Baffle Type Energy Dissipator for Pipe Outlets

By Vito A. Vanoni and James T. Rostron

(Continued from the August issue)

All of the information needed to design a pipe outlet structure is summarized in Figs. 7 and 8 by means of graphs, sketches, and formulas. In arranging this information it has been assumed that the design discharge is determined by field conditions only and that the width of the structure is fixed within limits by conditions at the site. The main points in the design are discussed below with a view to clarifying them and facilitating their application.

Design Formulas

Fundamental Hydraulic Formulas. The design formulas are expressed in terms of two fundamental hydraulic variables, F_0, the velocity head factor, for the pipe flow, and d_c, the critical depth for the width, W. The first of these is expressed by

$$F_0 = \frac{V_0^2}{gD_0} = \frac{16Q_0^2}{\pi^2 gD_0^3}$$

where the expression on the right is obtained by introducing the equation,

$$V_0 = \frac{Q_0}{A_0} = \frac{Q_0}{\pi D_0^2 / 4}$$

d_c is given by the familiar expression

$$d_c = \frac{3}{4} \frac{Q_0^2}{W^2 g}$$

Substituting Q_0 from equation [1] into equation [2a] gives

$$d_c = D_0 \left(\frac{\pi}{4} \times \frac{D_0}{W} \right)^{5/3}$$

The energy equation for the system may be written in the form

$$E = (K_c + K_r + K_m + 1) \frac{V_0^2}{2g} + b_0$$

where E is the total available head, and K_c, K_r, K_m are respectively, the loss coefficients for entrance, friction in the pipe, and miscellaneous losses. By substituting b_0 for $V_0^2/2g$ and by estimating average values of the loss coefficients and the back pressure, b_0, equation [3a] becomes

$$b_0 = 0.3E$$

Lacking better information, this is a good value of b_c to use in making the first trial calculation to determine D_c. The method of calculation is shown in detail under "Design Example."

Formulas for Baffle-Box Dimensions. All of the dimensions of the baffle box are defined by Figs. 1 and 7 and their values are given as formulas in Fig. 7. These dimensions have been assigned lower limits that are determined by practical, hydraulic, and structural considerations. For instance, the minimum value of the baffle height, h_b, is such that sufficient room is allowed to turn the jet issuing from the pipe. It is easy to see that this value must be more than the pipe diameter, and the minimum value of $1.5D_c$ determined by experiment, therefore appears reasonable.

Formula for Back Pressure on the Pipe. The formula for back pressure is based on the equation

$$b_0 = h_b + \frac{V_0^2}{2g}$$

where V_0 is the velocity through the gap between the cap and the headwall. V_0 may be taken as

$$V_0 = \frac{Q_0}{W^2 K d_c}$$

where K is a numerical factor which varies with the velocity head factor and the width ratio of the structure. Introducing [8a] into [8b] gives

$$b_0 = h_b + \frac{1}{K^2} \frac{Q_0^2}{2W^2 d_c^2 g}$$

Analysis of the data on back pressure showed that the coefficient, $1/K^2$, could be expressed as

$$1/K^2 = 4.0 \times (W/D_c)^{2.0}$$

Introducing this equation into equation [8b] and dividing through by D_0 gives

$$b_0/D_0 = h_b + 4.0 \times (W/D_c)^{2.0} \times \frac{Q_0^2}{2W^2 d_c^2 g D_0}$$

Introducing equations [1] and [2a] gives

$$b_0/D_0 = 2(W/D_c)^{2} + [1.5 + 2.0 (W/D_c)^{2.0}] \times \frac{Q_0^2}{2W^2 d_c^2 g D_0}$$

PIECE OUTLET STRUCTURE - FLOOR BAFFLE TYPE

(Based on the Laboratories Program, 1942)

NOTE: Cap over head wall used only when $h_b > 3.0$

Area of soft wall drain, $a = 0.6D_c \times 0.6$.
Bottom of drain flush with box floor.

CENTERLINE SECTION

Design Data

h_b, f, and W determined by friction conditions. For first trial design calculate h_b from equation (3b) to obtain W, D_r, F_0, and F_0, and then get h_b from chart (b).

h_0 = Design Discharge in cfs.

