Measurement of the $B \to X_s \ell^+ \ell^-$ branching fraction and search for direct CP violation from a sum of exclusive final states

S. Zambitoab,71 L. Lancierab,72 L. Vitaleab,72 F. Martinez-Vidal,73 A. Oyanguren,73 P. Villanueva-Perez,73 J. Albert,74 Sw. Banerjee,74 F. U. Bernlochner,74 H. H. F. Choi,74 G. J. King,74 R. Kowalewski,74 M. J. Lewczuk,74 T. Lueck,74 I. M. Nugent,74 J. M. Roney,74 R. J. Sobie,74 N. Tasneem,74 T. J. Gershon,75 P. F. Harrison,75 T. E. Latham,75 H. R. Band,76 S. Dasu,76 Y. Pan,76 R. Prepost,76 and S. L. Wu76 (The B\textsc{abar} Collaboration)

1Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Baria; Dipartimento di Fisica, Università di Barib, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090, Novosibirsk State Technical University, Novosibirsk 630092, Russia
10University of California at Irvine, Irvine, California 92697, USA
11University of California at Riverside, Riverside, California 92521, USA
12University of California at Santa Barbara, Santa Barbara, California 93106, USA
13University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14California Institute of Technology, Pasadena, California 91125, USA
15University of Cincinnati, Cincinnati, Ohio 45221, USA
16University of Colorado, Boulder, Colorado 80309, USA
17Colorado State University, Fort Collins, Colorado 80523, USA
18Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
20Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21INFN Sezione di Ferrarab; Dipartimento di Fisica e Scienze della Terra, Università di Ferraraa, I-44122 Ferrara, Italy
22INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23INFN Sezione di Genovab; Dipartimento di Fisica, Università di Genovaa, I-16146 Genova, Italy
24Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
25Harvard University, Cambridge, Massachusetts 02138, USA
26Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
27Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
28Imperial College London, London, SW7 2AZ, United Kingdom
29University of Iowa, Iowa City, Iowa 52242, USA
30Iowa State University, Ames, Iowa 50011-3160, USA
31Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia
32Johns Hopkins University, Baltimore, Maryland 21218, USA
33Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France
34Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35University of Liverpool, Liverpool L69 7ZE, United Kingdom
36Queen Mary, University of London, London, E1 4NS, United Kingdom
37University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38University of Louisville, Louisville, Kentucky 40292, USA
39University of Manchester, Manchester M13 9PL, United Kingdom
40University of Maryland, College Park, Maryland 20742, USA
41Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
42McGill University, Montréal, Québec, Canada H3A 2T8
43INFN Sezione di Milanob; Dipartimento di Fisica, Università di Milanoa, I-20133 Milano, Italy
44University of Mississippi, University, Mississippi 38677, USA
45Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
46INFN Sezione di Napolib; Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
47NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
48University of Notre Dame, Notre Dame, Indiana 46556, USA
49Ohio State University, Columbus, Ohio 43210, USA
50University of Oregon, Eugene, Oregon 97403, USA
We measure the total branching fraction of the flavor-changing neutral-current process \(B \rightarrow X_s \ell^+\ell^- \), along with partial branching fractions in bins of dilepton and hadronic system (\(X_s \)) mass, using a sample of 471 \(\times \) 10^6 \(\Upsilon(4S) \rightarrow B\bar{B} \) events recorded with the \(B\bar{B} \) detector. The admixture of charged and neutral \(B \) mesons produced at PEP-II are reconstructed by combining a dilepton pair with 10 different \(X_s \) final states. Extrapolating from a sum over these exclusive modes, we measure a lepton-flavor-averaged inclusive branching fraction \(\mathcal{B}(B \rightarrow X_s \ell^+\ell^-) = (6.73^{+0.70}_{-0.64}[\text{stat}]^{+0.34}_{-0.25}[\text{exp syst}] \pm 0.50[\text{model syst}]) \times 10^{-6} \) for \(m_{\ell^+\ell^-} > 0.1 \text{GeV}/c^2 \). Restricting our analysis exclusively to final states from which a decaying \(B \) meson’s flavor can be inferred, we additionally report measurements of the direct \(CP \) asymmetry \(A_{CP} \) in bins of dilepton mass; over the full dilepton mass range, we find \(A_{CP} = 0.04 \pm 0.11 \pm 0.01 \) for a lepton-flavor-averaged sample.

PACS numbers: 13.20.He, 12.15.-y, 11.30.Er

The \(b \rightarrow s\ell^+\ell^- \) transition, where \(b \) is a bottom quark, \(s \) is a strange quark, and \(\ell^+\ell^- \) is an \(e^+e^- \) or \(\mu^+\mu^- \) pair, is forbidden at lowest order in the standard model (SM) but is allowed at one loop via electroweak penguin and \(W \)-box diagrams. The amplitude for this decay is expressed in terms of perturbatively calculable effective Wilson coefficients, \(C_{\text{eff}}, C_{9\text{eff}} \), and \(C_{10\text{eff}} \), which represent the electromagnetic penguin diagram, and the vector part and the axial-vector part of the linear combination of the \(Z \) penguin and \(W^+W^- \) box diagrams, respectively [1]. Non-SM contributions can enter these loops at the same order as the SM processes, modifying the Wilson coefficients from their SM expectations and allowing experimental sensitivity to possible non-SM physics [2–11].

We study the inclusive decay \(B \rightarrow X_s \ell^+\ell^- \), where \(X_s \) is a hadronic system containing exactly one kaon, using a sum over exclusive final states, which provides a basis for extrapolation to the fully inclusive rate. We measure the total branching fraction (BF), as well as partial BFs in five disjoint dilepton mass-squared \(q^2 \equiv m_{\ell^+\ell^-}^2 \) bins and four hadronic mass \(m_{X_s} \) bins, which are defined in Table I. We additionally search for direct \(CP \) violation in the same \(q^2 \) bins. The relative precision of our results is approximately a factor of two better than the combined precision of all similar previously published measurements [12].

The \(X_s \) system in the lowest mass \(m_{X_s} \) bin \(m_{X_s,1} \) contains a single kaon with no other hadrons present; the \(m_{X_s,2} \) bin is populated only above the \(K\pi \) threshold. Results are also reported in an additional \(q^2 \) region \(q^2 = 1 < q^2 < 6 \text{GeV}^2/c^4 \), i.e., the perturbative window away from the photon pole at low \(q^2 \) and the \(\epsilon \tau \) resonances at higher \(q^2 \), where theory uncertainties are well controlled [13–24]. The most recent SM predictions in this region are \(B_{\text{low}}(B \rightarrow X_s \mu^+\mu^-) = (1.59 \pm 0.11) \times 10^{-6} \) and \(B_{\text{low}}(B \rightarrow X_s e^+e^-) = (1.64 \pm 0.11) \times 10^{-6} \) [22].

