4)</td>
<td>11321(3)</td>
<td>5689(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>3333(4)</td>
<td>10676(3)</td>
<td>6310(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3501(4)</td>
<td>9311(3)</td>
<td>5886(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>4208(4)</td>
<td>8556(3)</td>
<td>6467(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>4376(4)</td>
<td>7259(3)</td>
<td>5966(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3854(4)</td>
<td>6659(3)</td>
<td>4894(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3082(4)</td>
<td>7343(3)</td>
<td>4290(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2927(4)</td>
<td>8702(3)</td>
<td>4807(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2887(4)</td>
<td>5587(3)</td>
<td>2647(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4176(4)</td>
<td>5477(3)</td>
<td>1942(3)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>4630(4)</td>
<td>4266(3)</td>
<td>1352(3)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3770(5)</td>
<td>3151(3)</td>
<td>1461(3)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2449(4)</td>
<td>3234(3)</td>
<td>2131(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>1982(4)</td>
<td>4444(3)</td>
<td>2740(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>354(5)</td>
<td>3450(4)</td>
<td>3847(3)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>-989(5)</td>
<td>4986(4)</td>
<td>3138(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>612(4)</td>
<td>6824(3)</td>
<td>1190(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>1543(4)</td>
<td>6931(3)</td>
<td>276(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>2260(5)</td>
<td>8024(3)</td>
<td>146(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>2437(5)</td>
<td>9381(3)</td>
<td>893(3)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>1595(4)</td>
<td>9664(3)</td>
<td>1914(3)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>-183(5)</td>
<td>9308(3)</td>
<td>2016(3)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>-1499(5)</td>
<td>8434(4)</td>
<td>1112(3)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>-1371(5)</td>
<td>6999(3)</td>
<td>1008(3)</td>
<td>23(1)</td>
</tr>
</tbody>
</table>
Table 3. Selected bond lengths [Å] and angles [°] for JCP09.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-N(2)</td>
<td>2.003(2)</td>
<td>N(2)-Pt-C(18)</td>
</tr>
<tr>
<td>Pt-C(18)</td>
<td>2.037(3)</td>
<td>N(2)-Pt-C(22)</td>
</tr>
<tr>
<td>Pt-C(22)</td>
<td>2.115(3)</td>
<td>C(18)-Pt-C(22)</td>
</tr>
<tr>
<td>Pt-N(1)</td>
<td>2.126(2)</td>
<td>N(2)-Pt-N(1)</td>
</tr>
<tr>
<td>Pt-C(23)</td>
<td>2.141(3)</td>
<td>C(18)-Pt-N(1)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.489(5)</td>
<td>C(22)-Pt-N(1)</td>
</tr>
<tr>
<td>C(18)-C(25)</td>
<td>1.537(5)</td>
<td>N(2)-Pt-C(23)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.324(5)</td>
<td>C(18)-Pt-C(23)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.484(5)</td>
<td>C(22)-Pt-C(23)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.509(5)</td>
<td>N(1)-Pt-C(23)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.395(5)</td>
<td>C(19)-C(18)-C(25)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.523(5)</td>
<td>C(19)-C(18)-Pt</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.524(5)</td>