Q_0 = Discharge thru drain, $Q_0 = 0.2Q$, approx.

$L_r = 3.0D_c$, $L_0 = 2.0D_c$ (5) $h_b = 3.0D_c$, $h_b = 3.0D_c$ (9) $h_b = 3.0D_c$, $h_b = 3.0D_c$ (1)

$h_b = 2D_c$ (5) $h_b = 1.5D_c$ (6) $h_b = 1.5D_c$ (7)

$V_0 = 0.5h_b$, $V_0 = 0.5h_b$, $V_0 = 0.5h_b$, $V_0 = 0.5h_b$, $V_0 = 0.5h_b$

γ, and I, to be determined by structural requirements.

Fig. 7
The curves of Fig. 8(b) were calculated from this equation.

Formulas for Sidewall Dimensions. The height, \(h_0\), of the headwall given by equation [9] in Fig. 7 is sufficient to give adequate freeboard. Since the height of the water surface above the floor of the box is very nearly equal to \(h_0\), the freeboard provided is equal to \(2d_{c}\). Therefore, by making the height of the wall at this point equal to \(3.0d_{c}\), a freeboard of \(d_{c}\) is provided at this point also. The other sidewall dimensions shown in Fig. 7 were determined by experiment.

Splash caps over the corners formed by the headwall and sidewalls are to keep water which rises in the corners from overtopping the walls. They are found necessary only in wider structures since in narrow structures there is no tendency for the water to rise higher near the sides than at the center of the headwall. Splash caps are used on structures with width ratios of 4 or greater. Their effectiveness in increasing the safe overload capacity may be seen in Fig. 9 which shows a structure operating at an overload of about 40 per cent.

Formulas for Stilling Pool Dimensions. The formulas for the stilling pool dimensions follow those developed by Morris and Johnson for the gully control drop. The length, \(L_{2p}\), of the pool which is given by equation [15] is taken directly from the gullies.

\[L_{2p} = 6d_{c} \]

\[L_{2p} = \frac{6h_0}{G_{c}} \]

\[\text{(9b)} \]

\[\text{DROP FLOOR CURVE} \]

\[P_{c} = 6d_{c} \]

\[\text{(10)} \]

\[\text{BACK PRESSURE CURVE} \]

\[h_{c} = h_{1} + \left(\frac{3.3L_{2p}}{R} \right)^{\frac{1}{2}} \]

\[\text{(11)} \]

\[\text{DESIGN CHARTS FOR PIPE OUTLET STRUCTURE FLOOR BAFFLE TYPE} \]

\[C_{s} = 25 + \left(\frac{1.5}{L_{c}} \right) + 0.75 \sqrt{V_{c}} \]

\[\text{(12)} \]

\[\text{APRON LENGTH COEFFICIENT VS RELATIVE HEIGHT OF FALL} \]

\[C_{s} = 25 + \left(\frac{1.5}{L_{c}} \right) + 0.75 \sqrt{V_{c}} \]

\[\text{(12)} \]

\[\text{NOTE:} \]

\[C_{s} \] contours of chart (b) obtained from the solution of eq (12).

\[\text{DESIGN CHARTS FOR PIPE OUTLET STRUCTURE FLOOR BAFFLE TYPE} \]

The value of the length coefficient, \(C_{s}\), is given by curve (c) of Fig. 8. The depth of the pool, \(P_{c}\), is made 0.6\(d_{c}\) (equation [13]) since according to experiments this value gave the best performance. This depth is 20 per cent greater than in the gully drop and is required to handle the more severe conditions resulting mainly from flow through the drains in the baffle. Two longitudinal sills of height 0.25\(P_{c}\) are placed at the quarter points as shown in Fig. 7.

In order to prevent sifting of the baffle box, the top of the end sill of the stilling pool should not be higher than the floor of the box. However, the pool can be lowered as much as desired as long as its length is made according to equation [11].

