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C O N T I N U U M  D I S T R I B U T I O N  OF D I S L O C A T I O N S  

F I N I T E  F R I C T I O N  

BY J. WEERTMAN 

ON FAULTS W I T H  

ABSTRACT 

An analysis is made of continuous distributions of infinitesimal dislocations on faults with 
finite friction. The analysis was undertaken in an attempt to explain the fact that dislocations 
produced by e~rthquakes commonly lie at depths that are shallower than the average depth 
of earthquake foci in continents. (The depths of dislocations are determined from displace- 
ments around faults.) I t  is found that this discrepancy c~n be explained if, at some depth, 
there exists a region where the frictional stress on faults is anomalously low. 

INTRODUCTION 

In this paper  we will make use of the concept of continuously distributed in- 
finitesimal dislocations to s tudy problems of slippage on faults with finite friction. 
This concept was originated by Leibfried (1951, 1954). He pointed out tha t  the 
problem of determining the equilibrium positions of discrete dislocations all lying on 
the same slip plane in a crystalline lattice is considerably simplified if the dis- 
locations are considered to be "smeared out"  into a continuum of infinitesimal 
dislocations. 

The idea of a continuum of infinitesimal dislocations is somewhat artificial when 
applied to dislocations within crystals because of the discrete nature of the atomic 
lattice. On the other hand it is natural  to describe non-uniform displacements across 
faults within the earth 's  crust in terms of continuous infinitesimal dislocations. A 
number  of papers have been writ ten about  dislocations on faults within the earth 
(see Scheidegger, 1963; Chinnery, 1961, 1963, and the references cited by them). 
I t  is tacit ly assumed in these papers that  dislocations on faults are discrete ra ther  
than  continuously distributed. I t  seems worthwhile, therefore, to look at  the 
problems of slippage on faults with friction from the viewpoint of infinitesimal 
dislocations. 

The fact tha t  the measured displacements in the vicinity of faults which have 
broken through the surface are approximately the same as the elastic displacement 
around dislocations with a total  Burgers vector* of from 2 to 6 meters (Byerly and 
DeNoyer ,  1958; Chinnery, 1961) is a firm piece of evidence tha t  the dislocation 
approach to faulting is reasonable. However there is a problem connected with this 
approach. The displacements in the vicinity of faults which seem to indicate the 
existence of dislocations place the depth of these dislocations at  about  4 to 8 kilo- 
meters. (The observed displacements would be produced if a dislocation were to 
enter the fault at  the earth 's  surface and move down 4 to 8 kilometers. The same 
displacements would result if a pre-existing dislocation at  this depth moved up to the 
surface. The former situation gives rise to an ear thquake focus at  the surface; the 

* The Burgers vector of a discrete dislocation is a vector which is parallel to the direction 
of the displacement produced when the dislocation moves across its slip plane. The length 
of the Burgers vector is equal to the magnitude of this displacement. The Burgers vector is 
described in detail in any text on dislocations (Cottrell, 1953; Read, 1953; Weertman and 
Weertman, 1964). 
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latter to a focus at a 4 to 8 kilometer depth.) This result is difficult to reconcile 
with the observation that the average depth of the foci of earthquakes within con- 
tinental blocks is of the order of 15 kilometers (at least in California). This paper was 
written primarily in an attempt to explain these contradictory observations. 

Orowan and others (Orowan, 1960; Scheidegger, 1963) have pointed out a serious 
objection to the theory that earthquakes are produced by slippage on faults with 
friction. Even at shallow depths the hydrostatic pressure is so great that the 
ordinary law of static friction predicts frictional stresses exceeding the theoretical 
strength of crystalline material. (It is assumed that the coefficient of friction is of 
the order of 1.) However calculations based on the energy radiated by an earth- 
quake indicate that the stresses which produce earthquakes are low: of the order 
of 25 bars (Benioff, 1955). This difficulty is not faced up to in this paper. We assume 
that faults at moderate depths within continental blocks (very deep faults are not 
considered) are lubricated in some manner and thereby have anomalously low 
frictional stresses. 

Leibfried used the theory of continuous dislocations to analyse the behavior both 
of long straight parallel dislocations (1951) and of dislocation loops (1954). Only 
the former problem will be considered in this paper. Leibfried's theory for straight, 
parallel dislocations actually is a particular case of a boundary value problem for a 
half space in two dimensional elasticity theory. In particular, it is an example of the 
mixed boundary value problem in which displacements are specified over some 
regions of the boundary and the stresses are specified over the remainder. The 
general solution of this problem is known (Muskhelishvili, 1953a, 1953b; Mikhlin, 
1957). This general solution has been applied to several problems in the continuum 
theory of infinitesimal dislocations (Head and Louat, 1955; Leonov and Shvaiko, 
1961; Bilby, Cottrell and Swinden, 1963). 

The continuous distribution of dislocations is specified by a distribution function 
B(x), where B(x)dx  represents the total length of the Burgers vectors of the 
infinitesimal dislocations lying between x and x -~ dx on the slip plane. The co- 
ordinate x measures distance along the slip plane in a direction perpendicular to the 
dislocation lines. A negative value for B(x) implies that the dislocations have 
negative Burgers vectors. 

Once the distribution function B(x) is known, the shear stress r(x) on the slip 
plane which arises from the dislocations can be calculated. The shear stress is 

r(x) = ~ I~  B(y)~dY 
~ y 

(2) 

In this equation t~ is the shear modulus and a is a constant. The constant a has 
the value 1 if the dislocations are screw dislocations; its value is (1 -- ~), where ~ is 
Poisson's ratio, if the dislocations are edge dislocations; it has an intermediate 
value if the dislocations are of mixed character (partly edge and partly screw). The 
Cauehy principal value of the integral is used. 