<td>C(25)-C(18)-Pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(20)-C(19)-C(18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(19)-C(20)-C(21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(20)-C(21)-C(22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(22)-C(21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(22)-Pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(21)-C(22)-Pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(22)-C(23)-C(24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(22)-C(23)-Pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(24)-C(23)-Pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(24)-C(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(24)-C(25)-C(18)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length [Å]</td>
<td>Angle [°]</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Pt-N(2)</td>
<td>2.003(2)</td>
<td>C(21)-H(21A)</td>
</tr>
<tr>
<td>Pt-C(18)</td>
<td>2.037(3)</td>
<td>C(21)-H(21B)</td>
</tr>
<tr>
<td>Pt-C(22)</td>
<td>2.115(5)</td>
<td>C(22)-C(23)</td>
</tr>
<tr>
<td>Pt-N(1)</td>
<td>2.126(2)</td>
<td>C(22)-H(22)</td>
</tr>
<tr>
<td>Pt-C(23)</td>
<td>2.141(3)</td>
<td>C(23)-C(24)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.329(4)</td>
<td>C(23)-H(23)</td>
</tr>
<tr>
<td>N(1)-C(9)</td>
<td>1.372(4)</td>
<td>C(24)-C(25)</td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.375(4)</td>
<td>C(24)-H(24A)</td>
</tr>
<tr>
<td>N(2)-C(10)</td>
<td>1.429(4)</td>
<td>C(24)-H(24B)</td>
</tr>
<tr>
<td>N(3)-C(15)</td>
<td>1.419(4)</td>
<td>C(25)-H(25A)</td>
</tr>
<tr>
<td>N(3)-C(16)</td>
<td>1.459(4)</td>
<td>C(25)-H(25B)</td>
</tr>
<tr>
<td>N(3)-C(17)</td>
<td>1.461(4)</td>
<td>N(2)-Pt-C(18)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.393(5)</td>
<td>N(2)-Pt-C(22)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.88(3)</td>
<td>C(18)-Pt-C(22)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.361(5)</td>
<td>N(2)-Pt-N(1)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.86(3)</td>
<td>C(18)-Pt-N(1)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.424(5)</td>
<td>C(22)-Pt-N(1)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.96(3)</td>
<td>N(2)-Pt-C(23)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.406(5)</td>
<td>C(18)-Pt-C(23)</td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.413(4)</td>
<td>C(22)-Pt-C(23)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.372(5)</td>
<td>N(1)-Pt-C(23)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.91(3)</td>
<td>C(1)-N(1)-C(9)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.397(4)</td>
<td>C(1)-N(1)-Pt</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.97(3)</td>
<td>C(9)-N(1)-Pt</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.390(4)</td>
<td>C(8)-N(2)-C(10)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>1.07(4)</td>
<td>C(8)-N(2)-Pt</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.431(4)</td>
<td>C(10)-N(2)-Pt</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.393(4)</td>
<td>C(15)-N(3)-C(16)</td>
</tr>
<tr>
<td>C(10)-C(15)</td>
<td>1.407(4)</td>
<td>C(15)-N(3)-C(17)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.384(4)</td>
<td>C(16)-N(3)-C(17)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.97(3)</td>
<td>N(1)-C(1)-C(2)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.374(5)</td>
<td>N(1)-C(1)-H(1)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>1.03(5)</td>
<td>C(2)-C(1)-H(1)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.380(5)</td>
<td>C(3)-C(2)-C(11)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.86(3)</td>
<td>C(3)-C(2)-H(2)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.395(4)</td>
<td>C(1)-C(2)-H(2)</td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>0.90(3)</td>
<td>C(2)-C(3)-C(4)</td>
</tr>
<tr>
<td>C(16)-H(16A)</td>
<td>1.08(4)</td>
<td>C(2)-C(3)-H(3)</td>