Drains through Baffle. On the basis of experiments and practical considerations, the four drains through the baffle were made \(1/6D_{c}\) wide by \(\sqrt[3]{4}D_{c}\) high. As shown in Fig. 7, two of the drains are placed flush with the side walls and two are at the quarter points. The bottom of all the drains is placed flush with the baffle box floor.

Structural Dimensions. In the laboratory study, no attempt was made to determine structural dimensions of any of the walls. However, pressures which must be resisted by the structure were measured in the baffle box. For design purposes it will be satisfactory to assume a uniform pressure over the entire baffle equal to 0.25 \((h_{0} + h_{c})\) and a pressure head acting over an area of \(D_{c}\) opposite the pipe outlet equal to 0.75 \((h_{0} + h_{c})\). The pressure head on the headwall and sidewalls may be assumed to vary linearly from \(h_{0}\) at the base to zero at a distance of \(h_{c}\) feet above the base.

The resultant unit pressure on the cap may be assumed as 0.3\((h_{0} + h_{c})\) acting over the entire underside of the cap in the upward direction. It is probable that most of the structural dimensions will be fixed by earth-pressure loads and by considerations other than water pressure.

To prevent chipping and cracking of the exterior corner at the intersection, of the baffle and cap, it is desirable to chamfer the corner. The effect of the chamfer on flow conditions is merely to increase effective length of the stilling pool by the amount of the chamfer because the crest of the fall is moved upstream by that amount. Hence, the maximum value of the chamfer, \(c_{s} = 0.5q_{s}\) specified in Fig. 7, is based entirely on practical and structural reasons, and therefore this value may be varied. It was shown by experiment that the fillet, \(c_{s}\), at the intersection of the wall and the cap can be made as much as 0.3\(c_{s}\) without appreciably affecting the performance of the structure.

DISCUSSION OF RESULTS

Effect of \(W/D_{c}\) on Baffle Box Dimensions. The width ratio determines the proportion of the flow which is deflected upward or toward the sidewalls by the baffle and consequently plays an important part in fixing the dimensions of the baffle box. Formulas [4], [5], [6] and [7] show that as the width is increased and more of the flow is turned sideways the baffle can be lowered and placed nearer to the outlet. It also may be seen that increases slowly with an increase in flow capacity. Since the flow pattern is not affected by the velocity head factor until the water has reached the free surface above the baffle cap, the baffle-box dimensions are not strongly influenced by the discharge rate. When the discharge is increased considerably, only a small increase is required in the size of the baffle box to provide satisfactory performance. Consequently, a particular structure will operate successfully over a considerable range of discharges, up to the design flow of the structure. Thus in the design equations the baffle-box dimensions are a function of \(W\) and \(D_{c}\) primarily and of \(F_{c}\) to a lesser degree. The effect of the width ratio on the flow pattern and design dimensions is illustrated in Fig. 10. Both structures are designed for the same discharge.

In contrast it may be stated that other types of energy dissipation structures, such as those employing the hydraulic jump, require a considerable increase in size when the discharge
Back to Elm Street, U. S. A.

Back from the business of killing—
to the business of living!

Back from scenes of hatred, despair
and destruction to a homeland of
peace, hope and opportunity!

Millions of young Americans are
coming back to thousands of farms
— to thousands of peaceful Elm
Streets in every city, town and village
of America!

They've made up their minds to a lot
of things while they've been away.

They've seen the suffering of homelessterrorized families—people who have
lost their self-respect, their hope, their
health — everything.

They've seen a large part of the world
in ruins, because a few fanatical men
sold "gold bricks" to millions of
people who traded in their freedom
for promises of security—for brightly
painted pictures of a "planned
economy" under an all-wise, all-
powerful government.

And they want no part of that sort
of thing here in America.

They want jobs. They want to plan
their own lives. Make their own
futures. Go places under their own
power.

And we must give them that
opportunity.

But to do it, wartime restrictions and
controls must be removed from agri-
culture, business—and the individual
citizen—as quickly as possible.

Farmers must be free to plant what
they want, and as much as they want
—without needless bureaucratic
supervision.

Taxes must be adjusted so that money
will be available to finance the change-
over to peacetime production.

Greater incentives must be provided,
so that workers can make more money,
by making more goods for more people.

