Cluster Nature of Li7 and Be7

T. A. Tombrello and G. C. Phillips
Rice University, Houston, Texas
(Received November 17, 1960)

Measurements of the capture \(\gamma\)-radiation processes, mass \(3+\alpha\rightarrow 7+\gamma\) and nucleon+Li7 \(
ightarrow\) mass \(7+\gamma\), give information about the cluster structure of the mirror nuclei Li7 and Be7. The cluster model predicts that the ground state and low excited states of these nuclei should have large reduced widths \(\theta_{3+\alpha}2\) for the configuration mass \(3+\alpha\) particle and small reduced widths \(\theta_{1+\gamma}2\) for the configuration nucleon + Li7. Scattering experiments provide accurate initial, capturing, wave functions, and an assumption of the cluster nature of the final, bound, states allows the electromagnetic capture cross sections to be calculated and compared to experiment. The reduced widths deduced show that \(\theta_{3+\alpha}2\) is large, \(\theta_{1+\gamma}2\) is small, and that the ground states and first excited states of Li7 and Be7 are primarily of the two-body cluster form mass \(3+\alpha\) particle.

INTRODUCTION

In the past two years considerable new work has been done on a description of nuclei in terms of two-body clusters.1,2 This renewed interest may be traced primarily to the hope that the "cluster model" might serve to unify the other nuclear models and to overcome some of their deficiencies. Although the basic ideas of the cluster model are not new and may be traced back to the \(\alpha\)-particle model and the resonating-group formulation of Wheeler,3 the new developments have extended the model's range of usefulness and have been fairly successful in explaining many dynamical features of nuclear phenomena.

The success or failure of the cluster model depends upon the degree to which the stable and semistable states of a complex nucleus may be described as resonances of pairs of complex clusters. The Li7-Be7 system is the lightest mirror pair for which enough data are presently available to give a check on the validity of the cluster model predictions for the bound states of the system. The "cluster picture" of these nuclei for low excitation energies is that of an \(\alpha\) particle and a mass 3 particle in a relative \(P\) state. While this description is similar to that of the shell model, the cluster model additionally supposes that the residual forces between the three \(P\)-shell particles serve to produce a semistable cluster structure similar to a triton or He3. The low-energy excited states of such a system are also expected to show evidence of this structure; measurement of elastic scattering for He3(\(\alpha\alpha\))He7 has shown that the \(\frac{3}{2}^-\) state in Be7 has the expected cluster form.4 This scattering data has also been interpreted as giving indirect evidence that the ground and first excited states of the Li7-Be7 are of the \(\alpha+\) mass 3 cluster form.

The purpose of this paper is to show that electromagnetic transitions reveal this same cluster structure for the bound states of these nuclei. This is accomplished by calculating the capture cross sections for the mass 3(\(\alpha\gamma\))mass 7 and nucleon(Li7\(\gamma\))mass 7 reactions. This experimental example also serves to emphasize the extent that it is possible to make assertions about the spatial localization of the nucleons within the nucleus. By the uncertainty principle, any determination of spatial ordering must be accompanied by a suitable dispersion in the energy. In the examples considered in this paper, the results of measurements of scattering and capture over a range of energies allow definite details of the capturing, continuum wave functions to be determined. For example, the \(S\)- and \(P\)-wave scattering phase shifts derived from He3+He4 scattering4 determine these partial wave functions rather well for all distances of He3-He4 separation greater than the range of the strong nuclear forces, and also determine the range. It should be noted that the only way that phase shifts and radii can be determined with any uniqueness is by measurements over a range of energies that start at low energies, and by also knowing the number of bound states of each partial wave.

The final, captured state wave function is, of course, unknown. In this paper a final-state wave function will be assumed as so as to be appropriate to the model to be investigated.

The comparison of the calculated capture \(\gamma\)-ray transition rates with the capture data provides a means of obtaining the partial reduced widths of the ground states and first excited states for the configurations mass 3+\(\alpha\) and nucleon+Li7, respectively. The magnitudes of these reduced widths, \(\theta_{3+\alpha}2\) for the Li7+nucleon configuration, and \(\theta_{1+\gamma}2\) for the He4+mass 3 particle configuration, show, respectively, the extent to which the system is described by an extreme independent-particle model (i.e., \(\theta_{3+\alpha}2\approx 1\)) or by the cluster model (i.e., \(\theta_{1+\gamma}2\approx 1\)).

EXPERIMENTAL DATA

The levels in the Li7-Be7 system are shown in Fig. 1.5 (The absence of a state at \(\approx 6.5\) Mev will be discussed

\(\uparrow\) Supported in part by the U. S. Atomic Energy Commission.