If the shear stress r(x) is specified over the slip plane, the dislocation distribution 
B(x) is given by: 
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2a [ ~  r(y)  dy 
B ( x )  

tzlr ~ x Z y J_ 
(3) 

The functions B(x)  and r(x) are Hilbert transforms of each other. 
In  the problems that  we will consider, the dislocation density B(x)  will be equal 

to zero everywhere on the slip plane except in a region such as a --- x -< b. However, 
the exact value of B(x)  will not be known within this region. The stress r(x) will 
be known within a =< x < b but  its value will not be known elsewhere on the slip 
plane. The solution for this mixed boundary value problem is (Muskhelishvili, 
1953a, 1953b; Mikhlin, 1957): 

C 
B(x )  = %/(b - x) (x - a) 

2o/ 
+ 

7r/~%/ib -- x) (x -- a) 

f b  r ( y ) x / ( b  -- y) (y -- a) dy 
I 

J. a y - - x  

(4) 

where C is a constant. I t  will be necessary to set C equal to zero in all the problems 
we will consider in order to avoid infinite stresses on the slip plane. Equation (4) 
also can be written in the form 

c + 2A x/(b - x) (x - a) 
B ( x )  = y / (b  -- x) (x -- a) ~r~ 

j l  b r(y) dy C 

• ( y  - x ) % / ( b  - y )  ( y  - a )  = v / ( b -  x )  (x - a)  

~ (5 x) 'V u - a (v - x) 

(5) 

In  order for eqns. (4) and (5) to give a solution it is necessary that  the following 
equation be satisfied: 

f b r(y) dy 
o v ib = 7 )  - a)  = o ( 6 )  

If the dislocation density B(x)  is nonvanishing on a series of n strips, say ai _-< 
x _-< b~ where i = 1, 2, . - .  , the solution becomes 

B ( z )  = 

n--1 
C~ x i 

1 

j ~  (bi - x) (al -- x) 

+ 2,~ 1]  j / ~  - aO 

V Y  -- ai ~ z) 

(7) 
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The  in t eg ra t ion  is carr ied ou t  only  on the  s t r ips  a~ =< x -<_ b~. The  t e rms  C~ are  
cons tants .  I f  a solut ion is to exist the  fol lowing equa t ion  m u s t  hold  

~ y  - a~ y'~ dy  = 0 (8 )  

where  aga in  the  i n t e g r a t i o n  is carr ied out  only  over  the  s t r ips  a~ =< x =< b~. E q u a t i o n  
(8)  mus t  be sat isf ied for everyone  of the  va lues  m = 0, 1, 2, • • • (n  - 1). 

M O V E M E N T  OF L O C A L I Z E D  D I S L O C A T I O N S  

I n  the  s t u d y  of c rys ta ls  i t  is common  to t h i n k  of d is locat ions  as discrete  en t i t ies  
t h a t  move  across the i r  slip p lanes  under  an  app l ied  stress. W i t h  the  e lec t ron  micro-  
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FIG. 1. Plot of the normalized dislocation density of a localized group of dislocations when 
the applied stress S equals zero and when S equals 0.8 times the frictional stress of the fault. 

scope i t  is possible to w a t c h  ind iv idua l  d is locat ions  in mot ion.  N a i v e l y  we migh t  
t h i n k  t h a t  a local ized d i s t r i bu t ion  of inf ini tes imal  d is locat ions  can move  in a s imi lar  
fashion.  W e  wish to show in th is  sect ion t h a t  a local ized " w a v e  p a c k e t "  of disloca- 
t ions  cannot  move  slowly as an  en t i t y  across a fau l t  wi th  fr ict ion.  ( F a s t  mov ing  
dis locat ions ,  however ,  can move  as  a packe t . )  Ra the r ,  a localized group of slow 
moving  dis locat ions  becomes diffuse as the  app l i ed  stress  which  moves  i t  is increased.  

F o r  t he  sake of m a t h e m a t i c a l  convenience let  the  d i s t r i bu t ion  func t ion  of the  
local ized dis locat ions  be  given b y  B ( x )  = A ( a  2 - x2) ~/2 be tween  - a  -< x =< a, 

where  A is a cons tant .  Le t  B ( x )  be zero elsewhere. T h e  stress r ( x )  on the  faul t  
p roduced  b y  this  d i s t r ibu t ion  can be found from equa t ion  (2) 

= 2an x - t -  (x  2 - a2) 1/2 - o o  < x < - a  

A ~  
- - x  - a < z < a  (9) 

3 - -  x - ( x  2 - a 2 )  I/~ 

2c~ a < x  < ~ 
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The distribution function B(x) is shown in figure 1 and r(z) in figure 2a. These 
curves are plotted for the case in which A = z(2a/tLa), where z is the frictional 
stress on the fault which must  be overcome to cause slippage. The frictional stress 
is considered to be independent of position. The maximum and minimum values of 
the stress r(x) occur at  x = ± a .  

Let  an applied stress S be increased slowly from 0 to a value less than  the fric- 
tional stress z. What  is the effect of this stress S on the distribution function shown 
in figure 1? The answer is found most  easily by  regarding the stress of figure 2a 
as an additional contribution to the frictional stress. I f  this viewpoint is adopted it 
can be seen tha t  the additional stress required to obtain slippage a t  any point x 
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FIG. 2. (a) Plot  of the stress arising from the localized dislocation group in Figure 1 (S = 0) ; 
(b) The effective frictional stress on a fault  arising from the stress in (a). 

is tha t  shown in figure 2b. Here it is assumed tha t  slip occurs in tha t  direction which 
favors the movement  of the dislocation distribution of figure 1 towards the right. 
The problem now is reduced to finding the dislocation distribution on a fault with 
a frictional stress given by  figure 2b and upon which there are no dislocations when 
the applied stress is equal to zero. When this new dislocation distribution B'(x), is 
added to the old, B(x), the problem is solved. 

As the applied stress S is increased from zero, slippage begins where the resistance 
to sliding is least. Slippage starts at  x = a. The slipped zone will spread both to the 
left and the right of this point. Let  the slipped zone extend between the points 
b and c, where b = x -< c. Because only pairs of dislocations whose Burgers vectors 
are equal in magnitude but  opposite in sign can be created in the interior of a block 
of material, B'(x) must  satisfy the equation: 

f f  B'(x) dx 0 (lo) 
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The distribution function B'(x) may be found without difficulty if the slipped 
zone is long, that is, c >> a. In this situation it is to be expected that the value of b is 
only slightly larger than - a .  The following analysis confirms this prediction. We 
shall set b equal to - a  -t- 3, where 3 is a positive quantity and 3 << a. 