Mr. Private Citizen must be allowed
to make money—and be free to invest
it in business ventures of his own
—or of others.

Prosperity has always come to
America through the growth of pro-
duction—not its restriction—on
farms and in factories.

Profitable production will make jobs
for the boys who are coming back.
But business, labor, agriculture and
an understanding government must
work together to create it—hold it
—and increase it.

REPUBLIC STEEL

GENERAL OFFICES: REPUBLIC BUILDING, CLEVELAND 1, OHIO

BUY WAR BONDS
AND STAMPS
— AND KEEP THEM!

The Army
Navy E-Flag
wears over
7 Republic
Plants and
the Maritime
Floats over
the Cleve-
land Dist-
trict plant.

WOVEN WIRE FENCING • BARBED WIRE • STEEL FENCE POSTS • BALE TIES
ROOFING and SIDING • NAILS • STAPLES • BOLTS, NUTS and RIVETS • PIPE
CARBON, ALLOY and STAINLESS STEELS for FARM and DAIRY EQUIPMENT

Agricultural Engineering for September 1944
b = distance from sidewalls to centerline of longitudinal sills in stilling pool.

\[l = \frac{c_t}{4 \times \frac{D_s}{W}} \]
\[C_l = \text{Coefficient of energy loss} \]
\[D_s = \text{Diameter of pipe outlet, ft} \]
\[d_r = Q^2 / gP = \text{critical depth, ft} \]
\[f = \text{friction factor for pipes} \]
\[P_r = V^2 / 2gP = \text{velocity head factor} \]
\[g = \text{gravitational acceleration, ft/sec}^2 \]
\[h_1 = \text{net drop from stilling crest to stream bed, ft} \]
\[l_p = \text{entrance head loss, ft} \]
\[h_f = \text{friction head loss, ft} \]
\[f = \text{total losses in pipe leading to structure, ft} \]
\[h_f = \text{height of end wall, ft} \]
\[h_1 = \text{height of head wall, ft} \]
\[b = \text{back pressure head on pipe outlet, ft} \]
\[h_f = \text{velocity head of flow in pipe, ft} \]
\[K_r = \text{K-factor in back pressure equation} \]
\[K_e = \text{loss coefficient for entrance} \]
\[K_r = \text{loss coefficient for pipe friction} \]
\[Q_i = \text{loss coefficient for miscellaneous losses} \]
\[L_1 = \text{length of baffle box, ft} \]
\[L_2 = \text{top length of side wall, ft} \]
\[L_3 = \text{length of stilling pool, ft} \]
\[X_b = \text{horizontal sidewall dimension for stilling pool, ft} \]
\[L_1 = \text{length of pipe carrying discharge to structure, ft} \]
\[L_2 = \text{drop in floor of baffle box below pipe invert, ft} \]
\[L_3 = \text{drop in stilling pool floor below pipe invert, ft} \]
\[b = \text{depth of stilling pool (height of transverse or end sill)} \]
\[Q_i = \text{design discharge, cfs} \]
\[Q_i = \text{discharge through baffle drains, cfs} \]
\[h_i = \text{thickness of baffle, in} \]
\[V_i = \sqrt{g \cdot \frac{Q}{A} \cdot \text{critical velocity, ft/sec}} \]
\[V_f = \text{velocity of flow at pipe outlet, ft/sec} \]
\[V_f = \text{velocity of flow discharging from baffle box, ft/sec} \]
\[V_f = \text{velocity in downstream channel, ft/sec} \]
\[W = \text{width of structure, ft} \]
\[x_1 = \text{overhang of baffle cap, ft} \]
\[y_1 = \text{thickness of cap, ft} \]
\[\theta = \text{slope of inlet pipe, deg} \]

becomes materially greater, and also requires greater structure lengths with increasing values of \(W/D_s \) because of the distance required for the spreading of the highvelocity jets issuing from the pipe outlets before the formation of a jump is possible.

Fitting Structure to Field Conditions.