\(1\) K. Wildermuth and T. Kanellopoulos, Nuclear Phys. 7, 150 (1958).

\(3\) J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

\(5\) F. Ajzenberg-Selove and T. Lauritsen, Nuclear Phys. 11, 28 (1959).
later.) The angular momenta and energies of these states are in general well explained on the basis of the intermediate coupling calculations of Inglis. In addition, Kurath was able to fit the correct ordering of these states and, with the exception of the state, was able to give the correct relative spacing of the levels. An equally good fit has also been accomplished in the cluster model calculations of Wildermuth. The experimental data that are relevant to our calculations will be discussed briefly.

(1) The capture reactions He^4(α,γ)Be^7 and He^4(α,γ)-Li^7 have been investigated experimentally for α-particle energies between 0.5 Mev and 1.3 Mev. The data show that the reaction proceeds by nonresonant capture and that the angular distribution of the radiation is approximately isotropic. These data indicate that the radiation is chiefly electric dipole radiation (E1) with, perhaps, a small amount of magnetic dipole (M1) radiation appearing at higher bombarding energies.

(2) The phase-shift analysis of He^4(He^4,He^4)He^4 by Miller and Phillips shows that the S-wave scattering phase shift is well described by a hard-sphere interaction, while the P-wave scattering phase shifts can be fitted with a bound-state plus hard-sphere interaction. The energy variation of the phase shifts δ, δ and δ+, yield hard-sphere radii, respectively, of 2.8×10^{-13} cm, 3.5×10^{-13} cm, and 4.4×10^{-13} cm. A similar phase shift analysis of the existing He^4(t,t)He^4 data reproduced these hard-sphere radii.

(3) The capture of protons by Li^7 has been determined by Warren et al. at energies below 1 Mev. The results show that the Li^7(p,γ)Be^7 reaction proceeds by nonresonant capture, while the angular distribution of the radiation rules out the possibility of S-wave capture. Only P-wave capture is found to be consistent with the data and the radiation is either magnetic dipole (M1), or electric quadrupole (E2), or a mixture of both. This fact in itself tends to preclude the existence of a virtual S state of Be^7 in this energy region. In addition to this information, recent work has shown that the earlier reports of this state arose from a contaminant.

CALCULATIONS

The Hamiltonian for the interaction of a γ ray and the nucleus in the capture process is in general given by

\[H_1 = (\mathbf{j} \cdot \mathbf{A} + \mathbf{u} \cdot \mathbf{B})^* \]

where \(\mathbf{j} \) is the current operator, \(\mathbf{A} \) is the vector potential of the radiation field, \(\mathbf{u} \) is the magnetic dipole operator, and \(\mathbf{B} = \nabla \times \mathbf{A} \).

If the system is now considered as being composed of two clusters of mass \(m_1 \) and \(m_2 \), charge \(Z_1 \) and \(Z_2 \), and magnetic moment \(\mu_1 \) and \(\mu_2 \), and assuming that the total Hamiltonian for the two-cluster system contains only central forces, the matrix element for the capture interaction may be obtained. For electric multipole capture of order \(\lambda \), where the effects of the motion of the magnetic dipole moments may be neglected, and where the wavelength of the γ ray is long compared to nuclear dimensions, this matrix element is

\[\frac{d \sigma}{d \Omega} = \frac{4 \pi \alpha^2}{3 \hbar^2} \left| \mathbf{M}_{\lambda} \right|^2 \]

where \(\mathbf{M}_{\lambda} \) is the rotational matrix element of the transition.

\begin{align*}
M_{\mu\lambda} &= i^\lambda (-1)^{\lambda+1} \left(\frac{\mu_0 c^2 h}{2\omega} \right)^\lambda \left(\begin{array}{cc} -i & (k_s) \frac{c}{2\omega} \frac{2\pi \lambda (\lambda+1)}{2\lambda-1} \\ (k_s) & \frac{c}{2\omega} \frac{2\pi \lambda (\lambda+1)}{2\lambda-1} \end{array} \right) \\
\times & \left(\frac{\mu_0}{m_1} \right)^\lambda \left(\begin{array}{cc} Z_1 & \frac{\gamma}{\sqrt{\gamma^2 + \lambda^2}} \frac{Z_1}{\sqrt{\gamma^2 + \lambda^2}} \\
\frac{m_1}{\gamma} \left(\begin{array}{cc} 0 & 0 \\
0 & 0 \end{array} \right) \end{array} \right) \\
\times & \sum D_{\lambda \lambda^\prime} \frac{1}{\sqrt{\gamma^2 + \lambda^2}} \left(\begin{array}{cc} 1 \\
0 \end{array} \right) \left(\begin{array}{cc} 1 \\
0 \end{array} \right)
\end{align*}

