Measurement of the \(B \to X_s \ell^+\ell^- \) Branching Fraction and Search for Direct CP Violation from a Sum of Exclusive Final States

(BABAR Collaboration)
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France

Univeritat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

INFN Sezione di Bari, I-70126 Bari, Italy

Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy

University of Bergen, Institute of Physics, N-5007 Bergen, Norway

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

University of British Columbia, Vancouver, British Columbia, Canada V6 T 1Z1

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090

Novosibirsk State University, Novosibirsk 630090

Novosibirsk State Technical University, Novosibirsk 630092, Russia

University of California at Irvine, Irvine, California 92697, USA

University of California at Riverside, Riverside, California 92521, USA

University of California at Santa Barbara, Santa Barbara, California 93106, USA

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

California Institute of Technology, Pasadena, California 91125, USA

University of Cincinnati, Cincinnati, Ohio 45221, USA

University of Colorado, Boulder, Colorado 80309, USA

Colorado State University, Fort Collins, Colorado 80523, USA

Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

INFN Sezione di Ferrara, I-44122 Ferrara, Italy

INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

INFN Sezione di Genova, I-16146 Genova, Italy

Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy

Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India

Harvard University, Cambridge, Massachusetts 02138, USA

Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany

Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany

Imperial College London, London, SW7 2AZ, United Kingdom

University of Iowa, Iowa City, Iowa 52242, USA

Iowa State University, Ames, Iowa 50011-3160, USA

Physics Department, Jazan University, Jazan 22822, Saudi Arabia

Johns Hopkins University, Baltimore, Maryland 21218, USA

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

Queen Mary, University of London, London, E1 4NS, United Kingdom

University of Louisville, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

University of Maryland, College Park, Maryland 20742, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3 A 2T8

INFN Sezione di Milano, I-20133 Milano, Italy

Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3 C 3J7

INFN Sezione di Napoli, I-80126 Napoli, Italy, I-80126 Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, Netherlands

University of Notre Dame, Notre Dame, Indiana 46556, USA

Ohio State University, Columbus, Ohio 43210, USA

University of Oklahoma, Norman, Oklahoma 73019, USA

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Purdue University, West Lafayette, Indiana 47907, USA

Queen’s University, Kingston, Ontario K7L 3N6, Canada

University of Reading, Reading, Berkshire RG6 6AD, United Kingdom

Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

The University of Sheffield, Sheffield, S10 2BQ, United Kingdom

University of South Carolina, Columbia, South Carolina 29208, USA

Stanford Linear Accelerator Center, Stanford, California 94305, USA

The University of Sydney, New South Wales 2006, Australia

The University of Texas at Austin, Austin, Texas 78712, USA

Texas A & M University, College Station, Texas 77843, USA

Texas A & M University, Department of Physics, College Station, Texas 77843, USA

University of Tokyo, Hongo, Tokyo 153-8902, Japan

University of Tokyo, Hongo, Tokyo 153-8902, Japan

TU Dortmund, Fakultät Physik, D-44221 Dortmund, Germany

TU Dresden, Institut für Kernphysik, D-01062 Dresden, Germany

University of Delaware, Newark, Delaware 19716, USA

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

INFN Sezione di Ferrara, I-44122 Ferrara, Italy

INFN Sezione di Genova, I-16146 Genova, Italy

Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy

Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India

Harvard University, Cambridge, Massachusetts 02138, USA

Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany

Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany

Imperial College London, London, SW7 2AZ, United Kingdom

University of Iowa, Iowa City, Iowa 52242, USA

Iowa State University, Ames, Iowa 50011-3160, USA

Physics Department, Jazan University, Jazan 22822, Saudi Arabia

Johns Hopkins University, Baltimore, Maryland 21218, USA

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

Queen Mary, University of London, London, E1 4NS, United Kingdom

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

University of Louisville, Louisville, Kentucky 40292, USA

Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany

University of Manchester, Manchester M13 9PL, United Kingdom

University of Maryland, College Park, Maryland 20742, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3 A 2T8