The stress r'(x) due to the dislocation distribution B'(x) must exactly balance 
the stress S + r(x) - ~ in the slipped region. The dislocation distribution B'(x) 
therefore can be found by substituting r'(z) = ¢ - S - r(x) into equations (4) 
or (5). If high order terms in 3 are neglected, it is found that the distribution func- 
tion is equal to 

B ' ( x )  2era ~ (c -- x) (x -- b) 
= ~ -  2 a ( c  q- a) -- - 

g ~ c / ( a - -  x) (x -- b ) l  (11) 
a 

In this equation g = 1, for those values of x where b __< x < a, and g = 0 where 
a < 9: =< c. The dislocation density B'(x) is equal to zero outside of the slipped zone. 

When equation (11) is substituted into (10) the following relationship is obtained 

~ / i  2a (12) ~ = a  + a  

The values of b, or 3, and c must be such that equations (6) also is satisfied. That  
equation gives rise to the requirement that  

~ = a ( - z @ ~ )  / ( 1 -  ~ / ~ c ~  aq-a)) (13) 

Equations (12) and (13) between them deternfine 3, or b, and c, and thus the dis- 
location distribution B'(x) is completely specified. Equations (12) and (13) show 
that as S approaches z, c becomes very large and 8 approaches zero, in agreement 
with our assumption. 

The distribution B(x) + B'(x) gives the dislocation distribution of the original 
dislocations at any stress S up to z. Figure 1 shows the distribution that occurs at  
the stress S = 0.80. I t  can be seen that the dislocations have spread themselves out 
in the direction favored by the stress. 

The mean position 2 of the dislocations is defined by 

2,= f_:x[B(x) ~ B'(c)]  d x /  f_ iB(x )&c  (14) 

When S has a value close to z this expression becomes: 

1 a~ = ~ ~ 1 q- %/1 -- 2(o--- S)/~ (15) 

The results of this section show that  it is not possible for a localized group of 
infinitesimal dislocations to move slowly as an entity across a fault plane. The 
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applied stress spreads out a localized group of dislocations. Clearly, it is not to be  
expected tha t  an earthquake is produced by a sudden movement  of a pre-existing 
localized group of dislocations. 

DISLOCATION ~/[OVEMENT FROM A DISLOCATION SOURCE 

Figure 2b of the previous section illustrates what  could be called a dislocation 
source. The effective frictional stress around the point a is lower than  elsewhere 
and here slip started. Any region of lower frictional stress on a fault plane will act, 

2= ((T I --cro) ] 

i . o  

b=5a 

b 

-b  -a  

' 2 0 -  

B(x) 

-10 

-2.0 

• X 

FIG. 3. The dislocation distribution around a dislocation source of the 
Bilby-CottrelLSwinden type. 

as a dislocation source. The lower frictional stress need not arise from pre-existing 
dislocations on the fault. A fault may  cut across rock which has different physical 
properties, in particular, a different coefficient of friction. The amount  of lubrication 
on a fault may  vary  with depth. 

A simple example of a dislocation source is given by the ease in which the frictional 
stress equals ~0 in the region - a  < x < a and ~1 where I x I > a. I t  is assumed tha t  
¢0 < a l .  The solution for this problem first was obtained by Bilby et al. (1963), and 
was applied by  them to the phenomenon of plastic yielding from a notch cut in a 
metal  specimen. The solution is simple to obtain. Suppose the applied stress S is 
larger than z0 and slip has occurred in the region - b  = x =< b, where b > a. The 
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dislocations t h a t  are created mus t  produce a stress r ( x )  within the slipped region 
which is equal to ~0 - S f r o m  - - a  < x < a, and ~1 - S w h e r e  a < [ x I <- b. W h e n  
subst i tu ted into equations (4),  (5) and (6) this stress gives 

B ( x )  - 2~(~1 - ~0) [ l o g  a + x 

4- log --  ax  4- ~ / ( b  ~ - a ~) (b 2 -  x 2) 
+ ax  + . v / (b  2 a 2) (b 2 --  x 2) 

(16) 
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FIG. 4. Plot of the displacement at the center of the source of Figure 3 versus applies stress. 
Shown here are the two cases of a source not previously loaded and a source reloaded after 
previously having been stressed to N = 0.95 e,. 

where 

sin -1 ( a / b ) = T r  ( ¢ 1 - S )  
\o "1  - -  O'o 

(17) 

The  distr ibution B ( x )  is p lot ted in figure 3. The  infinite values in the dislocation 
distr ibution at  x = ~=a come about  f rom the discont inui ty  in the frictional stress at  
these points. I f  the frictional stress varied smoothly  the infinities would be elimi- 
nated.  The  tota l  length of the Burgers  vectors  of the dislocations on either side of 
the origin is finite for finite b ( tha t  is, when S < ~1). The  tota l  length is 

L B(x)dx- 7.- l°g( b + ~/ /~-  1) (is) 

The  total  displacement of the fault  a t  z = 0 is equal to f~ B ( x )  dx  and thus  is identi- 
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cal to this last equation. Figure 4 shows a plot of the amount of slip at the origin 
versus the applied stress. The amount of slip goes to infinity as S approaches zl .  

T H E  SOURCE UNLOADED AND RELOADED 

Let us extend the analysis of Bilby et al. to include the case in which the applied 
stress is removed and then reapplied. The results obtained on the behavior of the 
source in this situation will have important application to the study of dislocations 
produced by earthquakes. 