In this expression, \(\mu_0 \) is the permeability of free space, \(h \) is Planck’s constant, \(c \) is the velocity of light, and \(\omega \) is the angular frequency of the \(\gamma \) ray. \(D_{\lambda \lambda^\prime} \) is the element of the rotation matrix, \(\theta_s \) is the polar and azimuthal angles of the \(\gamma \) radiation, and \(p \) is the state of circular polarization of the \(\gamma \) ray whose wave number is \(k_s \). The initial and final wave functions of the system are denoted by \(\phi_i \) and \(\phi_f \), \((2\lambda-1)!(2\lambda-3)\cdots 5 \times 3 \times 1 \).

For magnetic dipole capture in the long-wavelength approximation, the absolute value of the matrix element is

\[|M_{\mu\lambda}| = \frac{\mu_0 c^2 h}{2\omega} \left(\frac{\mu_0}{m_1} \right)^\lambda \left\{ \begin{array}{c}
\gamma \left(\begin{array}{cc}
1 \\
0
\end{array} \right) \left(\begin{array}{cc}
0 \\
0
\end{array} \right) \\
\frac{m_1}{\gamma} \left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)
\end{array} \right\} \left(\begin{array}{c}
\gamma \left(\begin{array}{cc}
1 \\
0
\end{array} \right) \\
\frac{m_1}{\gamma} \left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)
\end{array} \right) \sum D_{\lambda \lambda^\prime} \frac{1}{\sqrt{\gamma^2 + \lambda^2}} \left(\begin{array}{c}
1 \\
0
\end{array} \right) \left(\begin{array}{c}
1 \\
0
\end{array} \right),
\]

where \(\rho = k \ell r, \eta = \mu Z_s Z_e \ell^2 / h^2 k_s, l \) is the orbital angular momentum of the final state, and \(u_i \) is subject to the normalization condition that

\[\frac{R u_i^2 (r)}{3\rho^2} + \int_R^\infty u_i^2 (r) dr = 1. \]

In this expression, \(R \) is the nuclear radius and \(\theta_i = (2\pi R^2 / 3\hbar^2) \gamma_i, \gamma_i \) being the reduced width of the state.

For the generation of the initial state wave function it was necessary to evaluate both the regular and irregular Coulomb wave functions. A modified expression for the J. WKB wave function has been found \(15 \) that is correct to about 1% of tabulated values. The expression is valid for this accuracy for \(\rho > \rho_{\text{max}}, \) and the first maximum of the regular Coulomb wave function occurs at \(\rho_{\text{max}}. \) Using this expression, one obtains

\[G_i = G_i (k \ell r) \cos \delta_i + G_i (k \ell r) \sin \delta_i, \]

where \(\delta_i \) is the scattering phase shift for the \(l \)-th partial wave, \(\sigma_i \) is the Coulomb phase shift of the \(l \)-th partial wave, \(F_i \) and \(G_i \) are the regular and irregular Coulomb wave functions, and

\[\phi \eta = \frac{\rho^2 - 2 \eta \rho - l(l+1)}{(\rho^2 - 2 \eta \rho - l(l+1))^\lambda} \]

This expression was used to calculate a pair of starting values for the initial-state wave function. The wave function was then continued back to the nuclear surface by using the approximate relation:

\[G_i (r-h) = -G_i (r+h) + G_i (r) \left(\frac{2 \eta h^2}{r^2} \right) \left(\frac{\rho^2 - 2 \eta \rho - l(l+1)}{(\rho^2 - 2 \eta \rho - l(l+1))^\lambda} \right). \]

The numerical integration of the radial integral was done step-by-step by the trapezoidal rule as each new value of \(G_i \) was generated. An interval of about 0.15 for \(\rho \) was used.

The accuracy of both the continuation process and the generation of initial values has been checked against tables and has been found to be quite satisfactory. The error due to the use of the approximate final-state wave function is difficult to estimate, but it is doubtful that the final answers would be very sensitive to small changes in its form.

\(13 \) R. A. Thomas, Phys. Rev. 81, 1061 (1951).
\(14 \) T. A. Griffl and T. A. Tombrello (unpublished).
The only major approximation involved in this treatment is the neglecting of that portion of the matrix element that is due to the integration over the nuclear volume. The consequences of this approximation will be investigated separately for all the cases considered.