INFN Sezione di Milano, I-20133 Milano, Italy

Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3 C 3J7

INFN Sezione di Napoli, I-80126 Napoli, Italy, I-80126 Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, Netherlands

University of Notre Dame, Notre Dame, Indiana 46556, USA

Ohio State University, Columbus, Ohio 43210, USA
The linear combination of the penguin diagram and the vector part and axial-vector part of diagrams, respectively [1]. Non-SM contributions can enter PRL allowed at one loop via electroweak penguin and forbidden at lowest order in the standard model (SM) but is perturbatively calculable effective Wilson coefficients, C_{γ}, C_{9}, and C_{10}, which represent the electromagnetic penguin diagram and the vector part and axial-vector part of the linear combination of the Z penguin and $W^{+}W^{-}$ box diagrams, respectively [1]. Non-SM contributions can enter these loops at the same order as the SM processes, modifying the Wilson coefficients from their SM expectations and allowing experimental sensitivity to possible non-SM physics [2–11].

We study the inclusive decay $B \rightarrow X_{s}\ell^{+}\ell^{-}$, where X_{s} is a hadronic system containing exactly one kaon, using a sum over exclusive final states, which provides a basis for allowing experimental sensitivity to possible non-SM physics [2–11]. We measure the total branching fraction (BF), as well as partial BFs in five disjoint dilepton mass-squared $q_{\ell}^{2} \equiv m_{\ell^{+}\ell^{-}}^{2}$ bins and four
The X_{s} system in the lowest mass m_{X_{s}} bin m_{X_{s,1}} contains a single kaon with no other hadrons present; the m_{X_{s,2}} bin is populated only at the K\pi threshold. Results are also reported in an additional q^{2} region q^{2}_{0} = 1 < q^{2} < 6 \text{GeV}^{2}/c^{4}, i.e., the perturbative window away from the photon pole at low q^{2} and the c\bar{c} resonances at higher q^{2}, where theory uncertainties are well controlled [13–24]. The most recent SM predictions in this region are B^{\text{low}}(B \to X_{s} \mu^{+}\mu^{-}) = (1.59 \pm 0.11) \times 10^{-6} and B^{\text{low}}(B \to X_{s} e^{+}e^{-}) = (1.64 \pm 0.11) \times 10^{-6} [22]. Theory uncertainties in the q^{2} range above the \psi(2S) are also well characterized but relatively much larger than above, with SM predictions for q^{2} > 14.4 \text{GeV}^{2}/c^{4} of B^{\text{high}}(B \to X_{s} \mu^{+}\mu^{-}) = (0.24 \pm 0.07) \times 10^{-6} and B^{\text{high}}(B \to X_{s} e^{+}e^{-}) = (0.21 \pm 0.07) \times 10^{-6} [22]. The SM expectation in the q^{2} > 4m_{b} range is B(B \to X_{s} e^{+}e^{-}) = (4.6 \pm 0.8) \times 10^{-6} [20]. Direct CP violation, defined as A_{CP} = (BF_{\bar{B}} - BF_{B})/(BF_{\bar{B}} + BF_{B}), where b (\bar{b}) denotes a B (\bar{B}) parent, is expected to be suppressed well below the 1% level in both exclusive and inclusive b \to s e^{+}e^{-} transitions [25–28]; however, in beyond-SM models with four quark generations, significant enhancements are possible, particularly in the high-q^{2} region [10,11].

The BABAR [29] and Belle [30] Collaborations have previously published B \to X_{s} e^{+}e^{-} BFs based on a sum over exclusive final states using only \sim 25% of each experiment's final data set. More recently, both collaborations (along with LHCB and CDF) have published BFs, and time-integrated rate and angular asymmetries, for the exclusive decays B \to K^{*0} e^{+}e^{-} [31–37]. The present analysis uses the 424.2 \pm 1.8 fb^{-1} e^{+}e^{-} \to \Upsilon(4S) data sample [38], corresponding to \sim 471 \times 10^{6} BB pairs, collected with the BABAR detector [39,40] at the PEP-II collider at the SLAC National Accelerator Laboratory.