</tr>
<tr>
<td>C(16)-H(16B)</td>
<td>1.00(3)</td>
<td>C(4)-C(3)-H(3)</td>
</tr>
<tr>
<td>C(16)-H(16C)</td>
<td>0.94(3)</td>
<td>C(5)-C(4)-C(9)</td>
</tr>
<tr>
<td>C(17)-H(17A)</td>
<td>0.92(3)</td>
<td>C(5)-C(4)-C(3)</td>
</tr>
<tr>
<td>C(17)-H(17B)</td>
<td>0.96(4)</td>
<td>C(9)-C(4)-C(3)</td>
</tr>
<tr>
<td>C(17)-H(17C)</td>
<td>1.489(5)</td>
<td>C(6)-C(5)-C(4)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>1.537(5)</td>
<td>C(6)-C(5)-H(5)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>0.91(3)</td>
<td>C(4)-C(5)-H(5)</td>
</tr>
<tr>
<td>C(19)-H(19)</td>
<td>1.324(5)</td>
<td>C(5)-C(6)-C(7)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>0.99(3)</td>
<td>C(5)-C(6)-H(6)</td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>1.484(5)</td>
<td>C(7)-C(6)-H(6)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>0.95(3)</td>
<td>C(8)-C(7)-C(6)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.509(5)</td>
<td>C(8)-C(7)-H(7)</td>
</tr>
</tbody>
</table>
C(6)-C(7)-H(7) 120.9(19) H(21A)-C(21)-H(21B) 100(3) H(21A)-C(21)-H(21B) 100(3)
N(2)-C(8)-C(7) 127.2(3) C(23)-C(22)-C(21) 72.6(3) C(23)-C(22)-C(21) 72.6(3)
N(2)-C(8)-C(9) 116.0(3) C(23)-C(22)-Pt 71.88(19) C(23)-C(22)-Pt 71.88(19)
C(7)-C(8)-C(9) 116.8(3) C(21)-C(22)-Pt 116.1(2) C(21)-C(22)-Pt 116.1(2)
N(1)-C(9)-C(4) 122.1(3) C(23)-C(22)-H(22) 115.7(18) C(23)-C(22)-H(22) 115.7(18)
N(1)-C(9)-C(8) 116.3(3) Pt-C(22)-H(22) 113.1(18) Pt-C(22)-H(22) 113.1(18)
C(4)-C(9)-C(8) 121.6(3) C(22)-C(23)-C(24) 105.3(18) C(22)-C(23)-C(24) 105.3(18)
C(11)-C(10)-C(15) 119.4(3) C(22)-C(23)-Pt 123.9(3) C(22)-C(23)-Pt 123.9(3)
C(11)-C(10)-N(2) 118.0(3) C(24)-C(23)-Pt 69.86(18) C(24)-C(23)-Pt 69.86(18)
C(15)-C(10)-N(2) 122.5(3) C(22)-C(23)-H(23) 110.9(2) C(22)-C(23)-H(23) 110.9(2)
C(12)-C(11)-C(10) 121.5(3) C(24)-C(23)-H(23) 117(2) C(24)-C(23)-H(23) 117(2)
C(12)-C(11)-H(11) 115.2(18) Pt-C(23)-H(23) 116.2(2) Pt-C(23)-H(23) 116.2(2)
C(10)-C(11)-H(11) 123.3(18) C(23)-C(24)-C(25) 105(2) C(23)-C(24)-C(25) 105(2)
C(13)-C(12)-C(11) 119.0(3) C(23)-C(24)-H(24A) 109.7(3) C(23)-C(24)-H(24A) 109.7(3)
C(13)-C(12)-H(12) 122.8(17) C(25)-C(24)-H(24A) 111.9(19) C(25)-C(24)-H(24A) 111.9(19)
C(11)-C(12)-H(12) 117.9(17) C(23)-C(24)-H(24B) 111(2) C(23)-C(24)-H(24B) 111(2)
C(12)-C(13)-C(14) 120.6(3) H(24A)-C(24)-H(24B) 110.2(2) H(24A)-C(24)-H(24B) 110.2(2)
C(12)-C(13)-H(13) 123(2) C(24)-C(25)-C(18) 107(3) C(24)-C(25)-C(18) 107(3)
C(13)-C(14)-H(14) 123(2) C(24)-C(25)-H(25B) 112(2) C(24)-C(25)-H(25B) 112(2)
C(14)-C(15)-N(3) 122.8(3) C(19)-C(18)-Pt 116.2(2) C(19)-C(18)-Pt 116.2(2)
C(10)-C(15)-N(3) 119.1(3) C(25)-C(18)-Pt 105.9(2) C(25)-C(18)-Pt 105.9(2)
N(3)-C(16)-H(16A) 110(2) C(19)-C(18)-H(18) 109(2) C(19)-C(18)-H(18) 109(2)
N(3)-C(16)-H(16B) 114(2) C(25)-C(18)-H(18) 109(2) C(25)-C(18)-H(18) 109(2)
H(16A)-C(16)-H(16B) 108(3) Pt-C(18)-H(18) 107(2) Pt-C(18)-H(18) 107(2)
N(3)-C(16)-H(16C) 110.0(18) C(20)-C(19)-C(18) 126.6(3) C(20)-C(19)-C(18) 126.6(3)
H(16A)-C(16)-H(16C) 105(3) C(20)-C(19)-H(19) 117.6(19) C(20)-C(19)-H(19) 117.6(19)
N(3)-C(17)-H(17A) 111.8(17) C(19)-C(20)-C(21) 128.4(3) C(19)-C(20)-C(21) 128.4(3)
N(3)-C(17)-H(17B) 109.2(18) C(19)-C(20)-H(20) 119(2) C(19)-C(20)-H(20) 119(2)
H(17A)-C(17)-H(17B) 112(3) C(21)-C(20)-H(20) 113(2) C(21)-C(20)-H(20) 113(2)
N(3)-C(17)-H(17C) 110(2) C(20)-C(21)-C(22) 120.0(3) C(20)-C(21)-C(22) 120.0(3)
H(17A)-C(17)-H(17C) 108(3) C(20)-C(21)-H(21A) 106(2) C(20)-C(21)-H(21A) 106(2)
H(17B)-C(17)-H(17C) 107(3) C(22)-C(21)-H(21A) 112(2) C(22)-C(21)-H(21A) 112(2)
C(19)-C(18)-C(25) 109.4(3) C(20)-C(21)-H(21B) 109(2) C(20)-C(21)-H(21B) 109(2)