We measure the total branching fraction of the flavor-changing neutral-current process \(B \rightarrow X_s \ell^+\ell^- \), along with partial branching fractions in bins of dilepton and hadronic system (\(X_s \)) mass, using a sample of 471 \(\times \) 10^6 \(\Upsilon(4S) \rightarrow B\bar{B} \) events recorded with the \(B\bar{B} \) detector. The admixture of charged and neutral \(B \) mesons produced at PEP-II are reconstructed by combining a dilepton pair with 10 different \(X_s \) final states. Extrapolating from a sum over these exclusive modes, we measure a lepton-flavor-averaged inclusive branching fraction \(\mathcal{B}(B \rightarrow X_s \ell^+\ell^-) = (6.73^{+0.70}_{-0.64}[\text{stat}]^{+0.34}_{-0.25}[\text{exp syst}] \pm 0.50[\text{model syst}]) \times 10^{-6} \) for \(m_{\ell^+\ell^-} > 0.1 \text{GeV}/c^2 \). Restricting our analysis exclusively to final states from which a decaying \(B \) meson’s flavor can be inferred, we additionally report measurements of the direct \(CP \) asymmetry \(A_{CP} \) in bins of dilepton mass; over the full dilepton mass range, we find \(A_{CP} = 0.04 \pm 0.11 \pm 0.01 \) for a lepton-flavor-averaged sample.

PACS numbers: 13.20.He, 12.15.-y, 11.30.Er

The \(b \rightarrow s\ell^+\ell^- \) transition, where \(b \) is a bottom quark, \(s \) is a strange quark, and \(\ell^+\ell^- \) is an \(e^+e^- \) or \(\mu^+\mu^- \) pair, is forbidden at lowest order in the standard model (SM) but is allowed at one loop via electroweak penguin and \(W \)-box diagrams. The amplitude for this decay is expressed in terms of perturbatively calculable effective Wilson coefficients, \(C_{\text{eff}}, C_{9\text{eff}} \), and \(C_{10\text{eff}} \), which represent the electromagnetic penguin diagram, and the vector part and the axial-vector part of the linear combination of the \(Z \) penguin and \(W^+W^- \) box diagrams, respectively [1]. Non-SM contributions can enter these loops at the same order as the SM processes, modifying the Wilson coefficients from their SM expectations and allowing experimental sensitivity to possible non-SM physics [2–11].

We study the inclusive decay \(B \rightarrow X_s \ell^+\ell^- \), where \(X_s \) is a hadronic system containing exactly one kaon, using a sum over exclusive final states, which provides a basis for extrapolation to the fully inclusive rate. We measure the total branching fraction (BF), as well as partial BFs in five disjoint dilepton mass-squared \(q^2 \equiv m_{\ell^+\ell^-}^2 \) bins and four hadronic mass \(m_{X_s} \) bins, which are defined in Table I. We additionally search for direct \(CP \) violation in the same \(q^2 \) bins. The relative precision of our results is approximately a factor of two better than the combined precision of all similar previously published measurements [12].
Theory uncertainties in the q^2 range above the $\psi(2S)$ are also well-characterized but relatively much larger than above, with SM predictions for $q^2 > 14.4 \text{GeV}^2/c^4$ of $B^\text{high}(B \rightarrow X_s \mu^+\mu^-) = (0.24 \pm 0.07) \times 10^{-6}$ and $B^\text{high}(B \rightarrow X_s e^+e^-) = (0.21 \pm 0.07) \times 10^{-6}$ [22]. The SM expectation in the $q^2 > 4m_B^2$ range is $B(B \rightarrow X_s \ell^+\ell^-) = (4.6 \pm 0.8) \times 10^{-6}$ [20]. Direct CP violation, defined as $A_{CP} = (B(B_b^\rightarrow B_b) - \overline{B}(B_b^\rightarrow B_b))/\overline{B}(B_b^\rightarrow B_b + \overline{B}(B_b^\rightarrow B_b))$, where $b(\overline{b})$ denotes a $B(\overline{B})$ parent, is expected to be suppressed well below the 1% level in both exclusive and inclusive $b \rightarrow s\ell^+\ell^-$ transitions [25–28]; however, in beyond-SM models with four quark generations, significant enhancements are possible, particularly in the high-q^2 region [10, 11].

The BaBar [29] and Belle [30] Collaborations have previously published $B \rightarrow X_s \ell^+\ell^-$ BFs based on a sum over exclusive final states using only $\sim 25\%$ of each experiment’s final dataset. More recently, both collaborations (along with LHCb and CDF) have published BFs, and time-integrated rate and angular asymmetries, for the exclusive decays $B \rightarrow K^{(*)}\ell^+\ell^-$ [31–37]. The present analysis uses the $424.2 \pm 1.8 \text{fb}^{-1} e^+e^- \rightarrow \Upsilon(4S)$ data sample [38], corresponding to ~ 471 million $BB\overline{B}$ pairs, collected with the BaBar detector [39, 40] at the PEP-II collider at the SLAC National Accelerator Laboratory.

The decays $B \rightarrow X_s \ell^+\ell^-$ are reconstructed in 10 separate X_s hadronic final states ($K^+\pi^0\pi^0$, $K^{+}\pi^{-}\pi^{0}$, $K^{0}\pi^{0}\pi^{0}$, $K^{0}\pi^{0}\pi^{+}$, $K^{0}\pi^{0}\pi^{-}$, and $K^{0}\pi^{0}\pi^{0}$) [41], combining these with an e^+e^- or $\mu^+\mu^-$ pair for a total of 20 final states. The selection of charged and neutral particle candidates, as well as the reconstruction of $\pi^0 \rightarrow \gamma\gamma$ and $K^{0}\rightarrow \pi^+\pi^-$, is described in Refs. [31, 36]. Based on studies including up to 18 X_s modes with a maximum of four pions and m_{X_s} as large as $2.2 \text{ GeV}/c^2$, we limit the number of X_s final states to the 10 listed above and require $m_{X_s} < 1.8 \text{ GeV}/c^2$ since the expected signal-to-background ratio rapidly decreases with increasing X_s pion multiplicity and mass.

We assume that the fraction of modes containing a K^{0}_S is equal to that containing a $K^{+}\pi^{-}$ and account for these decays, as well as $K^{0}_S \rightarrow \pi^0\pi^0$ and π^0 Dalitz decays, in our reconstruction efficiencies. With these efficiencies taken into account, the reconstructed states represent $\sim 70\%$ of the total inclusive rate.

We account for missing hadronic final states, as well as for states with $m_{X_s} > 1.8 \text{ GeV}/c^2$, based on the formalism of Refs. [8, 13, 22, 42–44], with hadronization of the X_s system provided by the JETSET [45] event generator. Given that we observe no statistically significant non-resonant $B \rightarrow K\pi\ell^+\ell^-$ decays in our data [31], signal decays with a two-body X_s system and $m_{X_s} < 1.1 \text{ GeV}/c^2$ are assumed to proceed through the $K^{*}(892)$ resonance. The simulation of such events, as well as those with a single kaon and no pions, is similar to that for inclusive events but incorporates the form factor models of Refs. [46, 47].