The decays B \to X_{s} e^{+}e^{-} are reconstructed in 10 separate X_{s} hadronic final states (K^{+} K^{-} \pi^{0}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{0}, K_{S}^{0} K_{S}^{0}, K_{S}^{0} \pi^{0}, K_{S}^{0} \pi^{0}, K_{S}^{0} \pi^{0}), and K_{S}^{0} (\pi^{0} \pi^{0}) [41], combining these with an e^{+}e^{-} or \mu^{+}\mu^{-} pair for a total of 20 final states. The selection of charged and neutral particle candidates, as well as the reconstruction of \pi^{0} \to \gamma\gamma and K_{S}^{0} \to \pi^{0}\pi^{0} and \pi^{0} Dalitz decays, in our reconstruction efficiencies. With these efficiencies taken into account, the reconstructed states represent \sim 70% of the total inclusive rate.

We account for missing hadronic final states, as well as for states with m_{X_{s}} > 1.8 \text{GeV}/c^{2}, based on the formalism of Refs. [8,13,22,44], with hadronization of the X_{s} system provided by the JESTER [45] event generator. Given that we observe no statistically significant nonresonant B \to K\pi e^{+}e^{-} decays in our data [31], signal decays with a two-body X_{s} system and m_{X_{s}} < 1.1 \text{GeV}/c^{2} are assumed.
to proceed through the $K^* (892)$ resonance. The simulation of such events, as well as those with a single kaon and no pions, is similar to that for inclusive events but incorporates the form factor models of Refs. [46,47].

The kinematic variables $m_{ES} = \sqrt{E_{\text{c.m.}}^2 - m^2}$ and $\Delta E = E_B - E_{\text{c.m.}}/2$, where p^B and E_B are the B momentum and energy in the $\Upsilon (4S)$ center-of-mass (c.m.) frame with $E_{\text{c.m.}}$, the total c.m. energy, are used to distinguish signal from background events. We require $m_{ES} > 5.225 \text{ GeV}/c^2$ and $-0.10 < \Delta E < 0.05 \text{ GeV}$ ($-0.05 < \Delta E < 0.05 \text{ GeV}$) for dielectron (dimuon) final states. Signal-like B backgrounds with $J/\psi (\psi (2S))$ daughters are removed by vetoing events with $6.8 < q^2 < 10.1 \text{ GeV}^2/c^4$ (12.9 < q^2 < 14.2). We reconstruct $X_s h^+ \mu^-$ final states, where h is a track with no particle identification (PID) requirement applied, to characterize backgrounds from hadrons misidentified as muons. Such backgrounds occur only in dimuon final states because of the significantly higher probability to misidentify K^+ or π^+ as a muon rather than an electron. Similarly, backgrounds from $B \rightarrow D(\to K^{(*)}\pi)\pi$ decays occur only in dimuon modes and, assigning the pion mass hypothesis to both muon candidates, we reject candidates with $K^{(*)}\pi$ mass values in the range $1.84 < m_{K^{(*)}\pi} < 2.04 \text{ GeV}/c^2$.

We suppress $e^+ e^- \rightarrow q\bar{q}$ events (where q is a $u,d,s,$ or c quark) and $B\bar{B}$ combinatoric backgrounds using boosted decision trees (BDTs) [48,49] identical in construction to those used in our BDTs [51]. These BDTs are, respectively, trained with simulated $udsc$ or BB backgrounds and correctly reconstructed signal events. Ensembles of simulated event samples are used to simultaneously optimize the ΔE windows and selection on the $udsc$ BDTs for each individual q^2 and m_{X_s} bin. After all selection criteria are applied, the average multiplicity of B candidates per event is ~ 2.6 (~ 2.2) for $e^+ e^- (\mu^+ \mu^-)$ final states. We allow only one candidate per event, selecting the candidate with the smallest $|\Delta E|$. Signal efficiencies after event selection range from about 1% to 30% depending on mode and the q^2 or m_{X_s} bin.