Table 5. Anisotropic displacement parameters (Å² x 10⁶) for JCP09. The anisotropic displacement factor exponent takes the form: -2\pi² [h² a² U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₁₄</th>
<th>U₁₅</th>
<th>U₁₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>174(1)</td>
<td>108(1)</td>
<td>174(1)</td>
<td>55(1)</td>
<td>-3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>145(12)</td>
<td>116(13)</td>
<td>209(14)</td>
<td>21(11)</td>
<td>25(11)</td>
<td>1(10)</td>
</tr>
<tr>
<td>N(2)</td>
<td>196(13)</td>
<td>82(12)</td>
<td>196(14)</td>
<td>55(11)</td>
<td>-10(11)</td>
<td>-4(10)</td>
</tr>
<tr>
<td>N(3)</td>
<td>195(13)</td>
<td>158(14)</td>
<td>259(15)</td>
<td>101(12)</td>
<td>-4(11)</td>
<td>3(11)</td>
</tr>
<tr>
<td>C(1)</td>
<td>208(16)</td>
<td>152(17)</td>
<td>275(19)</td>
<td>73(15)</td>
<td>56(14)</td>
<td>12(13)</td>
</tr>
<tr>
<td>C(2)</td>
<td>258(18)</td>
<td>119(17)</td>
<td>300(20)</td>
<td>-6(15)</td>
<td>75(15)</td>
<td>-13(14)</td>
</tr>
<tr>
<td>C(3)</td>
<td>191(16)</td>
<td>253(19)</td>
<td>205(18)</td>
<td>-1(15)</td>
<td>44(14)</td>
<td>-80(14)</td>
</tr>
<tr>
<td>C(4)</td>
<td>162(15)</td>
<td>196(17)</td>
<td>186(17)</td>
<td>8(13)</td>
<td>29(13)</td>
<td>-57(13)</td>
</tr>
<tr>
<td>C(5)</td>
<td>195(16)</td>
<td>300(20)</td>
<td>159(17)</td>
<td>62(15)</td>
<td>-27(14)</td>
<td>-77(14)</td>
</tr>
<tr>
<td>C(6)</td>
<td>181(16)</td>
<td>288(19)</td>
<td>258(19)</td>
<td>150(16)</td>
<td>-31(14)</td>
<td>-26(14)</td>
</tr>
<tr>
<td>C(7)</td>
<td>157(15)</td>
<td>193(17)</td>
<td>210(17)</td>
<td>74(14)</td>
<td>-16(13)</td>
<td>-33(13)</td>
</tr>
<tr>
<td>C(8)</td>
<td>136(14)</td>
<td>161(16)</td>
<td>178(16)</td>
<td>59(13)</td>
<td>-5(12)</td>
<td>-47(12)</td>
</tr>
<tr>
<td>C(9)</td>
<td>129(14)</td>
<td>164(16)</td>
<td>220(17)</td>
<td>72(13)</td>
<td>21(12)</td>
<td>-17(12)</td>
</tr>
<tr>
<td>C(10)</td>
<td>179(15)</td>
<td>151(16)</td>
<td>166(16)</td>
<td>35(13)</td>
<td>-50(12)</td>
<td>18(12)</td>
</tr>
<tr>
<td>C(11)</td>
<td>213(16)</td>
<td>192(17)</td>
<td>207(17)</td>
<td>85(14)</td>
<td>-33(13)</td>
<td>-17(14)</td>
</tr>
<tr>
<td>C(12)</td>
<td>219(17)</td>
<td>255(19)</td>
<td>202(18)</td>
<td>48(15)</td>
<td>-11(14)</td>
<td>44(14)</td>
</tr>
<tr>
<td>C(13)</td>
<td>311(19)</td>
<td>150(18)</td>
<td>209(18)</td>
<td>2(14)</td>
<td>-59(15)</td>
<td>68(15)</td>
</tr>
<tr>
<td>C(14)</td>
<td>249(17)</td>
<td>120(16)</td>
<td>270(19)</td>
<td>82(14)</td>
<td>-72(14)</td>
<td>-11(14)</td>
</tr>
<tr>
<td>C(15)</td>
<td>271(19)</td>
<td>163(16)</td>
<td>169(16)</td>
<td>62(13)</td>
<td>-55(12)</td>
<td>-21(12)</td>
</tr>
<tr>
<td>C(16)</td>
<td>271(19)</td>
<td>250(20)</td>
<td>390(20)</td>
<td>189(18)</td>
<td>21(18)</td>
<td>21(16)</td>
</tr>
<tr>
<td>C(17)</td>
<td>233(18)</td>
<td>240(20)</td>
<td>340(20)</td>
<td>143(18)</td>
<td>20(17)</td>
<td>32(15)</td>
</tr>
<tr>
<td>C(18)</td>
<td>248(17)</td>
<td>140(17)</td>
<td>229(18)</td>
<td>66(14)</td>
<td>-1(14)</td>
<td>17(14)</td>
</tr>
<tr>
<td>C(19)</td>
<td>270(18)</td>
<td>219(18)</td>
<td>248(19)</td>
<td>71(15)</td>
<td>22(15)</td>
<td>33(15)</td>
</tr>
<tr>
<td>C(20)</td>
<td>279(18)</td>
<td>270(20)</td>
<td>236(19)</td>
<td>80(16)</td>
<td>59(15)</td>
<td>33(15)</td>
</tr>
<tr>
<td>C(21)</td>
<td>310(20)</td>
<td>215(19)</td>
<td>280(20)</td>
<td>136(16)</td>
<td>26(16)</td>
<td>-15(16)</td>
</tr>
<tr>
<td>C(22)</td>
<td>246(17)</td>
<td>126(16)</td>
<td>246(18)</td>
<td>61(14)</td>
<td>-7(14)</td>
<td>31(14)</td>
</tr>
<tr>
<td>C(23)</td>
<td>271(18)</td>
<td>192(18)</td>
<td>231(19)</td>
<td>96(15)</td>
<td>41(15)</td>
<td>87(15)</td>
</tr>