The kinematic variables $m_{ES} = \sqrt{E_{CM}^2/4 - p_B^2}$ and $\Delta E = E_B^* - E_{CM}/2$, where p_B^* and E_B^* are the B momentum and energy in the $\Upsilon(4S)$ center-of-mass (CM) frame with E_{CM} the total CM energy, are used to distinguish signal from background events. We require $m_{ES} > 5.225 \text{ GeV}/c^2$ and $-0.10 < \Delta E < 0.05 \text{ GeV}$ ($-0.05 < \Delta E < 0.05 \text{ GeV}$) for dielectron (dimuon) final states. Signal-like B backgrounds with $J/\psi(\psi(2S))$ daughters are removed by vetoing events with $6.8 < q^2 < 10.1 \text{ GeV}^2/c^4$ ($12.9 < q^2 < 14.2$). We reconstruct $X_s h^+\mu^-$ final states, where h is a track with no particle identification (PID) requirement applied, to characterize backgrounds from hadrons misidentified as muons. Such backgrounds occur only in dimuon final states because of the significantly higher probability to misidentify K^+ or π^+ as a muon rather than an electron. Similarly, backgrounds from $B \rightarrow D(\rightarrow K^{(*)}\pi)\pi$ decays occur only in dimuon modes and, assigning the pion mass hypothesis to both muon candidates, we reject candidates with $K^{(*)}\pi$ mass values in the range $1.84 < m_{K^{(*)}\pi} < 2.04 \text{ GeV}/c^2$.

We suppress $e^+e^- \rightarrow q\overline{q}$ events (where q is a u, d, s or c quark) and $BB\overline{B}$ combinatoric backgrounds using boosted decision trees (BDTs) [48, 49] identical in construction to those used in our $B \rightarrow K^{(*)}\ell^+\ell^-$ analysis [31]. These BDTs are respectively trained with simulated $uds\overline{c}$ or $BB\overline{B}$ backgrounds and correctly reconstructed signal events. Ensembles of simulated event samples are used to simultaneously optimize the ΔE windows and selection on the $uds\overline{c}$ BDTs for each individual q^2 and m_{X_s} bin. After all selection criteria are applied, the average multiplicity of B candidates per event is approximately 2.6 ± 2.2 for e^+e^- ($\mu^+\mu^-$) final states. We allow only one candidate per event, selecting the candidate with the smallest $|\Delta E|$. Signal efficiencies after event selection range from about 1 to 30% depending on mode and the q^2 or m_{X_s} bin.

In each q^2 and m_{X_s} bin, we extract the signal yield with a two-dimensional maximum likelihood (ML) fit using m_{ES} and a likelihood ratio L_R based on the $BB\overline{B}$ BDT, $L_R \equiv P_S/(P_S + P_B)$, where P_S and P_B are, respectively, probabilities for genuine-signal and $BB\overline{B}$ backgrounds. For correctly reconstructed signal events, L_R sharply peaks near one, while $BB\overline{B}$ backgrounds peak at zero. Events with $L_R > 0.42$ are selected. This selection rejects greater than 95% of the $BB\overline{B}$ background events remaining after all other event selections have been applied, with only a trivial reduction in signal efficiency.

Five (six) event classes contribute to the dielectron (dimuon) ML fit: (1) correctly reconstructed signal; (2) events that contain a partially or incorrectly reconstructed $B \rightarrow X_s \ell^+\ell^-$ decay (signal cross-feed); (3) $uds\overline{c}$ and (4) $BB\overline{B}$ combinatorial backgrounds; (5) charmonium backgrounds; and, for dimuon modes, (6) events with hadrons misidentified as muons.

There is no correlation between m_{ES} and L_R for correctly reconstructed signal events. Therefore, the probability distribution function (PDF) for these events is chosen as a product of two one-dimensional (1D) PDFs,
with m_{ES} parameterized with a Crystal Ball (CB) function [50–52] and L_R described by a non-parametric histogram PDF. The CB shape parameters are fixed using simulated signal events, as is the L_R PDF. These PDFs describe well the m_{ES} and L_R distributions derived from the high-statistics control samples of vetoed signal-like charmonium events. The signal cross-feed is modeled as a two-dimensional (2D) m_{ES} versus L_R histogram PDF using simulated signal samples, with normalization N_{xsf} scaled as a fixed fraction of the fit signal yield N_{sig}.

The udsc combinatoric background PDF is derived from simulated events using a 2D non-parametric kernel density estimator with adaptive bandwidth [49, 53, 54], which is validated using data collected with e^+e^- center-of-mass energy 40 MeV below the $Y(4S)$ resonance. The udsc normalization N_{udsc} is obtained by scaling the 43.9 \pm 0.2 fb$^{-1}$ of off-resonance data [38] by the ratio of on- to off-resonance integrated luminosity.

The shape of the 2D PDF for the $B\bar{B}$ combinatoric background is modeled similarly to the udsc background. Its normalization in the $5.225 < m_{ES} < 5.270$ GeV/c^2 sideband, where no correctly reconstructed signal events are expected, is obtained by subtracting the N_{xsf}, N_{udsc}, $N_{SB}^{c_{chm}}$, and $N_{SB}^{h_{had}}$ (for dimuon events) contributions from the total number of sideband events, giving the $B\bar{B}$ yield in the sideband region $N_{SB}^{B\bar{B}}$. We use simulated events to obtain the ratio of the number of $B\bar{B}$ combinatoric events in the $m_{ES} > 5.27$ GeV/c^2 signal region to the number in the sideband region to scale $N_{SB}^{B\bar{B}}$ into the expected contribution $N_{B\bar{B}}$ in the full fit region.

Charmonium backgrounds escaping the vetoed q^2 regions are similarly described by a 2D kernel estimator, with normalization N_{chm} derived from a fit to the data in the vetoed regions that is extrapolated into the non-vetoed regions. The normalization N_{had} and shape of the 2D PDF for misidentified dimuon events are characterized by a weighted 2D histogram taken directly from data using event-by-event weights obtained from PID control samples [31, 55].

We extract the N_{sig} central value and associated upper and lower limits using the negative log-likelihood (NLL) for N_{sig}. We calculate partial BFs taking into account the efficiency for each final state in each q^2 and m_{X_s} bin, as well as the multiplicative factors that provide extrapolation to the fully inclusive BFs. The results are shown in Table I, where the fully inclusive total rate and the m_{X_s} binned results include estimated signal contributions in the vetoed charmonium q^2 regions. Fit projections for all q^2 and m_{X_s} bins are available as supplemental EPAPS material [56], along with a table giving the raw numerical results from our fits. Figure 1 shows our q^2 binned results overlaid on the nominal SM expectations derived from our $B \rightarrow X_s \ell^+\ell^-$ signal model. A similar plot for m_{X_s} is included as supplemental material.

