composed of passive resistors or diode connected transistors can be implemented.

For practical implementations of the circuit of Fig. 1, the condition $\beta_1 = n \beta_2$ indicates that transistor M1 should be composed of n^2 parallel-connected transistors with (W/L) ratio identical to that of M2. Thus, the matching in transconductance parameters and threshold voltages of transistors is improved. Needless to say, an alternative to the above equation consists in using identical M1 and M2 transistors and a current-mirror gain of n^{-2}. On the other hand, to fulfill the relationship $V_4 = V_2/n$, voltage dividers made up of either passive resistors or diode connected transistors can be implemented.

Note that the proposed circuit can maintain a low current level in transistors M1 and M2 to reduce their λ effects, its behaviour can be well represented by the ideal quadratic law, and, simultaneously, has high output drive capability.

A $-nV_2$ extractor can be derived from Fig. 1a with minor modifications. Practically the negative level shifter M3-M4 must be substituted by the positive level shifter shown in Fig. 1b. Following a similar procedure as above, the output voltage generated by the resulting circuit extractor is exactly equal to $(1 - n) V_2$.

A very low impedance exists at output node B of any of the above circuits, because the low output resistance $(1/g_{m3})$ of the source follower appears divided by the gain of the feedback loop. Hence, the output resistance of the extractor results in the order of $(1/g_{m3})$.

The influence on the circuit performance of transistor second order effects such as mobility degradation, channel length modulation and device mismatching originate deviations of the output voltage from the theoretical result given by eqn. 2. However, if these effects on equations of I_1 and I_2 are included separately, it can be demonstrated that they do not impose more than a few millivolts of discrepancy for typical parameters values [3].

Experimental results: We built the circuit shown in Fig. 1a for $n = 2$ using commercial matched MOS transistor array TC4007. The implemented voltage divider consisted of two series diode-connected and matched transistors between V_{DD} and V_{SS}. Transistor M4 was chosen with an equivalent (W/L) ratio five times larger than that of its M2 transistor counterpart. The circuit was measured and Fig. 2 shows the experimental results obtained for different grounded resistor loads connected to node B. The total supply voltage was 8V As observed, an almost constant V_4 value of 1.472 V was provided over this load resistor range. In addition, to examine the validity of these results, we have determined the threshold voltage by means of the classical linear regression method as well. For it, we recorded the I_{DS} of a simple transistor at different V_{GS} voltages. Fig. 3 plots the square root of these measurements. The extrapolated threshold voltage resulting, which would be the crossing of the straight line fit with the horizontal axis, was 1.47243 V showing very good agreement with the voltage generated by the V_2 extractor without any measurement or calculation. The coefficient of the correlation provided by the fitting routine was 0.9997.

Conclusions: A $\pm nV_2$ extractor has been presented. Its high accuracy and drive capability have been demonstrated. These features of the proposed circuit should be useful not only for circuit engineers, but also for process engineers.

Acknowledgment: This work was supported by CICYT (Spain) under Grant TIC-91-1059.

11th January 1993

Reference

NON-VOLATILE MEMORY CHARACTERISTICS OF SUBMICROMETRE HALL STRUCTURES FABRICATED IN EPITAXIAL FERROMAGNETIC MnAl FILMS ON GaAs

Indexing terms: Epitaxy and epitaxial growth, Memories, Thin-film devices, Magnetic devices and materials

Hall-effect structures with submicrometre linewidths ($< 0.3 \mu m$) have been fabricated in ferromagnetic thin films of Mn$_{77}$Al$_{23}$ which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteresis behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, non-volatile storage of digital information.

Ferromagnetic thin films on semiconductor substrates have recently been used to fabricate non-volatile memories based on their anisotropic magnetoresistive properties [1]. The idea of using the state of the magnetisation in single domain ferromagnetic thin film structures to store binary information is very appealing because of, for example, the inherent non-volatility and hysteretic behaviour. A ferromagnetic thin film with the easy axis of magnetisation normal to the substrate surface will exhibit an extraordinary Hall effect (EHE) when an in-plane current is applied, caused by anisotropic scattering at magnetic moments in the film [2].