We can accomplish the process of unloading by adding an additional applied 
stress - S ' ( S '  > 0) to the original applied stress, and letting S '  increase from zero 
to the value S. The stress due to the dislocations already on the fault can be 
added to the frictional stress in the manner described in the section on localized 
dislocations. A new dislocation distribution function B ' ( x )  thus is determined 
which, when added to the old distribution function B(x),  gives the complete disloca- 
tion distribution. (The function B ( x )  corresponds to the situation at the start  of 
unloading when the applied stress-S' equals zero). During unloading slip takes place 
in the reverse direction. Therefore the stress r ' ( x )  of the distribution function B ' ( x }  
must equal --2~0 ~- S t in the region - a  < x < a, and -2~1 ~ S t in the region 
a < I x I <-- b'. Here b' is the half width of the zone in which reverse slip occurs. The 
factor 2 in these expressions arises because during reverse slip not only must the 
frictional stress be overcome but also the stress arising from the dislocations of the 
original distribution and the stress S. (Note that  if S is smaller than 2z0 it is not 
possible to have reverse slip. In this situation B ' ( x )  will equal zero in the completely 
unloaded state. The original dislocation distribution will not be changed.) 

If T' (x) is again substituted into equations (4), (5) and (6), the following equa- 
tion is obtained: 

B ' ( z )  - - I a + x  4a(~1 - z0) log - -  
7r# a - -  Z 

b ~2 

+ log b, 2 
-- ax zr- .v / (b  '2 -- a~)(b '2 - - x  2) -] 

+ ax + - :-  x') J 

(19a} 

where 

.(2.,-,') 
sin -1 ( a / b ' )  = ~ \ ~rl ~ X 

The length of the Burgers vectors on either side of the origin is 

~ j  log + j / ~ -  ) (19b) 

When S' = S the fault is unloaded and b' has its maximum value, which is less 
than b. 

If the fault is reloaded by applying still another stress S* we are led, using the 
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same arguments, to a third distribution function: 

B * ( x )  - 4a(zlTrt~_- ~0) [ log a ~ x x  [ a  + x 

b .2  

+ log b,: 

where 

- -  ax + v / ( b  .2 - a2)(b .2 - x ~) 1 

- F a x  A- v / ( b  .2 a2)(b .2 x ~) ] 

z (2-1-  S*) sin -1 ( a / b * )  = ~ \ .--i 

, / 4 a t r  t 

2 °  I B ( x ) /  

(20) 

-20 -c 

1 .o- 

/ \ \  
/ \\ 

! 

I 

2 ,S= ~-% 

I 
I 
I 

/ Unloaded after stressed to S=0.84o- 1 

- - 1 0  

5o 

T - 2 0  

i 
FIG. 5. Plot of the dislocation distribution around a dislocation source with linearly 

increasing friction. The dashed curve shows the additional distribution that arises when the 
source is unloaded. 

This equation is valid only for stresses S* = S. When S* = S, B * ( x )  + B ' ( x )  = 0 
and the total dislocation distribution again is given by B (x). If the stress is increased 
further the dislocation distribution is given by equation (16). 

The displacement tha t  occurs at the origin (x = 0) during reloading from the 
unloaded state is plotted in figure 4 for the ease in which the fault previously was 
loaded to the level S = 0.95ol and o0 = 0. I t  should be noted that  the amount of 
slip increases rapidly when the reloading stress exceeds the stress level of the first 
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loading. A curve with a much sharper break has been obtained. The closer the first 
loading approached ~1, the sharper is the break. 

DISLOCATION SOURCE WITH LINEARLY INCREASING FRICTION 

Suppose the friction stress on a fault plane increases linearly from the origin to 
the points x = 4-a. Suppose further that  the frictional stress has a constant 
value ~1 for all values of [ x ] => a. Thus the frictional stress in the region - a - x < a 
is equal to (~1] x I/a. The dislocation distribution which results when a stress S is 
applied to the fault can be found from equations (4), (5) and (6). If b, the half 
width of the slipped zone, is less than a, the distribution function is 

where 

B ( x )  = 4o~t~lXTrua l°g b + ~ / ~  (21a) 

a~S 
b -  

2(rl 

The slipped zone has the width a at the stress S = 2zl/Tr. 
When b exceeds a the dislocation distribution is given by: 

f b2 m B ( x )  - 2az lx  log [a 2 -  x2l + 2 log  + b ~ / ~  
7rtta X 

2otty 1 + 
7r# 

- l ° g l (  b'2 + ~¢/i b2 - a2)( b2 - x~)) 2 - a2x2 1~ 

{a+x } log ~ + l o g  ax + ~ / (b  2 - a2)(b 2 -  x 2) 
+ ax + ~ / (b  2 a2)(b 2 - x 2) 

(21b) 

where 

2 ( b _ . ~ / b ~ _  a2)_4_rr( 1 S )  ( b )  a -- ~.  = 2 sin -1 

The dislocation density given by these equations is plotted in figure 5 for the 
casesb = a a n d S  = 2,n/~';b = 2 a a n d S  = 0 .8401;andb  = ~ a n d s  = Ol. 

If the fault is unloaded our previous arguments may be used to find the additional 
dislocation density B' (x )  

b ! B'( , )  - - S ~ l x  log + x / ~ l  
rrtta X 

where b', the width of the reversed slip zone, is given by: 

b' - aTrS' 
4crl 

(22) 
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The total  length of the Burgers vectors in the region from 0 to b' is 

/ b' 8azlb~2 ~aS,2a 
B ' ( x )  d~ . . . . . . .  (23) 

where S'  has the same meaning as before. 
Figure 5 also shows a plot of Bt(x) for a completely unloaded fault which pre- 

viously had been stressed to S = 0.84~1. 
If  the fault is reloaded a new distribution function can be obtained which equals 

- -B  t (x) when the stress reaches the maximum value of the first loading. The disloca- 
tion density at  still higher stress levels again is determined by  equations (21). 

1 I I ~ - X  

-o  - a a (b) 

I I 
-b b i 

(c) 

-b 0 b 

- S  

( a )  

FIG. 6. Double source: the upper figure illustrates the dependence of the frictional stress 
upon distance. The middle figure shows schematically the stress arising from the dislocation 
distribution when slip has not extended from one source to the other. The lower figure shows 
schematically the stress arising from the dislocation distribution when slip does extend from 
one source to the other. 