<tr>
<td>C(24)</td>
<td>189(18)</td>
<td>300(20)</td>
<td>280(20)</td>
<td>131(16)</td>
<td>2(15)</td>
<td>45(15)</td>
</tr>
<tr>
<td>C(25)</td>
<td>241(17)</td>
<td>227(18)</td>
<td>228(19)</td>
<td>121(15)</td>
<td>-51(15)</td>
<td>-43(14)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for JCP09.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U\textsubscript{iso}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>1630(40)</td>
<td>11060(30)</td>
<td>4220(20)</td>
<td>6(7)</td>
</tr>
<tr>
<td>H(2)</td>
<td>2470(40)</td>
<td>12140(30)</td>
<td>5930(20)</td>
<td>7(7)</td>
</tr>
<tr>
<td>H(3)</td>
<td>3710(40)</td>
<td>11130(30)</td>
<td>7040(30)</td>
<td>27(9)</td>
</tr>
<tr>
<td>H(5)</td>
<td>4430(40)</td>
<td>8940(30)</td>
<td>7170(30)</td>
<td>19(9)</td>
</tr>
<tr>
<td>H(6)</td>
<td>4820(40)</td>
<td>6710(30)</td>
<td>6350(20)</td>
<td>19(8)</td>
</tr>
<tr>
<td>H(7)</td>
<td>3970(50)</td>
<td>5640(40)</td>
<td>4520(30)</td>
<td>36(10)</td>
</tr>
<tr>
<td>H(11)</td>
<td>4820(40)</td>
<td>6230(30)</td>
<td>1820(20)</td>
<td>15(8)</td>
</tr>
<tr>
<td>H(12)</td>
<td>5510(40)</td>
<td>4240(30)</td>
<td>800(20)</td>
<td>19(8)</td>
</tr>
<tr>
<td>H(13)</td>
<td>3960(40)</td>
<td>2380(30)</td>
<td>1090(30)</td>
<td>22(9)</td>
</tr>
<tr>
<td>H(14)</td>
<td>1810(40)</td>
<td>2530(30)</td>
<td>2190(20)</td>
<td>20(9)</td>
</tr>
<tr>
<td>H(16A)</td>
<td>-280(40)</td>
<td>3680(30)</td>
<td>4420(30)</td>
<td>21(9)</td>
</tr>
<tr>
<td>H(16B)</td>
<td>-350(50)</td>
<td>2580(40)</td>
<td>3270(30)</td>
<td>46(11)</td>
</tr>
<tr>
<td>H(16C)</td>
<td>1510(40)</td>
<td>3220(30)</td>
<td>4110(20)</td>
<td>14(8)</td>
</tr>
<tr>
<td>H(17A)</td>
<td>-780(40)</td>
<td>5740(30)</td>
<td>2930(20)</td>
<td>6(7)</td>
</tr>
<tr>
<td>H(17B)</td>
<td>-1710(40)</td>
<td>5130(30)</td>
<td>3670(20)</td>
<td>8(8)</td>
</tr>
<tr>
<td>H(17C)</td>
<td>-1610(50)</td>
<td>4290(40)</td>
<td>2550(30)</td>
<td>32(10)</td>
</tr>
<tr>
<td>H(18)</td>
<td>700(40)</td>
<td>6020(30)</td>
<td>1250(20)</td>
<td>18(8)</td>
</tr>
<tr>
<td>H(19)</td>
<td>1590(40)</td>
<td>6100(30)</td>
<td>-300(30)</td>
<td>20(8)</td>
</tr>
<tr>
<td>H(20)</td>
<td>2710(40)</td>
<td>7980(30)</td>
<td>-510(30)</td>
<td>27(9)</td>
</tr>
<tr>
<td>H(21A)</td>
<td>3660(50)</td>
<td>9670(40)</td>
<td>1000(30)</td>
<td>35(10)</td>
</tr>
<tr>
<td>H(21B)</td>
<td>2050(40)</td>
<td>9920(30)</td>
<td>550(20)</td>
<td>16(8)</td>
</tr>
<tr>
<td>H(22)</td>
<td>2130(40)</td>
<td>10390(30)</td>
<td>2420(20)</td>
<td>6(7)</td>
</tr>
<tr>
<td>H(23)</td>
<td>-590(40)</td>
<td>9740(30)</td>
<td>2500(20)</td>
<td>13(9)</td>
</tr>
<tr>
<td>H(24A)</td>
<td>-1230(40)</td>
<td>8620(30)</td>
<td>480(30)</td>
<td>20(9)</td>
</tr>
<tr>
<td>H(24B)</td>
<td>-2560(50)</td>
<td>8610(30)</td>
<td>1210(30)</td>
<td>27(10)</td>
</tr>
<tr>
<td>H(25A)</td>
<td>-1960(40)</td>
<td>6420(30)</td>
<td>300(20)</td>
<td>18(9)</td>
</tr>
<tr>
<td>H(25B)</td>
<td>-2000(40)</td>
<td>6820(30)</td>
<td>1490(30)</td>
<td>28(10)</td>
</tr>
</tbody>
</table>
Crystal Structure Analysis of:

(3,5-Me₂Ph-QA)Pt(1,2-η²-6-σ-cycloocta-1,4-dienyl) 11- SDB04

Contents

Table 1. Crystal data
Figures Figures for publication
Table 2. Atomic Coordinates
Table 3. Selected bond distances and angles
Table 4. Full bond distances and angles (for deposit)
Table 5. Anisotropic displacement parameters
Table 6. Hydrogen atomic coordinates
Table 7. Observed and calculated structure factors (for deposit)

Note: The crystallographic data has been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 158864. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 158864."