Recently, we have demonstrated the molecular beam epitaxial growth and the resulting perpendicular magnetisation
width of \(-300\text{nm}\), fabricated in the ferromagnetic dispersive X-ray analysis has been used to verify the complete removal of MnAl around the small structure. A multilegged Hall bar with line-GaAs layer is deposited on the freshly etched \((\text{MnNi})\text{Al},_{-x}\) chamber coupled to the growth chamber of a Riber 1000. A 140nm thick SrF\(_2\) mask is fabricated by a standard liftoff procedure and Xe milling is used to pattern the ferromagnetic thin film. The milling is carried out in a UHV etching chamber coupled to the growth chamber of a Riber 1000 MBE system. For passivation purposes, a 20nm amorphous GaAs layer is deposited on the freshly etched \((\text{MnNi})\text{Al},_{-x}\) without leaving the vacuum. A multilegged Hall bar with line-width of \(~300\text{nm}\), fabricated in the ferromagnetic \(\text{Mn}_{0.98}\text{Al}_{0.02}\) is shown in the SEM picture of Fig. 2. Energy dispersive X-ray analysis has been used to verify the complete removal of MnAl around the small structure.

![Fig. 2 SEM micrograph of array of multilegged submicrometre Hall structures fabricated in \(\text{Mn}_{0.98}\text{Al}_{0.02}\) AlAs/GaAs heterostructures](image)

![Fig. 3 Room temperature EHE effect generated in \(0.0009\mu\text{m}^3\) ferromagnetic volume indicated by the white circle in Fig. 2](image)

Fig. 1 Room temperature EHE effect in 12 and 5 \(\mu\text{m}\) wide Hall crosses of \(\text{Mn}_{0.98}\text{Al}_{0.02}\) epitaxially grown on AlAs/GaAs applied perpendicular to the sample surface in increments of 10mT and a DC current \(I_{dc}=1\mu\text{A}\) is applied to the Hall bar. An extraordinary Hall voltage results from asymmetric scattering of the carriers at the magnetic sites in the lattice and is many orders of magnitude larger than the Hall voltage generated by the Lorentz force from the external field. The measured \(\rho_{xy}=(7.3\pm0.3)\Omega\text{cm}\) is a materials parameter describing the magnitude of the extraordinary Hall effect. The hysteresis loop is extremely square because the switching to complete saturation occurs within one increment of the applied field, by a domain wall sweeping across the intersection.

The state of the magnetisation in the film can thus be used to store a bit of information [8] with infinite retention time and the information bit can be read nondestructively by sensing the EHE voltage. Writing the information bit then requires the reversal of the magnetisation in the elements and finally, compatibility with existing semiconductor technology. One of the remaining challenges is to find a suit-
able on-chip writing mechanism for these magnetic elements based on for example, Joule heating in combination with a magnetic field from a nearby conductor or current pulse induced domain wall movement [9].

In summary, we have demonstrated submicrometre ferromagnetic structures that can reveal characteristics that are potentially useful for non-volatile memory applications. The readout of these structures can be performed by sensing the extraordinary Hall effect (EHE) voltage, generated by a sense current passed through the perpendicularly magnetised (MnNi)Al layer. The actual storage volume is as small as 0.0009 μm³.

Acknowledgment: J. De Boeck acknowledges partial financial support by NATO.

7th January 1993

Present Address: Interuniversity Microelectronics Center, Kapeldreef 75, B-3001 Leuven, Belgium

* On leave from: Dept. Electr. Eng., The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113, Japan

References

ERRATA

Authors’ corrections

In the third line of the righthand column of p. 1451, the words ‘forward difference for’ should be deleted

The inline equation after eqn. 3 should read:

\[s = \frac{c \Delta t}{\Delta z} \left[\frac{1}{2} + \left(\frac{\Delta s}{2} \right)^{1/2} \right]^{-1} \]

[6]

Additional reference

Printers’ corrections

In eqns. 2 and 3, \(E'_{i-1, j+1/2} \) should read \(E'_{i, j+1} \)