DOUBLE SOURCE 

Suppose the frictional stress on a fault is tha t  shown in Figure 6a. There are two 
regions on the fault  plane where the frictional stress has a lower value ~0. These 
regions extend from a t _-< I x l --< a. When the applied stress S is slightly larger 
than  ¢0 slip occurs in a region b t = I x [ =< b, where b t < a t and b > a. The newly 
created dislocations give rise to a stress r(x) shown schematically in Figure 6b. 
(The value of r (x)  is known only between b t ~ I x I -<- b.) 

When S exceeds ¢0 oniy slightly, the dislocation distribution around each source 
must  be approximately the same as the distribution function given by equation (16) 
for a single source. The exact solution for the situation shown in Figure 6b can be 
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found by using the more complicated equations (7) and (8). The exact solution 
contains a number of elliptic integrals and is extremely complicated. 

As the applied stress is increased, eventually slip occurs everywhere in the region 
between the two sources. That  is, b' becomes equal to zero. The stress produced by 
the dislocations then is that  shown schematically in figure 6e. Slip has occurred 
everywhere between - b  < x < b. The dislocation distribution for this situation is 
found easily from equations (4), (5) and (6). The dislocation density is 

2a ( ~  _ ~0) ( log a -t- x l a' + x B ( x )  = 7r~ ~ a ~ x x  - logia ,  - x 

b 2 - ax -t- ~¢/(b 2 - a2)(b 2 - x ~) (24) 
-t- log b2 ~ ax ~- ~¢/(b 2 -- a2)(b 2 x 2) 

b 2 - a ' x  + ~ / ( b  2 - a '~ ) (b  ~ - x 2) 

- log b2 ~_ a , ~  + % / ( b  2 - a ' 2 ) ( b  2 - x 2) J 

where 

( z l - ~ 0 )  Isin-1 (b )  - sin-1 ( ~ ) 1  71" = ~ (~1 - s )  

Equation (24) is not necessarily a satisfactory solution of the problem. In order 
for the density function to make physical sense it must satisfy the obvious require- 
ment that  f0 b B(x )  dx >= O. Equation (24) does not satisfy this requirement when 
b is only slightly greater than a. The only permissible values of b in equation (24) 
are those for which this integral is greater than or equal to zero. 

b' If the applied stress is increased from zero, of figure 6b approaches the origin. 
Up to and including the moment the value of b' first becomes zero, the sum of the 
Burgers vectors of all the dislocations lying to the right of the origin must equal 
zero. Therefore at the stress which corresponds to b' = 0 the dislocation density 
given by equation (24) must satisfy the condition f0 b B ( x )  dx = 0. This relationship 
enables us to find the applied stress and the smallest value of b for which equation 
(24) is a physically meaningful solution. Setting f~ B(x )  dx = 0 gives 

log ~ a , 2  -- 1) a l o g ( b +  ~ _ ~ _  1 ) = a ,  ( b +  b 2 . (25) 

The heavy curve of Figure 7 is a plot of the displacement, f~ B ( x )  dx, at the 
origin for a double source with a' = a/2. (I t  is assumed here that  the frictional 
stress ~0 is zero.) For comparison purposes there also is plotted in this figure the 
displacements which occur at  the center of single sources having half widths of 
a/4,  a/2, and a. I t  can be seen that  as the stress approaches o- 1 the displacement at 
the origin of a double source approaches the displacement of a single source having 
a halt" width equal to a/2. I t  should be noted that  the extent of the region of lower 
frictional stress of a single source with half width of a/2  is identical to the extent of 
the low friction region of figure 6a. Therefore at large stresses a double source acts 
like a single source with an equivalent low friction region. 
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The stress at  which b' = 0 for a double source with a '  = a/2 is S = 0.71~1 when 
a0 = 0. I t  is interesting to compare this stress with the stress required to make a 
single source of half width a/4 produce slip out to the distance (~)a from its center 
(the half width of each of the sources in figure 6a is a/4). This distance is equal to 
the distance from the origin to the center of either of the sources in figure 6a. The 
stress required to produce slip over this area from the single source is 0.78~ when 
~0 = 0. This stress is close to the value 0.71~ for the double source. We concluded 
therefore tha t  it is permissible to consider the dislocation distribution around 
each source in the situation pictured in Figure 6b, as approximately the same as tha t  
found when each source is an isolated single source. This approximation has useful 
application when earthquake faults with two or more source regions are considered. 

/ 

PERIODIC SOURCES 

Suppose the frictional stress on a fault  can be expressed as ~ -~ ap, where Cp is 
a periodic function of distance. 

I t  is obvious tha t  a t  the stress S = ~ -t- ap, where ap is the average value of Cp on 
the fault, slip will have occurred over the whole fault. The dislocation density on 
the fault  is given by 

]z~" ~¢ y 

If  ¢p has a period X such that  zp(y -t- X) = a~(y), this equation can be rewritten as 

-- t~X ~ .  ap(y) cot (x -- y) dy (26b) 

Consider two specific examples of ¢p. When ~ = (~1 - ~0) cos (2~rx/X): 

B(x)  = - s i n  (2 z/X) (27a) 

for S -- ~ ~ as + ~p. Since a periodic function can be expressed as a Fourier 
series the values of B(x) can be found for any function of zp which is periodic. 

I f a p  = ~ 0 -  ~ l f o r - a  < x < a a n d - a + n X  < x < s + n X ,  w h e r e n =  4-1, 
4-2, 4-3, etc., a M  if zp = 0 elsewhere, then at  the stress S = ~1 - (2a/X)(¢~ - z 0 )  -- 
~T I ~-- O'p : 

B ( x )  = l o g  
#Tr 

sin IX (x + a )  1 

s i n I ~ ( x - - a )  1 

(27b) 

The maximum displacement (at  the centers of the regions of lowest frictional stress) 
is a(z1 - ¢0)X/~ for the distribution (27a) and 2a(Zl - (ro)X/~ru for the distribution 
(27b). As would be expected the maximum displacement is proportional to the 
wavelength. 