In each q^2 and m_{X_s} bin, we extract the signal yield with a two-dimensional maximum likelihood fit using m_{ES} and a likelihood ratio L_R based on the $B\bar{B}$ BDT, $L_R \equiv P_S/(P_S + P_B)$, where P_S and P_B are, respectively, probabilities for genuine-signal and BB backgrounds. For correctly reconstructed signal events, L_R sharply peaks near one, while BB backgrounds peak at zero. Events with $L_R > 0.42$ are selected. This selection rejects $\geq 95\%$ of the $B\bar{B}$ background events remaining after all other event selections have been applied, with only a trivial reduction in signal efficiency.

Five (six) event classes contribute to the dielectron (dimuon) maximum likelihood fit: (1) correctly reconstructed signal; (2) events that contain a partially or incorrectly reconstructed $B \rightarrow X_c e^+ \bar{\nu}$ decay (signal cross feed); (3) $udsc$ and (4) $B\bar{B}$ combinatoric backgrounds; (5) charmonium backgrounds; and, for dimuon modes, (6) events with hadrons misidentified as muons.

There is no correlation between m_{ES} and L_R for correctly reconstructed signal events. Therefore, the probability distribution function (PDF) for these events is chosen as a product of two 1D PDFs, with m_{ES} parametrized with a Crystal Ball function [50–52] and L_R described by a nonparametric histogram PDF. The Crystal Ball shape parameters are fixed using simulated signal events, as is the L_R PDF. These PDFs describe well the m_{ES} and L_R distributions derived from the high-statistics control samples of vetoed signal-like charmonium events. The signal cross feed is modeled as a 2D m_{ES} versus L_R histogram PDF using simulated signal samples, with normalization N_{sig} scaled as a fixed fraction of the fit signal yield N_{sig}.

The $udsc$ combinatoric background PDF is derived from simulated events using a 2D nonparametric kernel density estimator with adaptive bandwidth [49,53,54], which is validated using data collected with $e^+ e^-$ center-of-mass energy 40 MeV below the $\Upsilon (4S)$ resonance. The $udsc$ normalization N_{udsc} is obtained by scaling the 43.9 ± 0.2 fb$^{-1}$ of off-resonance data [38] by the ratio of on- to off-resonance integrated luminosity.

The shape of the 2D PDF for the $B\bar{B}$ combinatoric background is modeled similarly to the $udsc$ background. Its normalization in the $5.225 < m_{ES} < 5.270 \text{ GeV}/c^2$ sideband, where no correctly reconstructed signal events are expected, is obtained by subtracting the N_{SB}^{udsc}, N_{SB}^{udsc}, and N_{SB}^{udsc} (for dimuon events) contributions from the total number of sideband events, giving the $B\bar{B}$ yield in the sideband region N_{BB}^{SB}. We use simulated events to obtain the ratio of the number of $B\bar{B}$ combinatoric events in the $m_{ES} > 5.27 \text{ GeV}/c^2$ signal region to the number in the sideband region to scale N_{BB}^{SB} into the expected contribution N_{BB}^{SB} in the full fit region.

Charmonium backgrounds escaping the vetoed q^2 regions are similarly described by a 2D kernel estimator, with normalization N_{chm} derived from a fit to the data in the vetoed regions that is extrapolated into the nonvetoed regions. The normalization N_{had} and shape of the 2D PDF for misidentified dimuon events are characterized by a weighted 2D histogram taken directly from data using event-by-event weights obtained from PID control samples [31,55].