We consider systematic uncertainties associated with purely experimental systematic uncertainties and the model-dependent extrapolation to the fully inclusive rate. The experimental systematics can either be additive, affecting the extraction of the signal yield from the data, or multiplicative, affecting the calculation of a BF from an observed signal yield. Sources of multiplicative systematic uncertainty include $B\bar{B}$ counting as well as tracking, PID and reconstruction efficiencies. The only significant additive systematic uncertainties are associated with the PDF parameterizations and normalizations. The total experimental systematic uncertainty is the sum-in-quadrature of the above terms, with the exception that uncertainties related to charged particle tracking efficiencies are assumed to be fully correlated among all charged particles. The evaluation of all experimental systematics is fully described in Ref. [31]. Tables quantifying each individual contribution to the experimental and model-dependent extrapolation systematic uncertainties are available as supplemental EPAPS material [56].

The uncertainty in the extrapolation to the inclusive rate is characterized through variations that attempt to quantify our lack of knowledge of the true dilepton mass-squared distribution and hadronization of the X_s system beyond the specific final states and m_{X_s} range that we observe. We average the most recent $B \rightarrow K^{(*)}\ell^+\ell^-$ BFs [57], excluding BaBar results, and use the latest BaBar result [58] for the ratio of charged-to-neutral $Y(4S) \rightarrow b\bar{b}$ decays, $\Gamma(B^+B^-)/\Gamma(B^0\bar{B}^0) = 1.006 \pm 0.036 \pm 0.031$. Each of these terms is varied by its one-standard-deviation uncertainty. We examine an alternate m_{X_s} transition point of 1.0 GeV/c^2 between the $B \rightarrow K^{(*)}\ell^+\ell^-$ and $B \rightarrow X_s \ell^+\ell^-$ models. To account for hadronization uncertainties in $m_{X_s} > 1.1$ GeV/c^2 events, we generate 20 simulated datasets with varied JETSET tunings, two different values for the B-meson Fermi motion, and two different b-quark mass values. We take the full spread of the extrapolation factors derived from these variations to estimate this systematic uncertainty. Additionally, for $m_{X_s} > 1.1$ GeV/c^2, the fraction of modes with more than one π^0 is varied around the generator value of 0.20 by $\pm 50\%$; the fraction of modes with either no π^0 and more than two charged pions, or one π^0 and more than one charged pion, is varied by $\pm 50\%$ around the q^2-dependent generator value; and the fraction of modes with more than one neutral or charged kaon is varied around the generator value of 0.034 by $\pm 50\%$. Contributions from final states with photons that do not come from π^0 decays but rather from η, η', ω, etc., are expected to be insignificant, and we do not vary the fractions of these decays. Each of the above variations is added in quadrature to obtain the final model-dependent systematic. Table I lists both the experimental and model-dependent systematics.

We calculate the total inclusive rate by summing the q^2 results taking into account correlations in the systematic uncertainties and estimating signal contribu-
TABLE I: $B \to X_s e^+ e^-$, $B \to X_s \mu^+ \mu^-$ and $B \to X_s \ell^+ \ell^-$ partial BFs (in units of 10^{-6}) and A_{CP} by $q^2 (\text{GeV}^2/c^4)$ and $m_{X_c} (\text{GeV}/c^2)$ bin. The number in parentheses after each result is the multiplier which is applied to the measured semi-inclusive rate to account for unreconstructed $m_{X_c} > 1.8 \text{GeV}/c^2$ final states. Estimated contributions from the vetoed charmonium q^2 regions are included in the total and m_{X_c} binned results, but not in the total A_{CP}. The first uncertainties are statistical, the second experimental systematics and the third model-dependent systematics associated with the multiplicative factor. There are no model-dependent A_{CP} systematics and A_{CP} is not measured as a function of m_{X_c}; the multiplicative factors are not used in calculating the total A_{CP}.

<table>
<thead>
<tr>
<th>Bin</th>
<th>Range</th>
<th>$B \to X_s e^+ e^-$</th>
<th>$B \to X_s \mu^+ \mu^-$</th>
<th>$B \to X_s \ell^+ \ell^-$</th>
<th>$A_{CP, B \to X_s e^+ e^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^2_{00}</td>
<td>$1.0 < q^2 < 6.0$</td>
<td>$1.93^{+0.72}_{-0.45} \pm 0.18$ (1.71)</td>
<td>$1.60^{+0.41}_{-0.39} \pm 0.07$ (1.78)</td>
<td>$1.60^{+0.41}_{-0.39} \pm 0.13$ (1.86)</td>
<td>$-0.06 \pm 0.22 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{10}</td>
<td>$0.1 < q^2 < 2.0$</td>
<td>$3.05^{+0.52}_{-0.49} \pm 0.35$ (1.96)</td>
<td>$1.85^{+0.50}_{-0.48} \pm 0.20$ (2.02)</td>
<td>$2.70^{+0.42}_{-0.41} \pm 0.35$ (1.98)</td>
<td>$-0.13 \pm 0.18 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{20}</td>
<td>$2.0 < q^2 < 4.3$</td>
<td>$0.69^{+0.11}_{-0.28} \pm 0.07$ (1.73)</td>
<td>$-0.15^{+0.01}_{-0.43} \pm 0.14$ (1.80)</td>
<td>$0.46^{+0.26}_{-0.23} \pm 0.07$ (1.70)</td>
<td>$0.42 \pm 0.50 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{30}</td>
<td>$4.3 < q^2 < 6.8$</td>
<td>$0.69^{+0.13}_{-0.29} \pm 0.05$ (1.53)</td>
<td>$0.34^{+0.19}_{-0.06} \pm 0.03$ (1.59)</td>
<td>$0.60^{+0.27}_{-0.25} \pm 0.05$ (1.55)</td>
<td>$-0.45 \pm 0.44 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{40}</td>
<td>$10.1 < q^2 < 12.9$</td>
<td>$1.14^{+0.22}_{-0.40} \pm 0.04$ (1.16)</td>
<td>$0.87^{+0.11}_{-0.47} \pm 0.08$ (1.18)</td>
<td>$1.02^{+0.10}_{-0.06} \pm 0.04$ (1.10)</td>
<td>$-0.57 \pm 0.16 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{50}</td>
<td>$14.2 < q^2$</td>
<td>$0.56^{+0.03}_{-0.19} \pm 0.00$ (1.02)</td>
<td>$0.60^{+0.05}_{-0.29} \pm 0.04$ (1.02)</td>
<td>$0.57^{+0.16}_{-0.15} \pm 0.02$ (1.02)</td>
<td>$0.19 \pm 0.18 \pm 0.01$</td>
</tr>
<tr>
<td>q^2_{60}</td>
<td>$q^2_{30} \cup q^2_{50}$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Total: $0.1 < q^2$ $7.69^{+0.82}_{-0.77} \pm 0.50$ $4.41^{+1.31}_{-1.17} \pm 0.42$ 0.27 $6.73^{+0.70}_{-0.64} \pm 0.25 \pm 0.50$ $0.04 \pm 0.11 \pm 0.01$