When the applied stress S = ~1 -t- ~ an infinite amount  of slip can occur every- 
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where on the fault. Only a finite amount of slip takes places up to the moment when 
S reaches the level ~i + ~ .  At this critical stress the fault plane will behave exactly 
like a fault plane whose frictional stress is a constant everywhere. The finite amount  
of slip on a fault with a periodic frictional stress has the effect of "priming" the 
fault into the condition in which it can slip catastrophically. This result suggests 
that  creep motion along a fault (Steinbrugge and Zacher, 1960; Tocher, 1960; 
Whitten and Claire, 1960) and perhaps the movements produced by small earth- 
quakes help prime the fault into a condition where a large earthquake can occur 
on it. 

1.41 

, 1 ~o t2 a =~-a / 

~ J,..~ o.s %=0 / 
.~ 06 " / H  

~°°4 T. 
0.2 ~ 

s / 5  

FIG. 7. Plot of displacement (heavy line) at x = 0 at the center of the double source of 
Fig. 6 as a function of applied stress. Also shown is the displacement at the center of single 
sources of various half widths. 

EFFECT OF A FREE SURFACE 

Suppose a fault terminates at a plane free surface which is perpendicular to the 
plane of the fault. The results of the previous sections still can be applied in this 
situation. 

We learn from dislocation theory that  when a screw dislocation is near a free 
surface, the additional stresses which arise because of the presence of the surface 
are identical to those which would be produced by an "image" screw dislocation 
having an opposite sign. Consider figure 8a. Here is shown a screw dislocation 
lying at a distance d from a free surface. The dislocation is parallel to this surface. 
The coordinate x is measured perpendicular to the free surface and y runs parallel 
to the surface and perpendicular to the dislocation. The stress acting at any point 
(x, y) for which x > 0 is identical to tha t  which would be felt if all the free space 
x < 0 were filled up and a dislocation of opposite sign but  equal strength were placed 
at the point ( - d ,  0). This image dislocation is shown in the figure. 

The stress fields of the real and the image dislocations combine to make the 
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plane x = 0 free of traction. Therefore this surface could be cut without disturbing 
the stress field. 

The fault can be considered as extending out into free space with the same fric- 
tional stress at - x  as the real fault has at x. Where the real fault has a dislocation 
density B(x)  of screw dislocations, the image fault has a density of image disloca- 
tions - B ( x )  at - x .  The real distribution of screw dislocations and the image dis- 
tribution need only satisfy equations (2) and (3) integrated between - ~  and ~c in 
order to be a satisfactory solution to the problem of screw dislocations on a fault 
that  terminates at a free surface. For example, in figures 3, 5, and 6, if a free surface 
were placed at x = 0, the solution found previously for those problems would still 
be valid. 

(-d,o) 

(-d,o) 
T - -  - -  - -  

,y [o) 
)X S- 

(d ,o)  

J ~.... (d,o) 

B(y) 

(b) 

FIG. 8 (a) Image screw dislocation. (b) Image edge dislocations. 

The problem of an edge dislocation near a free surface is more complicated than 
the corresponding case of a screw dislocation. If the edge dislocation is at (d, 0), 
as in figure 8b, an image dislocation of opposite sign at (--d,  0) will not completely 
satisfy the problem. A distribution of infillitesimal edge dislocations must be placed 
on the x = 0 plane. This distribution is shown in figure 8b. The density is given by the 
relationship B(y)  = (4byd2)/(y ~ + d2) 2 where b is the length of the Burgers vector 
of the original dislocation. This distribution is required to make the plane x = 0 
traction free. 

The presence of an infinitesimal dislocation distribution oll the plane x = 0 
makes it impossible to apply rigorously the analysis of the previous sections to the 
problem of edge dislocations distributed on a fault terminating at a free surface. 
However if the continuous distribution on the free surface is ignored and only the 
image edge dislocations considered, our previous analysis gives a reasonably ap- 
proximate solution to this problem. 



C O N T I N U U M  D I S T R I B U T I O N  OF D I S L O C A T I O N S  O N  F A U L T S  1051 

APPLICATION TO SLIPPAGE ON VERTICAL FAULTS NEAR THE EARTH'S SURFACE 

We now will a t t empt  to apply the results of the previous sections to the problem 
of slippage on vertical faults within continental blocks. These faults are imagined to 
continue as image faults above the ear th 's  surface, which is a free surface. 

Amonton 's  law of friction probably holds for those areas of a fault  which are very 
close to the earth 's  surface. The frictional stress ~ near the earth 's  surface may  be 
given by: 

z = n p g x  (28) 

where n is the coefficient of friction, g is the gravitational acceleration, and p is the 
average density of rock. The distance x is measured from the earth 's  surface. Equa-  
tion (28) assumes tha t  the only compressive stress acting across the vault  at  the 
depth x is the hydrostatic pressure pgx.  I f  appreciable non-hydrostatic tensile or 
compressive stresses exist they would have to be included in this equation. 

We assume tha t  equation (28) breaks down at some depth a below the surface 
because the fault is lubricated or because of some unknown mechanism. The fact 
tha t  loci of earthquakes within continental blocks occur at  an average depth of 
around 15 kilometers suggests tha t  the frictional stress may  have a minimum value 
at  this depth. We assume therefore tha t  the frictional stress first increases with 
depth below the surface, reaches a maximum, decreases to a minimum value near 
15 kilometers, and then increases. If  this be the case the frictional stress may  have a 
functional dependence approximating the function shown in Figure 9a. The image 
fault frictional stress also is shown in this figure. I t  is a mirror image of the frictional 
stress of the real fault. 

The magnitude of the frictional stress can be estimated from the energy released 
in earthquakes. Benioff (1955), for example, calculated tha t  the average elastic 
stress existing in the rock before a particular earthquake on the White Wolf Faul t  
was 26 bars. We assume therefore tha t  the maximum stress zl of figure 9a must  be 
of this magnitude. 

