CaltechAUTHORS
  A Caltech Library Service

Charging damage during residual metal overetching

Hwang, Gyeong S. and Giapis, Konstantinos P. (1999) Charging damage during residual metal overetching. Applied Physics Letters, 74 (7). pp. 932-934. ISSN 0003-6951. http://resolver.caltech.edu/CaltechAUTHORS:HWAapl99

[img]
Preview
PDF
See Usage Policy.

349Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:HWAapl99

Abstract

Feature-scale charging simulations during gate electrode overetching in high-density plasmas reveal that the thickness of the insulating mask plays a critical role in charging damage. When thinner masks are used, the electron irradiance of the conductive part of the sidewalls increases, causing the charging potentials of the polysilicon lines to decrease, thus reducing the probability for catastrophic tunneling currents through the underlying oxide. Simultaneously, changes in the charging potential distribution at the bottom SiO2 surface cause a significant perturbation in the local ion dynamics which, in turn, adversely affects notching. Notches are predicted to form everywhere in a line-and-space structure, even when the lines are electrically isolated. The results suggest that the trend toward thinner (hard) masks—to keep the aspect ratio low as device dimensions shrink—should reduce oxide failure but at the cost of more severe notching.


Item Type:Article
Additional Information:©1997 American Institute of Physics. (Received 24 January 1997; accepted 16 April 1997) This material was based on work partially supported by NSF (ECS-9729968) and a Camille Dreyfus Teacher-Scholar Award to K.P.G. An Applied Materials Scholarship to G.S.H. is gratefully acknowledged.
Subject Keywords:masks; sputter etching; silicon; elemental semiconductors; surface potential
Record Number:CaltechAUTHORS:HWAapl99
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:HWAapl99
Alternative URL:http://dx.doi.org/10.1063/1.365617
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4801
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:07 Sep 2006
Last Modified:26 Dec 2012 09:01

Repository Staff Only: item control page