Table 1. Crystal data and structure refinement for SDB04.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{22}H_{30}N_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>549.57</td>
</tr>
<tr>
<td>Crystallization Solvent</td>
<td>Unknown</td>
</tr>
<tr>
<td>Crystal Habit</td>
<td>Prismatic</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.29 x 0.13 x 0.07 mm³</td>
</tr>
<tr>
<td>Crystal color</td>
<td>Red</td>
</tr>
<tr>
<td>Preliminary Photos</td>
<td>Rotation</td>
</tr>
<tr>
<td>Type of diffractometer</td>
<td>CCD area detector</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å MoKα</td>
</tr>
<tr>
<td>Data Collection Temperature</td>
<td>98(2) K</td>
</tr>
<tr>
<td>θ range for 20947 reflections used in lattice determination</td>
<td>2.43 to 28.46°</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.2884(7) Å</td>
</tr>
<tr>
<td></td>
<td>b = 11.4127(9) Å</td>
</tr>
<tr>
<td></td>
<td>c = 19.3116(15) Å</td>
</tr>
<tr>
<td></td>
<td>2047.1(3) Å³</td>
</tr>
<tr>
<td>Volume</td>
<td>4</td>
</tr>
<tr>
<td>Z</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Crystal system</td>
<td>P2_12_1_2_1</td>
</tr>
<tr>
<td>Space group</td>
<td>1.783 Mg/m³</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1072</td>
</tr>
<tr>
<td>F(000)</td>
<td>Bruker SMART</td>
</tr>
<tr>
<td>Data collection program</td>
<td>2.07 to 28.48°</td>
</tr>
<tr>
<td>96.4 %</td>
<td></td>
</tr>
<tr>
<td>Completeness to θ = 28.48°</td>
<td>-12 ≤ h ≤ 12, -14 ≤ k ≤ 15, -25 ≤ l ≤ 25</td>
</tr>
<tr>
<td>Index ranges</td>
<td>ω scans at 5 φ settings</td>
</tr>
<tr>
<td>Data collection scan type</td>
<td>Bruker SAINT v6.2</td>
</tr>
<tr>
<td>Data reduction program</td>
<td>30635</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4878 [R_int = 0.0495]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6.867 mm⁻¹</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>SADABSS</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>1.000000 and 0.694562</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (cont.)

Structure solution and Refinement

<table>
<thead>
<tr>
<th>Structure solution program</th>
<th>SHELXS-97 (Sheldrick, 1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary solution method</td>
<td>Patterson method</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>SHELXL-97 (Sheldrick, 1997)</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4878 / 0 / 335</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Mixed, see details</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.258</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I), 4646 reflections]</td>
<td>R1 = 0.0192, wR2 = 0.0344</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0210, wR2 = 0.0347</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>w=1/σ^2(Fo^2)</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.013</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.008(6)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.357 and -0.496 e.Å^-3</td>
</tr>
</tbody>
</table>

Special Refinement Details

The hydrogen atoms of the methyl groups were refined as riding atoms with the torsion angles about the methyl C-C bond free to rotate. All other hydrogen atoms were refined without restraints.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2, conventional R-factors (R) are based on F, with F set to zero for negative F^2. The threshold expression of F^2 > 2σ(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\overline{\Delta}^2 x 10^3$) for SDB04. U_{eq} is defined as the trace of the orthogonalized $\overline{\Delta}^2$ tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)</td>
<td>5908(1)</td>
<td>4060(1)</td>
<td>842(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>6224(3)</td>
<td>3397(2)</td>
<td>-180(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>4608(3)</td>
<td>5131(2)</td>
<td>304(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7116(4)</td>
<td>2584(3)</td>
<td>-402(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>7248(4)</td>
<td>2285(3)</td>
<td>-1099(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6408(4)</td>
<td>2827(3)</td>
<td>-1577(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>5423(4)</td>
<td>3716(3)</td>
<td>-1369(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>4520(4)</td>
<td>4334(3)</td>
<td>-1822(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>3643(4)</td>
<td>5196(3)</td>
<td>-1565(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3618(3)</td>
<td>5484(3)</td>
<td>-863(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4499(3)</td>
<td>4910(3)</td>
<td>-389(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>5393(3)</td>
<td>3988(3)</td>
<td>-655(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>3822(3)</td>
<td>6122(3)</td>
<td>555(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4412(4)</td>
<td>7236(3)</td>
<td>532(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3651(3)</td>
<td>8216(3)</td>
<td>744(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2260(4)</td>
<td>8053(3)</td>
<td>1005(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>1654(4)</td>
<td>6953(3)</td>
<td>1040(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2443(3)</td>
<td>5997(3)</td>
<td>813(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>4278(4)</td>
<td>9431(3)</td>
<td>691(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>1214(4)</td>
<td>6776(4)</td>
<td>1288(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>5616(3)</td>
<td>4838(3)</td>
<td>1787(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>4840(3)</td>
<td>4110(4)</td>
<td>2305(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>4931(4)</td>
<td>2963(3)</td>
<td>2397(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>5743(4)</td>
<td>2100(3)</td>
<td>1965(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>6614(4)</td>
<td>2516(3)</td>
<td>1353(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>7709(4)</td>
<td>3352(3)</td>
<td>1376(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>8050(4)</td>
<td>4038(4)</td>
<td>2025(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>7138(4)</td>
<td>5141(3)</td>
<td>2061(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance [Å]</td>
<td>Angle [°]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-N(2)</td>
<td>2.008(3)</td>
<td>N(2)-Pt(1)-C(18)</td>