The frictional stress at  a constant depth undoubtedly varies as a function of the 
horizontal distance. If  we restrict ourselves to faults whose horizontal dimensions 
are great, the horizontal variat ion of frictional stress is relatively unimportant .  
[Slippage occurred on the San Andreas Fault  for a distance of the order of 400 
kilometers during the San Francisco Earthquake.  5~[ovement appeared to have 
occurred over 1100 kilometers during the great Chilean Ear thquake  of 1960 (Press 
et al .  1961).] From the results of a previous section we know tha t  after a finite 
amount  of slippage a fault  with a periodic frictional stress is primed and acts like a 
fault  with constant friction. The same behavior should be found in a fault in which 
the variat ion in the frictional stress occurs over distances small compared with the 
length of the fault. We assume therefore tha t  at a constant depth below the surface 
the horizontal variat ion in the frictional stress is effectively removed as a result of 
this priming action after an appreciable amount  of slippage has occurred. 

The fault of figure 9a contains three regions which may  act as sources. They 
are located around the points x = 0 and x = ~ f ,  where f is the average depth of 
loci of earthquakes in continents. As the stress within the crust rises to a value ap- 
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proaching a, where ~ is the average frictional stress on the fault, the infinitesimal 
dislocation distribution becomes that  shown schematically in figure 9b. During this 
increase in the applied stress, slow creep slippage occurs across the fault. When the 
stress S reaches the level ~, the fault is primed and further slip can take place cata- 
strophically. Once the fault is primed, slip can commence anywhere on it. However 
the center of a source region is the most likely place for the following reason. More 
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Fro. 9. Model of a vert ical  faul t  in the  ea r th ' s  crust .  (a) The  fr ict ional  stress on the  faul t ,  
(b) The dislocat ion d is t r ibu t ion  (schematic) a t  the  moment  before the  faul t  slips ca tas t rophi -  
cally. (c) Addi t ional  dislocat ion d i s t r ibu t ion  (heavy curves) arising from re laxat ion  of the  
load af ter  ca tas t rophic  slipping. 

slip takes place there prior to S reaching the level e. Therefore the horizontal varia- 
tion of the frictional stress on the fault is more effectively removed at  this particular 
depth. 

The new dislocations that  are created on a fault during catastrophic slippage 
cannot be slow moving. If they were the additional stress produced by them would 
lead to a total shear stress on the fault in excess of the frictional stress, a situation 
which is physically impossible. This difficulty is removed if the new dislocations are 
fast moving. Screw dislocations which move at a speed equal to the transverse somld 
velocity produce zero shear stress on their slip planes (Leibfried and Dietz, 1949; 
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Frank, 1949; Eshelby, 1949). Edge dislocations which move at the Rayleigh sound 
velocity (the Rayleigh wave velocity ~0.9 X transverse sound velocity) likewise 
produce zero shear stress on their slip planes (Weertman, 1961, 1963). Therefore 
when dislocations move at these velocities a fault experiences no additional shear 
stress and the frictional stress is not exceeded. Dislocations traveling at these speeds 
do not interact with each other. I t  is probable that the catastrophic slippage which 

7 -  
,, (a) 

, , ~ . f -  - J~ (b )  

[~* (c) 
q-- 

(D -D ' )~  ( D ._f D'x') _ Cd) 

(e )  

I Cf) 

FIG. 10 (a) The displacement of a line on the surface of the earth, immediately after cata- 
strophic slipping and before any relaxation of the dislocation distributions occur. This figure 
also represents the displacement after the fault  is reloaded. (b) The displacement due to 
reverse slip in the source region at the earth 's  surface. (c) The displacement due to reversed 
slip in the source region centered at f in Figure 9. (d) The sum of the displacements of Figures 
10 a, b, and c. (e) The displacement on a fault  which has slipped only in the region 0 < x < f .  
(f) The displacement of figure d when D '  is negligible. (Note: The displacement produced by 
the applied stress itself is not  shown in these figures.) 

occurs when S = ~ takes place by the movement of such fast moving dislocations. 
[Slippage on the fault of the great Chilean Earthquake appears to have propagated 
at a velocity close to the transverse and t~ayleigh wave velocities (Press et al., 
1961).] 

Suppose the dislocations created during catastrophic slippage move completely 
out of the fault, both at the earth's surface and at the base of the continent. If the 
stress S is not relaxed so that the (static) dislocation distribution of figure 9b re- 
mains unchanged, the fault trace at the earth's surface will be displaced a total 
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distance D equal to the length of the Burgers vectors of the fast moving dislocations 
which have left the fault. A line drawn on the earth's surface perpendicular to the 
fault inimediately before the catastrophic slippage will be displaced as shown in 
figure 10a. (We consider only screw dislocations in what follows.) The dashed line 
indicates the original marking, and the solid lines, the mark after slippage. The 
material on either side of the fault is displaced as rigid blocks. 

A stress relaxation will occur across a fault after catastrophic slippage. It was 
learned in earlier sections that if the load is removed from a fault, slip in the reverse 
direction can take place in source regions. This reverse slip leads to a new dislocation 
distribution. The heavy lines in figure 9c represent the new dislocation distribution 
that must be added to the old in order to obtain the dislocation distribution in the 
unloaded state. In the region 0 < x < a the new dislocation distribution B'(x) (the 
heavy line of figure 9c) introduced by reverse slip in the source region centered at 
x = 0 is similar to the distribution function of equation (22). An approximate 
value for the total strength D ~ of the Burgers vectors of the dislocations created 
during reverse slip may be obtained from equation (23). Thus 

b' _2 

D' = fo B' (x)  dx ~ ~racr a (29a) 
2~1t~ 

This distribution of dislocations produces an effect roughly equivalent to that of a 
discrete dislocation of Burgers vector D' which enters the earth's surface and 
descends to a depth given by: 

depth ~ a ~  - -  (29b) 
8Ol 

Figure 10b shows schematically the displacement to be expected around a fault at 
the earth's surface if a dislocation of Burgers vector D' moves to the depth given 
by (29b). The dashed line in this figure is drawn immediately prior to the intro- 
duction of this dislocation. 