We extract the N_{sig} central value and associated upper and lower limits using the negative log-likelihood for N_{sig}. We calculate partial BFs taking into account the efficiency for each final state in each q^2 and m_{X_s} bin, as well as the multiplicative factors that provide extrapolation to the fully inclusive BFs. The results are shown in Table I, where the fully inclusive total rate and the m_{X_s} binned results include estimated signal contributions in the vetoed charmonium q^2 regions. Fit projections for all q^2 and m_{X_s} bins are available in the Supplemental Material [56], along with a table giving the raw numerical results from our fits. Figure I shows our q^2 binned results overlaid on the nominal SM expectations.
derived from our $B \to X_s e^+ e^-$ signal model. A similar plot for m_{X_s} is included in the Supplemental Material [56].

We consider systematic uncertainties associated with purely experimental systematic uncertainties and the model-dependent extrapolation to the fully inclusive rate. The experimental systematics can either be additive, affecting the extraction of the signal yield from the data, or multiplicative, affecting the calculation of a BF from an observed signal yield. Sources of multiplicative systematic uncertainty include BB counting as well as tracking, PID, and reconstruction efficiencies. The only significant additive systematic uncertainties are associated with the PDF parametrizations and normalizations. The total experimental systematic uncertainty is the sum in quadrature of the above terms, with the exception that uncertainties related to charged particle tracking efficiencies are assumed to be fully correlated among all charged particles. The evaluation of all experimental systematics is fully described in Ref. [31]. Tables quantifying each individual contribution to the experimental and model-dependent extrapolation systematic uncertainties are available in the Supplemental Material [56].

The uncertainty in the extrapolation to the inclusive rate is characterized through variations that attempt to quantify our lack of knowledge of the true dilepton mass-squared distribution and hadronization of the X_s system beyond the specific final states and m_{X_s} range that we observe. We average the most recent $B \to K^{(*)} e^+ e^-$ BFs [57], excluding BABAR results, and use the latest BABAR result [58] for the ratio of charged-to-neutral $\Upsilon(4S) \to h\bar{h}$ decays, $\Gamma(B^+ B^-)/\Gamma(B^0\bar{B}^0) = 1.006 \pm 0.036 \pm 0.031$. Each of these terms is varied by its one-standard-deviation uncertainty. We examine an alternate m_{X_s} transition point of 1.0 GeV/c^2 between the $B \to K^{(*)} e^+ e^-$ and $B \to X_s e^+ e^-$ models. To account for hadronization uncertainties in $m_{X_s} > 1.1$ GeV/c^2 events, we generate 20 simulated data sets with varied JETSET tunings, two different values for the B-meson Fermi motion, and two different b-quark mass values. We take the full spread of the extrapolation factors derived from these variations to estimate this systematic uncertainty. Additionally, for $m_{X_s} > 1.1$ GeV/c^2, the fraction of modes with more than one π^0 is varied around the generator value of 0.20 by $\pm 50\%$; the fraction of modes with either no π^0 and more than two charged pions, or one π^0 and more than one charged pion, is varied by $\pm 50\%$ around the q^2-dependent generator value; and the fraction of modes with more than one neutral or charged kaon is varied around the generator value of 0.034 by $\pm 50\%$. Contributions from final states with photons that do not come from π^0 decays but rather from η, η', ω, etc. are expected to be insignificant, and we do not vary the fractions of these decays. Each of the above variations is added in quadrature to obtain the final model-dependent systematic. Table I lists both the experimental and model-dependent systematics.

We calculate the total inclusive rate by summing the q^2 through q^2_5 results taking into account correlations in the systematic uncertainties and estimating signal contributions in the vetoed charmonium q^2 regions. The lepton-flavor-averaged $B \to X_s e^+ e^-$ results are weighted averages of the individual $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ results that take into account correlations in the systematic uncertainties. Figure 1 shows the differential BF results as a function of q^2 and m_{X_s} overlaid with the SM expectation. The results in these bins, as well as in the q^2_5 region, are generally in good agreement with SM predictions. Given our experimental uncertainties, we are insensitive to the relatively small differences in the $e^+ e^-$ and $\mu^+ \mu^-$ rates expected in the SM, and observe no significant differences between $e^+ e^-$ and $\mu^+ \mu^-$ final states.