From a study of the design data and charts of Figs. 7 and 8, it becomes clear that this structure is designed to operate under conditions of relatively high velocity discharge. As an example, assume that a structure with a 1-ft pipe is designed for a factor, \(F_r \), of 16. Then from equation [1] the velocity head is 8 ft and the velocity and flow in the pipe are 22.7 fps and 17.8 cfs, respectively. Even with this relatively small velocity head factor and small pipe, the velocity and discharge are high.

On the back-pressure chart, Fig. 8 (b), the solid lines indicate the range of conditions under which the structure is most efficient and economical. The dashed lines give the back pressure for narrow structures with low velocity head factors. These structures generally are less economical than those in the range covered by the solid lines. For instance, if field conditions indicate that an extremely narrow structure is desirable, it may be possible to effect a saving in total cost by using a wider structure even though the excavation costs may be increased. The main factors in this saving are reductions in wall height and structure length. Structures with width ratios of approximately 6 appear to be the most economical. However, the optimum width depends largely upon field conditions, and therefore must be determined by the designer. Although structures designed according to the charts will operate satisfactorily, it is probable that simpler and cheaper structures can be devised when velocity head factors are below 8.

The pipe size for a system including a baffle-energy dissipator is calculated as it would be for any pipe line which has a submerged outlet. The amount of the submergence is equal to the back pressure created by the installation of the structure, and its value is given by curve (b) in Fig. 8. However, before the back pressure can be determined, \(F_r \) and therefore the diameter of the pipe, must also be known. In designing a structure, several trial calculations are usually required before the correct size of pipe is determined. To reduce to a minimum the number of trials required, average probable values of the losses have been assumed and an equation [3] obtained which gives a value of \(b_r \) for the first trial calculation to determine \(D_r \). It should be noted that once the pipe diameter is determined, the discharge can be increased on a given installation only by increasing the total head. This can be done only by raising the water level over the inlet to the pipe. Since the inlet is usually a box forebay or small reservoir with limited freeboard, the water surface, and therefore the total head, cannot be raised to any great extent. Practically, this means that it is not possible appreciably to overload a pipe outlet structure and in designing this feature must be kept in mind.

Construction and Maintenance Considerations.

In fixing the dimensions of the baffle box, it was necessary not only to give consideration to the hydraulic performance of the structure, but also to keep in mind other practical requirements. For instance, the gap between the baffle and the headwall was made sufficiently large so that the flow was not throttled. In the smaller structures this gap may become quite small, making it difficult to build the box and to clean it out if that becomes necessary. Therefore, in order to provide room for construction and cleaning of the box the gap was made 18 in minimum.

(Continued on page 346)
Farm Tenant House of the Present and the Future

Post-war farm tenants will desire better living conditions. The new farm houses to be built then will not be "miracle houses" but comfortable, durable houses in the traditional manner using the best of the new materials proved by the war emergency.

Douglas fir plywood’s ease of handling and fabrication are especially appreciated by the rural builder. The wide range of decorative possibilities with commonly available materials is a boon to the amateur painter. The "shock-resistance" and the ease of refinishing are especially important in the tenant house.

War labor housing in all sections of the United States, and Army and Navy hutsments both here and abroad have proved the dependability of plywood housing. Speed of erection, adaptability to simple design and weather resistance under all climatic extremes are features which mean improved housing for the farm tenant family of the future.

Brief Specifications:
Size—1½ story, 6 room
Erected—Winter 1941-42
Builder—Owner and farm labor. Skilled labor required for plastering.
Framing—Conventional, with framing members placed behind all plywood joints.
Interior walls and ceilings—1/8” Plywall grade Douglas fir plywood placed vertically or horizontally directly on stud walls and nailed with 4d nails 6” on center. Panels butted and glued under the joints with urea resin adhesive.
Kitchen cabinet—3/8” Plypanel grade Douglas fir plywood built in place by owner.
Finish on plywood—One coat of clear penetrating floor sealer.