Reverse slip also may take place in the source region centered around point f of 
figure 9. The new dislocation density B'(x) around this source is shown in figure 9c. 
The total length D* of the dislocations in this distribution hmctiou which move 
from f up towards the earth's surface is given approximately by equation (19b), if 
a of that equation is set equal to (f - g). If the load is completely relaxed, 

D *  r~Jr~J 8 0 / ( f  - -  6)0"1 l o g  -~ ( f  __ 6) 2 

provided z0, the average frictional stress in the source regions, is small compared 
to zl. In this expression for D* 

b p 
( f -  g) 
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The dislocation distribution that arises during reverse slip of the source centered 
at f produces an effect roughly equivalent to that of a discrete dislocation of Burgers 
vector D* which moves from f to g and another discrete dislocation of opposite 
Burgers vector which moves from f to h. Figure 10c shows schematically the dis- 
placement at the earth's surface around a fault produced by the movement of these 
dislocations from f to g and h. (It is assumed in this figure that the dislocation at h 
has moved to so great a depth that its effect on displacements at the surface is 
practically the same as if the dislocation had moved to the base of the continent.) 
The movement of the two dislocations D* and -D*  has the effect of partially or 
wholly cancelling the slippage produced in the region from g to h during catastrophic 
slip. 

The total displacement of a straight line drawn on the surface prior to catastrophic 
slip is shown in figure 10d. This figure contains the sum of the displacements shown 
in the preceding figures 10a, b, and c. Figure 10e shows schematically the displace- 
ments that may result if the catastrophic slipping occurs only fromf up to the surface 
and does not extend to the base of the continent. In this situation the dislocations 
that leave the fault at the surface of the earth will have left behind them in the 
region around f equal nmnbers of dislocations of opposite sign. When the load S is 
removed these dislocations which remain behind will be pushed up towards the 
regions around g by the same stress that produces reverse slip in figure 10c. The 
slip produced during catastrophic slippage will be cancelled in the region from f to g 
by this dislocation motion. 

If D' of figure 10b is small, the displacements of figure 10d will look more like 
those shown in figure 10f. These latter displacements approximate those that have 
been observed to be produced on faults by earthquakes (Byerly and DeNoyer, 1958; 
Chinnery, 1961). (It should be noted that the depth of the dislocation D* can be 
determined from the displacements at the surface. I t  can be shown by dislocation 
theory that the distance from a fault at which the displacement due to D* changes by 
a factor of two is identical to the depth at which the dislocation resides.) 

Figure 10f shows the displacement at the surface after the stress causing an earth- 
quake has relaxed. If this stress builds up again the dislocations created during 
reverse slip will be pushed back towards the center of the source regions and elimi- 
nated. (See the section on the source unloaded and reloaded.) In other words, all 
the reverse slip that occurred in the source regions during the relaxation of the 
applied stress will be recovered. Therefore as the stress within the crust builds up the 
displacements shown in figure 10f slowly approach the displacements of figure 10a. 
As soon as the displacements become equal to those of figure 10a the fault is primed 
again and able to slip catastrophically. Thus in this ideal situation, it is possible to 
predict when the next earthquake will occur. Once it takes place the fault will go 
through the same cycle just described. This cycle can be repeated indefinitely, 
thereby leading to an infinite amount of slip across the fault. 

SEMI-QUANTITATIVE CALCULATION 

We would like to show in this section that the fault model of figure 9 can lead to 
reasonable values for the Burgers vectors of dislocations produced by earthquakes 
(Byerly and DeNoyer, 1958; Chinnery, 1961). 
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The depth f at the center of the source region in the fault model of figure 9 was 
estimated as 15 kilometers on the basis of measurements of the depth of earthquake 
foci. The depth g can be estimated as being of the order of 7 kilometers since this is 
about the depth at which dislocations have been determined to exist from surface 
displacement measurements. From the results of the previous section g should 
approximate this depth. Since h and g lie symmetrically about f, the depth h is 
about 23 kilometers. The depth a of the source region at the earth's surface should 
be small. ( I t  will be seen in a moment that  this source region is relatively unim- 
portant.)  If the coefficient of friction is taken to be n = 0.1 and if zl is of the order 
of 50 bars, a is approximately equal to 2 kilometers. 

We will assume that  the average h'ictional stress e on the fault is equal to 26 bars, 
which is the stress level calculated by Benioff (1955) as having produced one par- 
ticular earthquake. If z0 is small compared to ~1, the average frictional stress of the 
fault model of figure 9 is e = (T~(L - -  a - -  h + g ) / L ,  where L is the thickness of 
a continental block. If L is taken to be 35 kilometers, ~1 is equal to 50 bars. 

If these values of ~ and ~ are substituted into equations (29), it is found that  
the Burgers vector D'  of the dislocation introduced into the fault during reverse 
slip at the surface of the earth is D '  ~ 7 X 10-5a = 14 cm. ( I t  is assumed tha t  

= 3 X 1011 dynes/cm 2.) This is a very small dislocation. The average depth to 
which this dislocation penetrates is 0.2a = 400 meters. I t  would be very difficult 
to detect the presence of this dislocation from displacements produced around a 
fault. This result shows that  the surface source is relatively unimportant  and that  
figure 10d must approximate closely figure 10f. 

Equation (30) gives the length of the Burgers vector D*.  When e = 26 bars and 
~ = 50 bars are placed into this equation it is found that  D* ,.~ 1.5 meters. This 
Burgers vector is about the same as those of the actual dislocations produced by 
earthquakes (Byerly and DeNoyer, 1958; Chinnery, 1961). Therefore the fault 
model of figure 9, or modifications of it, can account for the observations on dis- 
placements around faults and can resolve the difficulty that  dislocations appear to be 
located at shallower depths than the foci of earthquakes. 

We have accomplished what we set out to do, namely, to show that  it is possible 
to explain the observation that  dislocations produced by earthquakes lie above the 
earthquake loci. This explanation depends on the existence below the surface of the 
earth of a region on the fault which is characterized by an anomalously low frictional 
stress. The reader will appreciate that  the support for the assumption of a low 
friction region is weak. We ourselves would prefer to have our analysis inverted to 
the following: given the fact that  dislocations lie at shallower depths than earth- 
quake foci, it is to be concluded that  at  some depth there must exist a region where 
the frictional stress is anomalously low. 
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