Several model-independent analyses of the form-factor-independent angular observables reported in a recent $B^0 \to K^{(*)} \pi^+ \pi^- \mu^+ \mu^-$ LHCb analysis [35] explain the anomaly reported there in terms of a nonvanishing beyond-SM contribution C^B_{00} [59–68]. These phenomenological studies all present generally similar results, yielding a 3σ range for C^B_{00} of $\sim [-2, 0]$, implying a corresponding suppression in the fully inclusive BF of up to $\sim 25\%$ in the $1 < q^2 < 6$ GeV2/c4 and $q^2 > 14.4$ GeV2/c4 ranges. Although our results in the q^2_5 range are consistent with both the SM expectation and a possible suppression in the decay rate, our results in the q^2_5 range show an excess, rather than a deficit, of $\sim 2\sigma$ in both the $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ rates with respect to the SM expectation [22].

We search for CP violation in each q^2 bin by dividing our data set into four disjoint samples according to lepton identity ($e^+ e^-$ or $\mu^+ \mu^-$) and the B or \bar{B} flavor as determined by the kaon and pion charges of the X_s system. Modes with $X_s = K^0_S, K^{(*)}_S, K^{(*)}_L \pi^0$, or $K^{(*)}_L \pi^- \pi^+$ are not used, and, because we perform no model-dependent extrapolation of signal rates, we measure A_{CP} only for the particular combination of final
states used here. We simultaneously fit all four data sets, sharing a single value of A_{CP} as a free parameter, using the BF’s fit model described above. Our A_{CP} results are shown in Table I, and a plot of the results as a function of q^2 is included as part of the Supplemental Material [56]. We analyze the vetoed J/ψ data set, where CP violation is expected to be trivially small [69,70], with the same fitting methodology used for the signal q^2 bins; we find $A_{CP}^{\text{stat}} = 0.0046 \pm 0.0057$ (stat). Observing no significant bias, we assign the statistical uncertainty here as the systematic uncertainty for the A_{CP} results. To extract A_{CP} for the full dilepton mass range, we sum the A_{CP} BFs across the four disjoint A_{CP} q^2 bins; excluding the charmonium veto windows, we find $A_{CP} = 0.04 \pm 0.11$ (stat) ± 0.01 (syst). We observe no significant asymmetry in any q^2 region or for the full dilepton mass range.

In summary, we have measured the total and partial BFs, as well as A_{CP}, for the inclusive radiative electroweak process $B \to X_s \ell^+\ell^-$. Our results are in general agreement with SM expectations with the exception of our partial BF results in the high-q^2 region, which show a $\sim 2\sigma$ excess compared to both the SM expectation and the most favored value of the beyond-SM contribution C_{BSM}^extra advanced to explain recent observations by LHCb [35].

We are grateful to Enrico Lunghi, Tobias Hurth, and Tobias Huber for useful discussions, as well as providing dilepton mass-squared theory distributions derived using the most up-to-date corrections. We are additionally grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (U.S.).

1Deceased.

2Now at: University of Tabuk, Tabuk 71491, Saudi Arabia.

3Also at: Università di Perugia, Dipartimento di Fisica, I-06123 Perugia, Italy.

4Now at: Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, F-75252 Paris, France.

5Now at: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.

6Now at: University of South Alabama, Mobile, Alabama 36688, USA.

7Also at: Universität di Sassari, I-07100 Sassari, Italy.

8Also at: INFN Sezione di Roma, I-00185 Roma, Italy.

9Now at: Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile.

See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.112.211802 for plots of our results as a function of q^2 and m_x, as well as tables of systematics and raw fitted numerical yields, and projections of each of our branching fraction fits onto their respective data sets.

Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158.