DOUGLAS FIR PLYWOOD
ASSOCIATION
Tacoma 2, Washington

FARM BUILDINGS ARE WAR EQUIPMENT—KEEP THEM FIT AND FIGHTING!
The four drains through the baffle are designed to prevent the box from filling up with sediment. Danger of clogging is greatest during the lower discharge when quiet flow in the box permits sediment to deposit. By making the drains as shown in Fig. 7, they will discharge approximately 20 percent of the flow when the structure is operating at design discharge. Laboratory experiments showed that with drains of this size the box was self-cleaning and could handle heavily laden flows without undue hazard from clogging. Fig. 11 shows the same model structure as in Figs. 9 and 10b operating at a discharge low enough to permit all of the flow to pass through the drains. It is seen that the stilling pool spreads the flow from the sides so that it discharges rather uniformly over the end sill.

Experiments showed that the performance of the baffle box was improved by dropping the floor slightly below the invert of the pipe. The dimension, \(R_0 \), in Fig. 7, is given by the curves of Fig. 8(a). It will be noted that the minimum value of \(R_0 \) is 0.25\(D_0 \). For practical reasons it is recommended that this dimension be not less than 3 in. This will facilitate the construction and also improve drainage of the pipe and baffle box during low flows.

TABLE 1. DESIGN CALCULATIONS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_0)</td>
<td>cfs</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>(S)</td>
<td>ft</td>
<td>26.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>(W)</td>
<td>Ft</td>
<td>9.0</td>
<td>9.0</td>
<td>6.0</td>
</tr>
<tr>
<td>(h_s)</td>
<td>[3b] or (\sqrt{Q/2g})</td>
<td>7.80</td>
<td>7.96</td>
<td>7.95</td>
</tr>
<tr>
<td>(V)</td>
<td>ft/sec</td>
<td>22.6</td>
<td>22.6</td>
<td>22.6</td>
</tr>
<tr>
<td>(D_b)</td>
<td>Pip. diam.</td>
<td>1.51</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>(h_p)</td>
<td>ft</td>
<td>10.2</td>
<td>10.6</td>
<td>10.6</td>
</tr>
<tr>
<td>(W/D_b)</td>
<td>[1]</td>
<td>5.95</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>(D_0)</td>
<td>ft</td>
<td>5.90</td>
<td>5.85</td>
<td>6.9</td>
</tr>
<tr>
<td>(h_0)</td>
<td>[2]</td>
<td>9.30</td>
<td>9.55</td>
<td>9.55</td>
</tr>
<tr>
<td>(h_0)</td>
<td>[3a]</td>
<td>0.25</td>
<td>0.16</td>
<td>1.6</td>
</tr>
<tr>
<td>(S')</td>
<td>[3a]</td>
<td>24.0</td>
<td>25.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Design Example

In order to clarify further the actual use of the design charts and equations, an example is presented. Assume that the following are established by field conditions:

1. Structure to be constructed at pipe outlet of an earth dam.
2. Design discharge, \(Q_0 \) = 40 cfs
3. Total available head, \(E = \) height of reservoir water surface above center of pipe outlet = 26 ft
4. Field conditions permit structure width from 6 to 15 ft
5. Length of pipe connecting reservoir and structure, 90 ft

Following the procedure normally used for computing the size of a pipe line, the total available energy is equated to all of the losses in the system. Assumptions for values of the loss coefficients, usually have to be made in the first trial calculation. In computing the pipe size when a baffle-outlet structure is included, the back pressure or static head loss must also be considered. The energy equation [3a] for the system is given in Fig. 8 of the design charts, and a value of \(h_b \) for the first trial calculation of \(D_0 \) is given by equation [3b].

A structure width of 90 ft, well within the limits stated in the assumption of field conditions, is chosen for the first trial design and a friction factor, \(f \), of 0.02 is assumed for the pipe. The entrance loss is considered to be 0.15\(h_b \). To simplify the example, all other pipe line losses, such as those due to valves, elbows, etc., are neglected.

In Table 1 are listed some of the possible designs for a structure which will meet the above specified field conditions and in Table 2 complete computations are shown for the design listed as Trial 2. Photographs of models similar in appearance to the structures obtained in Trial Designs 2 and 3 are shown in Fig. 10.