FIG. 1: Differential BF as a function of q^2 for electron (blue circles), muon (black squares) and lepton-flavor-averaged final states (red triangles). The errors correspond to the total uncertainties. The histogram shows the SM expectation, which has uncertainties of approximately 10-30% in different q^2 regions. The shaded boxes denote the vetoed charmonium regions. The horizontal spread of points in each bin is meant only to aid visibility.
pected to be trivially small [69, 70], with the same fitting methodology used for the signal q^2 bins; we find $A_{CP} = 0.0046 \pm 0.0057$ [stat]. Observing no significant bias, we assign the statistical uncertainty here as the systematic uncertainty for the A_{CP} results. To extract A_{CP} for the full dilepton mass range, we sum the A_{CP} q^2 bins; excluding the charmonium veto windows, we find $A_{CP} = 0.04 \pm 0.11$ [stat] ± 0.01 [syst]. We observe no significant asymmetry in any q^2 region or for the full dilepton mass range.

In summary, we have measured the total and partial BFs, as well as A_{CP}, for the inclusive radiative electroweak process $B \to X_s \ell^+ \ell^-$. Our results are in general agreement with SM expectations with the exception of our partial BF results in the high-q^2 region, which show a $\sim 2\sigma$ excess compared to both the SM expectation and the most favored value of the beyond-SM contribution C_{6}^{BSM} advanced to explain recent observations by LHCb [35].

We are grateful to Enrico Lunghi, Tobias Hurth and Tobias Huber for useful discussions, as well as providing dilepton mass-squared theory distributions derived using the most up-to-date corrections. We are additionally grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $BaBar$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).

* Now at the University of Tabuk, Tabuk 71491, Saudi Arabia
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Now at Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Paris, France
§ Now at the University of Huddersfield, Huddersfield HD1 3DH, UK
¶ Deceased
** Now at University of South Alabama, Mobile, Alabama 36688, USA
†† Also with Università di Sassari, Sassari, Italy
‡‡ Also with INFN Sezione di Roma, Roma, Italy
§§ Now at Universidad Técnica Federico Santa María, Valparaíso, Chile 2300123
The use of charge conjugate reactions is implied unless otherwise indicated.

T. Skwarnicki, DESY-F31-86-02.

A URL OR OTHER METHOD FOR ACCESSING THE SUPPLEMENTAL MATERIAL WILL BE PROVIDED BY APS EDITORIAL STAFF. THE LINK/INFO WILL BE HERE.

Introduction

This Supplemental Material includes:

- Figure 2, plotting the A_{CP} results as a function of q^2;
- Figure 3, plotting the differential branching fraction as a function of m_{X_s};
- Table II, giving in each individual q^2 and m_{X_s} bin the fitted raw number of signal events N_{sig}, as well as the fitted number of random combinatorial $B\bar{B}$ background events $N_{B\bar{B}}$ present in the signal enhanced region with $m_{ES} > 5.27$ GeV/c2;
- Tables III-VIII, detailing individual contributions to the “additive” and “multiplicative” branching fraction systematics (as defined in the article main text), and the model-dependent extrapolation systematics; and
- Figures 4-23, which show the projections of our branching fraction fits onto their respective datasets.
A_{CP} results.

FIG. 2: Results for A_{CP} as a function of q^2. The black points show the q^2_{15} results; the red triangle denotes q^2_0. The q^2_{45} A_{CP} result does not include events in the $\psi(2S)$ veto window.
Differential Branching Fraction in m_{X_s} bins.

FIG. 3: Differential BF as a function of m_{X_s} for electron (blue circles), muon (black squares) and lepton-flavor-averaged final states (red triangles). The errors correspond to the total uncertainties. The histogram shows the SM expectation, which has uncertainties of approximately 10-30% as a function of q^2. Estimated contributions from the vetoed charmonium q^2 regions are included. The horizontal spread of points in each bin is meant only to aid visibility.
Fitted Signal and Background Yields

Table II gives the fitted number of signal events N_{sig} in each individual q^2 and m_{X_s} bin, along with the fitted number of random combinatorial $B\bar{B}$ background events $N_{B\bar{B}}$ present in the signal enhanced region with $m_{ES} > 5.27\text{ GeV}/c^2$. The quoted uncertainties are statistical only.

TABLE II: Fitted number of signal events N_{sig} and random combinatorial $B\bar{B}$ background events $N_{B\bar{B}}$ present in the signal enhanced region with $m_{ES} > 5.27\text{ GeV}/c^2$ by $q^2(\text{GeV}/c^2)$ and $m_{X_s}(\text{GeV}/c^2)$ bin.

<table>
<thead>
<tr>
<th>Bin</th>
<th>Range</th>
<th>$B \rightarrow X_s e^+ e^-$</th>
<th>$B \rightarrow X_s \mu^+ \mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N_{sig}</td>
<td>$N_{B\bar{B}}$</td>
</tr>
<tr>
<td>q_0^2</td>
<td>$1.0 < q^2 < 6.0$</td>
<td>58.5$^{+14.4}_{-13.5}$</td>
<td>348.8 ± 22.2</td>
</tr>
<tr>
<td>q_1^2</td>
<td>$0.1 < q^2 < 2.0$</td>
<td>60.4$^{+11.9}_{-11.1}$</td>
<td>95.3 ± 12.4</td>
</tr>
<tr>
<td>q_2^2</td>
<td>$2.0 < q^2 < 4.3$</td>
<td>20.8$^{+9.4}_{-8.5}$</td>
<td>168.2 ± 15.3</td>
</tr>
<tr>
<td>q_3^2</td>
<td>$4.3 < q^2 < 6.8$</td>
<td>25.4$^{+10.3}_{-9.5}$</td>
<td>181.3 ± 16.2</td>
</tr>
<tr>
<td>q_4^2</td>
<td>$10.1 < q^2 < 12.9$</td>
<td>59.1$^{+14.8}_{-14.0}$</td>
<td>201.0 ± 20.3</td>
</tr>
<tr>
<td>q_5^2</td>
<td>$14.2 < q^2$</td>
<td>41.0$^{+8.3}_{-7.7}$</td>
<td>40.2 ± 10.0</td>
</tr>
<tr>
<td>$m_{X_s,1}$</td>
<td>$0.4 < m_{X_s} < 0.6$</td>
<td>63.0$^{+9.9}_{-9.2}$</td>
<td>3.0 ± 2.9</td>
</tr>
<tr>
<td>$m_{X_s,2}$</td>
<td>$0.6 < m_{X_s} < 1.0$</td>
<td>68.1$^{+11.5}_{-10.9}$</td>
<td>38.0 ± 8.9</td>
</tr>
<tr>
<td>$m_{X_s,3}$</td>
<td>$1.0 < m_{X_s} < 1.4$</td>
<td>38.1$^{+11.3}_{-11.9}$</td>
<td>168.1 ± 17.9</td>
</tr>
<tr>
<td>$m_{X_s,4}$</td>
<td>$1.4 < m_{X_s} < 1.8$</td>
<td>28.5$^{+12.3}_{-12.9}$</td>
<td>483.9 ± 28.6</td>
</tr>
</tbody>
</table>
Tables III-VIII detail the individual contributions to the branching fraction systematics. Uncertainties quoted without a preceding “+” or “−” are ± symmetric.