<td>96.77(12)</td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(18)</td>
<td>2.048(3)</td>
<td>N(2)-Pt(1)-C(22)</td>
<td>158.63(12)</td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(22)</td>
<td>2.123(3)</td>
<td>C(18)-Pt(1)-C(22)</td>
<td>89.25(14)</td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(23)</td>
<td>2.124(3)</td>
<td>N(2)-Pt(1)-C(23)</td>
<td>162.98(13)</td>
<td></td>
</tr>
<tr>
<td>Pt(1)-N(1)</td>
<td>2.135(3)</td>
<td>C(18)-Pt(1)-C(23)</td>
<td>80.62(14)</td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.486(5)</td>
<td>C(22)-Pt(1)-C(23)</td>
<td>38.35(13)</td>
<td></td>
</tr>
<tr>
<td>C(18)-C(25)</td>
<td>1.549(5)</td>
<td>N(2)-Pt(1)-N(1)</td>
<td>79.63(11)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.324(6)</td>
<td>C(18)-Pt(1)-N(1)</td>
<td>175.07(13)</td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.495(5)</td>
<td>C(22)-Pt(1)-N(1)</td>
<td>95.31(12)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.508(5)</td>
<td>C(23)-Pt(1)-N(1)</td>
<td>101.83(12)</td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.395(5)</td>
<td>C(19)-C(18)-C(25)</td>
<td>109.7(3)</td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.512(5)</td>
<td>C(19)-C(18)-Pt(1)</td>
<td>114.9(2)</td>
<td></td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.519(5)</td>
<td>C(20)-C(19)-C(18)</td>
<td>127.8(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(19)-C(20)-C(21)</td>
<td>127.5(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(20)-C(21)-C(22)</td>
<td>120.0(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(22)-C(21)</td>
<td>125.5(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(22)-Pt(1)</td>
<td>70.9(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(21)-C(22)-Pt(1)</td>
<td>117.4(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(22)-C(23)-C(24)</td>
<td>122.2(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(22)-C(23)-Pt(1)</td>
<td>70.8(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(24)-C(23)-Pt(1)</td>
<td>111.7(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(23)-C(24)-C(25)</td>
<td>110.5(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(24)-C(25)-C(18)</td>
<td>108.0(3)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [°] for SDB04.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Distance</th>
<th>Bond</th>
<th>Length/Distance</th>
<th>Bond</th>
<th>Length/Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)-N(2)</td>
<td>2.008(3)</td>
<td>C(22)-C(23)</td>
<td>1.395(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(18)</td>
<td>2.048(3)</td>
<td>C(22)-H(22)</td>
<td>0.91(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(22)</td>
<td>2.123(3)</td>
<td>C(23)-C(24)</td>
<td>1.512(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(23)</td>
<td>2.124(3)</td>
<td>C(23)-H(23)</td>
<td>0.80(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-N(1)</td>
<td>2.135(3)</td>
<td>C(24)-C(25)</td>
<td>1.519(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.316(4)</td>
<td>C(24)-H(24A)</td>
<td>0.92(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(9)</td>
<td>1.375(4)</td>
<td>C(24)-H(24B)</td>
<td>0.95(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.367(4)</td>
<td>C(25)-H(25A)</td>
<td>0.98(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(10)</td>
<td>1.431(4)</td>
<td>C(25)-H(25B)</td>
<td>0.99(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.393(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.81(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.357(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.80(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.424(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.99(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.403(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.414(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.371(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.80(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.395(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.89(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.391(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.86(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.435(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(15)</td>
<td>1.382(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.385(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.385(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.74(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.399(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(16)</td>
<td>1.508(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.378(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.90(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.385(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(17)</td>
<td>1.515(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.80(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16A)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16B)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-H(16C)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-H(17A)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-H(17B)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-H(17C)</td>
<td>0.9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.486(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(25)</td>
<td>1.549(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.84(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.324(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-H(19)</td>
<td>0.89(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.495(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>0.88(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.508(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-H(21A)</td>
<td>0.90(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-H(21B)</td>
<td>0.84(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-Pt(1)-C(18)</td>
<td>96.77(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-Pt(1)-C(22)</td>
<td>158.63(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(18)-Pt(1)-C(22)</td>
<td>89.25(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-Pt(1)-C(23)</td>
<td>162.98(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(18)-Pt(1)-C(23)</td>
<td>80.62(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-Pt(1)-N(1)</td>