TABLE 2. TRAIL DESIGN NO. 2

<table>
<thead>
<tr>
<th>General data</th>
<th>Design data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q = 40 \text{ cfs}; \ W/D_b=6.0; \ E=26.0; D_0=15 \text{ in}; W=9 \text{ ft}; I=90 \text{ ft})</td>
<td>(B=25D_0\times0.05\times1.5=0.375 \text{ ft})</td>
</tr>
<tr>
<td>(V_0=Q/A_0; A=\pi D_b^2/4)</td>
<td>(L_0=3D_b; \ L_c=3; \ L_s=3.85)</td>
</tr>
<tr>
<td>(h_b=V_0/2g)</td>
<td>(h_b=V_0^2/2g=7.95)</td>
</tr>
<tr>
<td>(h_s=V_0^2/2g)</td>
<td>(h_s=V_0^2/2g=7.95)</td>
</tr>
<tr>
<td>(L_c=2.75/2gD_b=2.75)</td>
<td>(L_c=2.75/2gD_b=2.75)</td>
</tr>
<tr>
<td>(K_d=0.5)</td>
<td>(K_d=0.005)</td>
</tr>
<tr>
<td>(V=\text{Vel. head}=1.0)</td>
<td>(V=\text{Vel. head}=1.0)</td>
</tr>
<tr>
<td>(\text{Loss Coefficient}=2.4)</td>
<td>(\text{Loss Coefficient}=2.4)</td>
</tr>
</tbody>
</table>

In reference to these designs (Table 1), several points may be mentioned. In Trial 1 the assumed velocity head was slightly low, and consequently a larger pipe was obtained than was necessary to discharge the flow. However, its value was nearly correct so that the nearest smaller standard pipe size was used for Trial 2 and the hydraulic gradient was recalculated. This gave a satisfactory solution for the hydraulic design which utilized all but 1.00 ft of the total available head, \(E \). Therefore, the design of the structure was completed by following the equations and charts of Figs. 7 and 8. Experiment showed that 87 percent of the energy existing at the pipe outlet is dissipated in passing the flow through this structure.

Since the total available head was not entirely utilized, it is possible to make an alternate solution using a narrower structure, which will have a higher back pressure.
In six months 5000 McCormick-Deering dealers repaired more tractors of all makes than International Harvester built in the three years before the war.

That's putting power back on the land at an all-time record-breaking clip—*one tractor every 50 seconds!*

You men on farms know better than anyone what this service work has meant to war food production. When war cut farm machine production to almost nothing McCormick-Deering dealers lit into repair work on the greatest scale in history. The job they are doing now is winning a new place for them in the forces fighting for food throughout the country.

More help is now on the way. The government has authorized increased production of Farmalls and Farmall equipment. We are building with all possible speed. But here's the thing to remember:

You're going to need all the equipment you have and all you can get for a long time to come. Keep your machines in first-class shape. McCormick-Deering dealers will help you. They operate the greatest farm equipment service and repair force in the nation.

Schedule your work now.

INTERNATIONAL HARVESTER COMPANY
180 North Michigan Avenue Chicago 1, Illinois

SERVICE WILL PULL YOU THROUGH!
The design listed as Trial 3 is one based on a structure width of 6.0 ft and a pipe diameter of 1.5 ft which gives a width ratio of 4.0 for the structure. In this design, the hydraulic gradient was checked exactly, i.e., the sum of the losses of the system was equal to the total available energy.

Trial 4 design was made assuming that a 17-in diameter pipe was available. Hence, to design a structure which will best fit the existing field conditions, it will be necessary to reduce the back pressure to a minimum since all other losses will be increased by using the smaller pipe. Therefore, 15 ft, the maximum possible structure width, is chosen for calculating the design. In this solution it was found that for design discharge the losses exceeded the total available head by 2.8 ft so that the dam height must be raised by that amount unless the freeboard is to be reduced. It is possible that the design discharge could be carried by a 17-in pipe if one having lower friction losses and an improved entrance could be used. The system as originally assumed will discharge 37.6 cfs, or 0.94Q, under a head of 26 ft.

From the number of designs given to fit the assumed field conditions, it is evident at once that there is more than one satisfactory solution to the problem. Therefore, the design which must ultimately be chosen will be determined by an economic comparison, or by other considerations that are affected by the local conditions.