TABLE III: $B \to X_s e^+ e^-$ branching fraction “multiplicative” systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q_0^2</th>
<th>q_1^2</th>
<th>q_2^2</th>
<th>q_3^2</th>
<th>q_4^2</th>
<th>q_5^2</th>
<th>$m_{X_{s,1}}$</th>
<th>$m_{X_{s,2}}$</th>
<th>$m_{X_{s,3}}$</th>
<th>$m_{X_{s,4}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_B\Pi$</td>
<td>0.012</td>
<td>0.018</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.003</td>
<td>0.004</td>
<td>0.007</td>
<td>0.010</td>
<td>0.011</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>0.031</td>
<td>0.049</td>
<td>0.011</td>
<td>0.011</td>
<td>0.018</td>
<td>0.009</td>
<td>0.011</td>
<td>0.019</td>
<td>0.026</td>
<td>0.030</td>
</tr>
<tr>
<td>Particle Identification efficiency</td>
<td>0.033</td>
<td>0.052</td>
<td>0.012</td>
<td>0.012</td>
<td>0.019</td>
<td>0.010</td>
<td>0.012</td>
<td>0.020</td>
<td>0.027</td>
<td>0.032</td>
</tr>
<tr>
<td>$K^0\phi$ efficiency</td>
<td>0.004</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>π^0 efficiency</td>
<td>0.012</td>
<td>0.024</td>
<td>0.004</td>
<td>0.006</td>
<td>0.004</td>
<td>0.002</td>
<td>0.000</td>
<td>0.018</td>
<td>0.014</td>
<td>0.019</td>
</tr>
<tr>
<td>BDT efficiency correction</td>
<td>0.004</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>0.009</td>
<td>0.004</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>0.002</td>
<td>0.009</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>Total</td>
<td>0.048</td>
<td>0.079</td>
<td>0.017</td>
<td>0.017</td>
<td>0.030</td>
<td>0.014</td>
<td>0.017</td>
<td>0.030</td>
<td>0.041</td>
<td>0.050</td>
</tr>
</tbody>
</table>

TABLE IV: $B \to X_s \mu^+ \mu^-$ branching fraction “multiplicative” systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q_0^2</th>
<th>q_1^2</th>
<th>q_2^2</th>
<th>q_3^2</th>
<th>q_4^2</th>
<th>q_5^2</th>
<th>$m_{X_{s,1}}$</th>
<th>$m_{X_{s,2}}$</th>
<th>$m_{X_{s,3}}$</th>
<th>$m_{X_{s,4}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_B\Pi$</td>
<td>0.004</td>
<td>0.011</td>
<td>0.001</td>
<td>0.002</td>
<td>0.005</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>0.009</td>
<td>0.027</td>
<td>0.002</td>
<td>0.005</td>
<td>0.011</td>
<td>0.007</td>
<td>0.008</td>
<td>0.011</td>
<td>0.010</td>
<td>0.003</td>
</tr>
<tr>
<td>Particle Identification efficiency</td>
<td>0.015</td>
<td>0.042</td>
<td>0.003</td>
<td>0.008</td>
<td>0.020</td>
<td>0.014</td>
<td>0.017</td>
<td>0.017</td>
<td>0.015</td>
<td>0.004</td>
</tr>
<tr>
<td>$K^0\phi$ efficiency</td>
<td>0.001</td>
<td>0.004</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>π^0 efficiency</td>
<td>0.004</td>
<td>0.013</td>
<td>0.001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.002</td>
<td>0.000</td>
<td>0.005</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>BDT efficiency correction</td>
<td>0.002</td>
<td>0.005</td>
<td>0.000</td>
<td>0.001</td>
<td>0.010</td>
<td>0.007</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>0.001</td>
<td>0.005</td>
<td>0.000</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>0.019</td>
<td>0.054</td>
<td>0.004</td>
<td>0.010</td>
<td>0.026</td>
<td>0.018</td>
<td>0.020</td>
<td>0.022</td>
<td>0.019</td>
<td>0.006</td>
</tr>
</tbody>
</table>

TABLE V: $B \to X_s e^+ e^-$ branching fraction “additive” systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q_0^2</th>
<th>q_1^2</th>
<th>q_2^2</th>
<th>q_3^2</th>
<th>q_4^2</th>
<th>q_5^2</th>
<th>$m_{X_{s,1}}$</th>
<th>$m_{X_{s,2}}$</th>
<th>$m_{X_{s,3}}$</th>
<th>$m_{X_{s,4}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal m_{ϕ} pdf shape</td>
<td>+0.039</td>
<td>+0.092</td>
<td>+0.007</td>
<td>+0.014</td>
<td>+0.034</td>
<td>+0.011</td>
<td>+0.021</td>
<td>+0.036</td>
<td>+0.032</td>
<td>+0.057</td>
</tr>
<tr>
<td>Signal L_R pdf shape</td>
<td>+0.077</td>
<td>+0.159</td>
<td>+0.051</td>
<td>+0.006</td>
<td>+0.142</td>
<td>+0.002</td>
<td>+0.002</td>
<td>+0.050</td>
<td>+0.127</td>
<td>+0.474</td>
</tr>
<tr>
<td>Crossfeed pdf shape</td>
<td>+0.032</td>
<td>+0.074</td>
<td>+0.026</td>
<td>+0.013</td>
<td>+0.067</td>
<td>+0.000</td>
<td>+0.002</td>
<td>+0.013</td>
<td>+0.055</td>
<td>+0.201</td>
</tr>
<tr>
<td>Crossfeed normalization</td>
<td>+0.034</td>
<td>+0.039</td>
<td>+0.014</td>
<td>+0.011</td>
<td>+0.021</td>
<td>+0.008</td>
<td>+0.002</td>
<td>+0.014</td>
<td>+0.027</td>
<td>+0.011</td>
</tr>
<tr>
<td>$B\bar{B}$ pdf shape</td>
<td>+0.159</td>
<td>+0.139</td>
<td>+0.080</td>
<td>+0.086</td>
<td>+0.010</td>
<td>+0.014</td>
<td>+0.006</td>
<td>+0.020</td>
<td>+0.126</td>
<td>+0.367</td>
</tr>
<tr>
<td>$udsc$ pdf shape</td>
<td>+0.123</td>
<td>+0.096</td>
<td>+0.052</td>
<td>+0.070</td>
<td>+0.038</td>
<td>+0.009</td>
<td>+0.005</td>
<td>+0.019</td>
<td>+0.099</td>
<td>+0.351</td>
</tr>
<tr>
<td>$udsc$ normalization</td>
<td>+0.063</td>
<td>+0.106</td>
<td>+0.026</td>
<td>+0.032</td>
<td>+0.035</td>
<td>+0.014</td>
<td>+0.005</td>
<td>+0.021</td>
<td>+0.087</td>
<td>+0.181</td>
</tr>
<tr>
<td>Charmonium pdf shape</td>
<td>+0.019</td>
<td>+0.059</td>
<td>+0.009</td>
<td>+0.011</td>
<td>+0.019</td>
<td>+0.006</td>
<td>+0.003</td>
<td>+0.010</td>
<td>+0.030</td>
<td>+0.055</td>
</tr>
<tr>
<td>Charmonium normalization</td>
<td>+0.007</td>
<td>+0.039</td>
<td>+0.005</td>
<td>+0.006</td>
<td>+0.009</td>
<td>+0.003</td>
<td>+0.003</td>
<td>+0.013</td>
<td>+0.031</td>
<td>+0.057</td>
</tr>
<tr>
<td>Total</td>
<td>+0.055</td>
<td>+0.020</td>
<td>+0.019</td>
<td>+0.032</td>
<td>+0.115</td>
<td>+0.005</td>
<td>+0.006</td>
<td>+0.034</td>
<td>+0.126</td>
<td>+0.231</td>
</tr>
</tbody>
</table>