<td>38.35(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(18)-Pt(1)-N(1)</td>
<td>79.63(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(22)-Pt(1)-C(23)</td>
<td>101.83(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(1)-N(1)-C(9)</td>
<td>118.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(1)-N(1)-Pt(1)</td>
<td>129.7(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(9)-N(1)-Pt(1)</td>
<td>111.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-N(2)-C(10)</td>
<td>116.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-N(2)-Pt(1)</td>
<td>116.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(10)-N(2)-Pt(1)</td>
<td>127.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)-C(1)-C(2)</td>
<td>122.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)-C(1)-H(1)</td>
<td>114(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(2)-C(1)-H(1)</td>
<td>123(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(3)-C(2)-C(1)</td>
<td>119.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(3)-C(2)-H(2)</td>
<td>121(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(1)-C(2)-H(2)</td>
<td>120(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(2)-C(3)-C(4)</td>
<td>120.2(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(2)-C(3)-H(3)</td>
<td>120(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(4)-C(3)-H(3)</td>
<td>119(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(5)-C(4)-C(9)</td>
<td>119.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(5)-C(4)-C(9)</td>
<td>124.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(5)-C(6)-C(7)</td>
<td>116.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(5)-C(6)-H(6)</td>
<td>119(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(7)-C(6)-H(6)</td>
<td>119(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-C(7)-C(6)</td>
<td>121.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(8)-C(7)-H(7)</td>
<td>118(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(6)-C(7)-H(7)</td>
<td>121(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(6)-C(7)-H(7)</td>
<td>126.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-C(8)-C(9)</td>
<td>116.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-C(8)-C(9)</td>
<td>116.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)-C(9)-C(4)</td>
<td>122.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-C(9)-C(8)</td>
<td>116.5(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(9)-C(8)</td>
<td>121.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(10)-C(11)</td>
<td>118.2(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(10)-N(2)</td>
<td>120.9(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(10)-N(2)</td>
<td>120.9(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)-C(12)</td>
<td>122.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)-H(11)</td>
<td>117(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(11)-H(11)</td>
<td>120(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>118.1(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(16)</td>
<td>121.7(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(12)-C(16)</td>
<td>120.2(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(13)-C(12)</td>
<td>121.1(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>113(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>126(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(17)</td>
<td>119.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(14)-C(17)</td>
<td>121.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(14)-C(14)</td>
<td>119.5(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(15)-C(14)</td>
<td>121.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(15)-H(15)</td>
<td>121(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-H(15)</td>
<td>117(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(16)-H(16A)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(16)-H(16B)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16A)-C(16)-H(16B)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(16)-H(16C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16A)-C(16)-H(16C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16B)-C(16)-H(16C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(17)-H(17A)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(17)-H(17B)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17A)-C(17)-H(17B)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(17)-H(17C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17A)-C(17)-H(17C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17B)-C(17)-H(17C)</td>
<td>109.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-C(25)</td>
<td>109.7(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-Pt(1)</td>
<td>114.9(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(18)-Pt(1)</td>
<td>106.3(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-H(18)</td>
<td>110(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(18)-H(18)</td>
<td>105(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)-C(18)-H(18)</td>
<td>110(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(19)-C(18)</td>
<td>127.8(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(19)-H(19)</td>
<td>114(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)-H(19)</td>
<td>118(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)-C(21)</td>
<td>127.5(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)-H(20)</td>
<td>114(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(20)-H(20)</td>
<td>119(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)-C(22)</td>
<td>120.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)-H(21A)</td>
<td>110(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(21)-H(21A)</td>
<td>105(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)-H(21B)</td>
<td>106(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(21)-H(21B)</td>
<td>109(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(21A)-C(21)-H(21B)</td>
<td>106(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(22)-C(21)</td>
<td>125.5(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(22)-Pt(1)</td>
<td>70.9(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-Pt(1)</td>
<td>117.4(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(22)-H(22)</td>
<td>121(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S81