RESULTS

A. Li^7

Since the scattering of S- and P-wave tritons from helium is well described in terms of a hard sphere interaction, the initial state wave function for the reaction $^3T(a,\gamma)Li^7$ is approximately zero at the nuclear surface. This fact makes it possible to neglect the interior portion of the radial integral without introducing a significant error. The results of this calculation for an $E1$ transition following S-wave capture are shown in Fig. 2. The contribution due to the $M1$ radiation following P-wave capture has been calculated, and it was found that $\sigma_{M1}(0.02 \mu b \text{ at } E_a=1 \text{ MeV and } \sigma_{M1}(0.05 \mu b \text{ at } E_a=2 \text{ MeV. For this reason the effect due to the } M1 \text{ transition has been ignored.}$

The experimental data shown in Fig. 2 are those of Holmgren; the adjustment of the calculated to the measured values of the cross section yields a value of $\theta_{3+}^2 \approx 0.06$ for both the ground state and the first excited state. The data of Riley et al. at 1.6 MeV yield $\theta_{3+}^2 \approx 0.12$ for both states. The observed branching ratio $\sigma(\text{ground state})/\sigma(\text{first excited state}) = 2.5$ is to be compared with the calculated value of 2.35.

A rough calculation of the thermal neutron capture by Li^7 was also made and compared to the experimental data. The values of θ_{1+}^2 for both bound states were shown to be less than 0.003.

B. Be^7

The experimental data for the reaction He^3(a,\gamma)Be^7 was examined in a similar manner. As in the previous case neglecting the portion of the matrix element corresponding to the integration over the nuclear volume introduces no serious source of error. The results are shown in Fig. 3. Since the S-wave hard-sphere phase shift $\delta_{0} \approx -0.6^\circ$ at $E_a = 1$ MeV, it is of interest to note the sensitivity of the capture cross section to small changes in the phase shift. It is possible that a slightly better fit to the data could be obtained by making δ_{0} positive. Since δ_{0} would only have to be of the order of 0.5°, this certainly cannot be ruled out from the results of the phase-shift analysis. As in the previous case the contribution due to the $M1$ radiation was negligible.

Since the branching ratio is not well known for this reaction, it was assumed that θ_{3+}^2 was the same for both bound states. The resulting fit to the data gave $\theta_{3+}^2 \approx 0.17$.

Again a rough calculation for the Li^7(\alpha,\gamma)Be^7 reaction was made. It was found that it was possible to set an upper limit on θ_{3+}^2 for the two states of 0.006. This value was obtained after calculating both the $E1$ and $M1$ cross sections. θ_{3+}^2 had to be small enough that the $E1$ radiation could not be observed, but large enough that it was possible to fit the data by assuming a reasonable value of the $\delta_{m-1, m-1}$ phase shift. The value of 0.006 requires only that $\delta_{3,2} = 15^\circ$ and that δ_{0} was described by a hard-sphere interaction. It is to be emphasized that even though this is only an approximate treatment and neglects the possibility of an $E2$ transition, it represents an extreme upper limit on the value of θ_{3+}^2.

CONCLUSIONS

The calculations described have given the consistent result that $\theta_{3+}^2 = 20\theta_{1+}^2$ for the ground states and first excited states of Li7 and Be7. This result is, of course, exactly what would be expected from the cluster model picture of these nuclei. The results are summarized in Table I.

The values of the tabulated reduced widths θ^2 refer to both the ground states and the first excited states of the nuclei. The mass-3+α reduced width θ_{3+}^2 (Li7, ground state) has been shown to be approximately equal to the θ_{2+}^2 (Li7, first excited state) by a consideration of the observed branching ratio. Because of the experimental uncertainty in the branching ratio, a comparison of θ_{2+}^2 for the states of Be7 was impossible; by analogy with Li7 the two θ_{3+}^2 for Be7 were thus taken to be equal. Nevertheless, the branching ratio is known well enough for Be7 to show that θ_{2+}^2(Be7, ground state) must be of the same order of magnitude as θ_{2+}^2(Be7, first excited state). The reduced widths θ_{3+}^2 for the configurations nucleon+Li4 are small in all cases.

In addition to this confirmation of the cluster structure of the bound states of these nuclei, these results also show the applicability of such calculations and capture experiments to the detailed study of nuclear structure.

ACKNOWLEDGMENTS

The authors wish to thank the Shell Development Company and the University of Houston for the use of their computational facilities. They also wish to thank Dr. Harry Holmgren, Dr. W. Tobocman, and T. A. Griffy for helpful discussions.