13
TABLE VI: $B \to X_s \mu^+ \mu^-$ branching fraction “additive” systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q^2_1</th>
<th>q^2_2</th>
<th>q^2_3</th>
<th>q^2_4</th>
<th>q^2_5</th>
<th>$m_{X_s,1}$</th>
<th>$m_{X_s,2}$</th>
<th>$m_{X_s,3}$</th>
<th>$m_{X_s,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal m_{ps} pdf shape</td>
<td>$+0.012$</td>
<td>$+0.008$</td>
<td>$+0.008$</td>
<td>$+0.012$</td>
<td>$+0.022$</td>
<td>$+0.019$</td>
<td>$+0.019$</td>
<td>$+0.019$</td>
<td>$+0.006$</td>
</tr>
<tr>
<td>Signal L_R pdf shape</td>
<td>-0.007</td>
<td>-0.018</td>
<td>-0.004</td>
<td>-0.006</td>
<td>-0.008</td>
<td>-0.012</td>
<td>-0.015</td>
<td>-0.019</td>
<td>-0.004</td>
</tr>
<tr>
<td>Crossfeed pdf shape</td>
<td>$+0.018$</td>
<td>$+0.037$</td>
<td>$+0.029$</td>
<td>$+0.010$</td>
<td>$+0.039$</td>
<td>$+0.014$</td>
<td>$+0.003$</td>
<td>$+0.031$</td>
<td>$+0.077$</td>
</tr>
<tr>
<td>Crossfeed normalization</td>
<td>-0.020</td>
<td>-0.123</td>
<td>-0.011</td>
<td>-0.006</td>
<td>-0.035</td>
<td>-0.015</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.026</td>
</tr>
<tr>
<td>B^0 decay pdf shape</td>
<td>-0.020</td>
<td>-0.008</td>
<td>-0.002</td>
<td>-0.013</td>
<td>-0.017</td>
<td>-0.006</td>
<td>-0.001</td>
<td>-0.007</td>
<td>-0.039</td>
</tr>
<tr>
<td>udsc pdf shape</td>
<td>$+0.050$</td>
<td>$+0.083$</td>
<td>$+0.013$</td>
<td>$+0.005$</td>
<td>$+0.024$</td>
<td>$+0.013$</td>
<td>$+0.001$</td>
<td>$+0.033$</td>
<td>$+0.064$</td>
</tr>
<tr>
<td>udsc normalization</td>
<td>-0.050</td>
<td>-0.005</td>
<td>-0.007</td>
<td>-0.078</td>
<td>-0.021</td>
<td>-0.012</td>
<td>-0.000</td>
<td>-0.029</td>
<td>-0.070</td>
</tr>
<tr>
<td>Charmionium pdf shape</td>
<td>-0.069</td>
<td>-0.030</td>
<td>-0.032</td>
<td>$+0.567$</td>
<td>$+0.019$</td>
<td>$+0.003$</td>
<td>$+0.002$</td>
<td>$+0.024$</td>
<td>$+0.026$</td>
</tr>
<tr>
<td>Charmionium normalization</td>
<td>$+0.134$</td>
<td>$+0.083$</td>
<td>$+0.085$</td>
<td>$+0.102$</td>
<td>$+0.039$</td>
<td>$+0.004$</td>
<td>$+0.007$</td>
<td>$+0.032$</td>
<td>$+0.098$</td>
</tr>
<tr>
<td>Hadronic misidentification pdf shape</td>
<td>$+0.098$</td>
<td>$+0.099$</td>
<td>$+0.061$</td>
<td>$+0.060$</td>
<td>$+0.051$</td>
<td>$+0.030$</td>
<td>$+0.029$</td>
<td>$+0.034$</td>
<td>$+0.099$</td>
</tr>
<tr>
<td>Hadronic misidentification normalization</td>
<td>-0.087</td>
<td>-0.085</td>
<td>-0.063</td>
<td>-0.054</td>
<td>-0.044</td>
<td>-0.026</td>
<td>-0.028</td>
<td>-0.035</td>
<td>-0.169</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.098$</td>
<td>$+0.099$</td>
<td>$+0.061$</td>
<td>$+0.060$</td>
<td>$+0.051$</td>
<td>$+0.030$</td>
<td>$+0.029$</td>
<td>$+0.034$</td>
<td>$+0.099$</td>
</tr>
</tbody>
</table>