SUMMARY AND CONCLUSIONS

The pipe outlet structure described in this paper and developed through laboratory experiment is designed to dissipate high velocity flow from a pipe outlet so that it can be discharged safely into an erodible channel. A general design has been developed that will cover all combinations of rate of discharge, pipe diameter, and width of structure likely to be encountered in practice. Performance of the structure is such that flow discharging from the stilling pool is uniformly distributed across the width, thus presenting a favorable condition for erosion control at this critical point.

The dimensions of the baffle box in particular and the structure as a whole were worked out very carefully to determine the smallest possible structure that would give satisfactory performance. Changing any one or several of the dimensions results either in poorer performance or in increased cost. All the information necessary to design a structure is given by the drawing, formulas, and charts of Figs. 7 and 8.

AUTHORS' ACKNOWLEDGMENTS: The authors wish to acknowledge the friendly participation of Mr. J. G. Bamberger, who visualized the field problem and was largely responsible for initiating the investigations, and of Mr. Karl O. Kohler, Jr., who kindly reviewed and criticized the results. Appreciation is also expressed for the friendly assistance and advice of Professor Robert T. Knapp and for the cooperation of the members of the staff of the Cooperative Laboratory. The laboratory investigation was started under the guidance of Mr. Brooks T. Morris, who was also responsible for designing the apparatus for the small scale tests.

The Self Propelled Combine

(type machine of the same size; and logically the narrower the cut, the greater the differential between each type of machine.

Our field experience and the information compiled from our tests indicate the importance of proper combine selection by a farmer in keeping with his requirements. A combine which has too narrow a cut for a given acreage will increase the cost per bushel of harvesting, as well as labor for handling. On the other hand, these costs must be balanced against the initial investment necessary for various types of machines available and the possible loss of grain, if he is dependent upon his neighbor or custom operators for his threshing job.

With opportunities now open to farm labor in urban industrial areas, at higher wages and shorter hours, the farmer has become more and more dependent upon his immediate family and modern equipment to produce his crops. If this situation continues, and indications are that it will, farmers will be faced more than ever before with the necessity of one-man operating equipment, and the larger operator may find it desirable and more economical to procure large single-purpose machines. The small farmer, if he is to compete with his produce, is similarly faced with an equipment problem, and since diversification is the basis for a successful operation we must have a complete line of tools expressly suited to his needs and his pocketbook. The small tractor with mounted equipment would seem to offer this small operator the most efficient equipment at the lowest initial investment.

Our country's success will continue to be dependent upon its ability to produce food economically, and our postwar period will place on our farmers greater demands for increased production. Future farm equipment must continue its advance in taking the hard work out of farming and thus make this occupation both profitable and pleasant.

Emphasize Education

(Continued from page 327)

As a profession and as a Society we are well fitted to foster education. Something like half of our membership is or has been connected with the colleges. Our immediate A.S.A.E. past-president, in both talent and experience, is qualified to give well-balanced guidance to educational extension, and our current president is a man of notable energy and vision both in education and in engineering. Both the needs of the times and the leadership available suggest this as the moment to emphasize education.

1944 REMINDER OF WHEN STEAM POWER WAS IN FLOWER

"Where there's smoke, there's always fire," so instinctively argues W. H. Mitchell, chief of the St. Joseph, Michigan, fire department. The smoke in this instance, however, was harmless, but it led him on one of his rural jaunts last month to what is probably the last surviving steam threshing rig in southwestern Michigan, shown in these pictures — a Port Huron tandem compound steam engine and Goodison threshing owned by Arthur Brownell who has been threshing with steam power since 1910. "Mitch" — in the cab at the left, and who himself was a first-rate engine and "separator" man a quarter century ago — happened along just at the right time to take over temporary operation of the rig for Mr. Brownell who was suffering from an injury. What memories this scene calls up for those who were boys on the farm before steam power made way for the more efficient, if less picturesque 'gas' tractor! What a thrill used to come — and still does — from that odoriferous blend of steam, soft coal smoke, and threshing dust! And how some of us youngsters of yesteryear envy Mitch his opportunity again to "pull the throttle" on a steamer! — Editor.