TABLE VII: $B \to X_s e^+ e^-$ branching fraction model-dependent extrapolation systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q^2_1</th>
<th>q^2_2</th>
<th>q^2_3</th>
<th>q^2_4</th>
<th>q^2_5</th>
<th>$m_{X_s,2}$</th>
<th>$m_{X_s,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetset tunings</td>
<td>$+0.060$</td>
<td>$+0.011$</td>
<td>$+0.011$</td>
<td>$+0.011$</td>
<td>$+0.001$</td>
<td>$+0.001$</td>
<td>$+0.001$</td>
</tr>
<tr>
<td>$\pm 50%$ $N_{e\theta} > 1$</td>
<td>0.249</td>
<td>0.047</td>
<td>0.038</td>
<td>0.025</td>
<td>0.002</td>
<td>0.130</td>
<td>0.030</td>
</tr>
<tr>
<td>$\pm 50%$ K multiplicity</td>
<td>0.046</td>
<td>0.008</td>
<td>0.006</td>
<td>0.002</td>
<td>0.000</td>
<td>0.022</td>
<td>0.000</td>
</tr>
<tr>
<td>$\pm 50%$ π^+ multiplicity</td>
<td>0.196</td>
<td>0.036</td>
<td>0.028</td>
<td>0.012</td>
<td>0.000</td>
<td>0.100</td>
<td>0.024</td>
</tr>
<tr>
<td>$\pm 1\sigma$ $B \to K^{(*)} \ell^+ \ell^-$ BF's</td>
<td>$+0.115$</td>
<td>$+0.024$</td>
<td>$+0.021$</td>
<td>$+0.018$</td>
<td>$+0.002$</td>
<td>$+0.007$</td>
<td>$+0.004$</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.448$</td>
<td>$+0.053$</td>
<td>$+0.038$</td>
<td>$+0.003$</td>
<td>$+0.124$</td>
<td>$+0.012$</td>
<td>$+0.128$</td>
</tr>
</tbody>
</table>

TABLE VIII: $B \to X_s e^+ e^-$ branching fraction model-dependent extrapolation systematic uncertainties.

<table>
<thead>
<tr>
<th>Variation</th>
<th>q^2_1</th>
<th>q^2_2</th>
<th>q^2_3</th>
<th>q^2_4</th>
<th>q^2_5</th>
<th>$m_{X_s,3}$</th>
<th>$m_{X_s,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetset tunings</td>
<td>$+0.035$</td>
<td>$+0.002$</td>
<td>$+0.005$</td>
<td>$+0.009$</td>
<td>$+0.001$</td>
<td>$+0.025$</td>
<td>$+0.015$</td>
</tr>
<tr>
<td>$\pm 50%$ $N_{e\theta} > 1$</td>
<td>-0.041</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.012</td>
<td>-0.002</td>
<td>-0.020</td>
<td>-0.014</td>
</tr>
<tr>
<td>$\pm 50%$ K multiplicity</td>
<td>0.154</td>
<td>0.011</td>
<td>0.020</td>
<td>0.021</td>
<td>0.002</td>
<td>0.047</td>
<td>0.012</td>
</tr>
<tr>
<td>$\pm 50%$ π^+ multiplicity</td>
<td>0.029</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>0.000</td>
<td>0.008</td>
<td>0.000</td>
</tr>
<tr>
<td>$\pm 1\sigma$ $B \to K^{(*)} \ell^+ \ell^-$ BF's</td>
<td>$+0.027$</td>
<td>$+0.002$</td>
<td>$+0.004$</td>
<td>$+0.007$</td>
<td>$+0.001$</td>
<td>$+0.015$</td>
<td>$+0.001$</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.130$</td>
<td>$+0.032$</td>
<td>$+0.020$</td>
<td>$+0.007$</td>
<td>$+0.003$</td>
<td>$+0.124$</td>
<td>$+0.012$</td>
</tr>
</tbody>
</table>

Fit Projections

The pages following show the $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ branching fraction fit projections for each q^2 and m_{X_s} bin.
FIG. 4: Fit to $B \to X_s e^+e^-$ in the q_0^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 5: Fit to $B \to X_s e^+ e^-$ in the q_1^2 bin. Top row is the m_{ES} fit projection, top right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 6: Fit to $B \to X_s e^+ e^-$ in the q_2^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
B → X_s e^+ e^- Fit Projections: \(q_3^2 \)

FIG. 7: Fit to \(B \rightarrow X_s \, e^+ e^- \) in the \(q_3^2 \) bin. Top row left is the \(m_{ES} \) fit projection, top row right is the \(L_R \) fit projection; middle row left is a signal-enhanced \(m_{ES} \) fit projection for events with \(L_R > 0.8 \), middle row right is a signal-enhanced \(L_R \) fit projection for events in the \(m_{ES} > 5.27 \text{GeV/c}^2 \) signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 8: Fit to $B \rightarrow X_s e^+ e^-$ in the q^2_4 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 9: Fit to $B \rightarrow X_s e^+ e^-$ in the q^2_5 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27 \text{ GeV/c}^2$ signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 10: Fit to $B \rightarrow X_s e^+ e^-$ in the $m_{X_s,1}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c² signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
B$\to X_s e^+ e^-$ Fit Projections: $m_{Xs,2}$

FIG. 11: Fit to $B \to X_s e^+ e^-$ in the $m_{Xs,2}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 12: Fit to $B \to X_s e^+ e^-$ in the $m_{X_s,3}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 13: Fit to $B \to X_s e^+ e^-$ in the $m_{X_s,4}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 14: Fit to $B \to X_s \mu^+\mu^-$ in the q_0^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 15: Fit to $B \rightarrow X_{s} \mu^{+} \mu^{-}$ in the q_{1}^{2} bin. Top row left is the m_{ES} fit projection, top row right is the L_{R} fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_{R} > 0.8$, middle row right is a signal-enhanced L_{R} fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
$B \rightarrow X_s \mu^+ \mu^-$ Fit Projections: q^2

![Graphs showing fit projections for $B \rightarrow X_s \mu^+ \mu^-$ in the q^2 bin.](image)

FIG. 16: Fit to $B \rightarrow X_s \mu^+ \mu^-$ in the q^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 17: Fit to $B \to X_s \mu^+ \mu^-$ in the q_3^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 18: Fit to $B \to X_s \mu^+ \mu^-$ in the q^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 19: Fit to $B \rightarrow X_s \mu^+\mu^-$ in the q_5^2 bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c^2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 20: Fit to $B \rightarrow X_s \mu^+ \mu^-$ in the $m_{X_s,1}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 21: Fit to $B \rightarrow X_s \mu^+ \mu^-$ in the $m_{X_s,2}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
B$\rightarrow X_s \mu^+ \mu^-$ Fit Projections: $m_{Xs,3}$

Full Fit Range

- **Signal Enhanced Range: $L_R > 0.8$**
- **Signal Enhanced Range: $m_{ES} > 5.27$ GeV/c2**

Fit Likelihood Projection

- **Total PDF**
- **Signal**
- **Signal Crossfeed**
- **BB Bkgd.**
- **udsc Bkgd.**
- **Charmonium Bkgd.**
- **Hadronic Misid Bkgd.**

FIG. 22: Fit to $B \rightarrow X_s \mu^+ \mu^-$ in the $m_{Xs,3}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.
FIG. 23: Fit to $B \rightarrow X_s \mu^+ \mu^-$ in the $m_{X_s,4}$ bin. Top row left is the m_{ES} fit projection, top row right is the L_R fit projection; middle row left is a signal-enhanced m_{ES} fit projection for events with $L_R > 0.8$, middle row right is a signal-enhanced L_R fit projection for events in the $m_{ES} > 5.27$ GeV/c2 signal region. The lower left hand plot is the profile likelihood curve for the 2D data fit.