
Bulletin of the Seismological Society of America. VoL 60, No. 3, pp. 795-808. June, 1970 

A NOTE ON THE STEADY-STATE RESPONSE OF 

AN ELASTIC HALF-SPACE 

BY N. C. TSAI 

ABSTRACT 

With reference to the influence of local geology on earthquake ground motions, 
a more complete analytical formulation is made of the well-known problem of a hori- 
zontally stratified, linearly-elastic half-space subjected to vertically traveling, 
sinusoidal, plane waves. A more general interpretation of a result of Kanai is 
given, and a recursion formula is derived for computing amplification spectra. 
Some special properties of the system are pointed out and numerical examples 
are given. 

INTRODUCTION 

The influence of local geology on the shaking of the ground is of much interest for 
its engineering implications. In Mexico City, for example, the spectra of the recorded 
earthquake motions on the surface of the old lake bed have a prominent peak at a 
period of 2.5 seconds which is interpreted as showing the influence of local geology. 
In engineering considerations local geology is usually taken to mean the alluvial layers 
underlying a site as these would have the most pronounced influence on the seismic 
waves. An analysis of this problem, taking into account the propagation of the seismic 
waves from their origin to the site and taking into account the true physical and 
geometrical properties of the soil deposits and the underlying rock, would be exceed- 
ingly difficult. A simplified form of this problem, originally studied by Kanai and 
Sezawa, considers a set of horizontal, elastic layers of uniform thickness overlying an 
elastic half-space. The layers are assumed to be excited into motion by a vertically 
traveling, plane wave which passes from the half-space into the layers, and after 
reflections and refractions the waves pass back into the half-space. The problem is 
thus reduced to one-dimensional wave propagation, either transient or steady-state. 
Although this idealized system differs from the conditions found in nature it is thought 
that its behavior can provide some insight into the behavior of real systems. In this 
paper the problem is given analytical formulation which incorporates the work of 
previous investigations appearing in various scattered publications. 

By computing the steady-state response of a layered system to a sinusoidal excitation 
the frequency-selective property of the system can be clearly exhibited by means of 
an amplification spectrum which shows how the system amplifies some frequency 
components and suppresses others. Such studies have been made by Sezawa and 
Kanai (1930, 1932, 1935a, 1935b), Kanai (1952, 1953), Takahasi (1955), Matthiesen, 
Duke, Leeds, and Fraser (1964), and Herrera and Rosenblueth (1965). Haskell 
(1953; 1962) has formulated in terms of transfer matrix the more general problem of a 
layered system excited by body waves that are incident obliquely rather than verti- 
cally. Kanai has treated viscous (Voigt) layered systems with one to three layers. 
Takahasi developed a graphical technique for finding the response of an N-layered 
nonviscous system. 5~atthiesen et al. derived the solution for a viscous (Voigt) N-lay- 
ered system and the results were applied to study the site characteristics of strong- 
motion earthquake stations in southern California. Herrera and Rosenblueth derived 
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the solution for a viscous N-layered system in matrix form. Some conclusions of engi- 
neering significance were deduced from the steady-state analysis by Kanai: 

(1) A nonviscous system with one layer only has a prominent resonant response 
while a multi-layered system has less prominent resonant responses. 

(2) During earthquakes, there is a dominant period associated with the ground 
layers. This period is proportional to the total thickness of the layers. 

(3) Due to the deformability of the base-rock foundation of the half-space, a 
portion of wave energy is transmitted back into the foundation. This energy loss is 
eMled "geometrical dissipation," (Kanai, 1963, 1964) and, consequently, the resonant 
response is bounded even if the system is nonviseous. 

In this paper, there is re-derived the steady-state response of a linearly viscoelastic 
layered system in the form of a recursion formula from which several properties of 
the amplification spectrum ean be deduced for a nonviseous system having its stiff- 
nesses increasing with depth. From these conclusions, a more general interpretation 
can be given to Kanai's first conclusion. Numerical examples are presented to demon- 
strate the effect of layer parameters on the amplification speetrum, and a tentative 
eonelusion is drawn for viscoelastic systems having gradually increasing stiffnesses 
and having fixed properties for the top layer and the foundation. 

The following analysis is made for incident S waves, but the results can readily be 
converted to the ease of P waves by replacing the corresponding elastic constant and 
the corresponding viscosity constant. 

I t  should be noted that a more practicai approach involves the analysis of transient 
excitations of more heavily damped layered systems, but this is better done by other 
methods (Tsai, 1969). Soils are not necessarily uniformly layered or linearly elastic, 
and all seismic waves are not planar and vertically traveling, so that the real problem 
is much more complicated than currently used methods of analysis indicate. 

MATHEMATICAL A~-aLYSIS 

The linear viscoelastic models most commonly used to describe viscous dissipation 
are the Maxwell model, the Voigt model, and the standard linear model. Denoting 
the shear stress and the shear strain by ¢ and e respectively, the steady-state response 
is e = e ~'~t and ~ = t,(a~)e i'~t, and a general stress-strain law can be written for the 
models as follows (Tsai, 1969) : 

= ~(w). (1) 

For the Maxwell model with a "relaxation t ime" constant ~, 

~(-) = ~ o - -  ( 2 a )  
I -5 iw~ 

where u0 is the shearing modulus in the absence of viscosity. For the Voigt model and 
the standard linear model, 

u(w) _ 1 q- icor (2b) 
iw'r 

l + - -  
1 - t - r  

where T is the retardation-time constant, and r is a nondimensional parameter, equal 
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to ~ for the Voigt model. By definition, the complex shear wave velocity is 

c(~) = ~ / ; (~ ) /p  

which is equal to ~ ¢ / ~ / p  for a nonviscous material, p being the density. 
Consider a horizontally stratified N-layered linearly elastic system with each layer 

being homogeneous and isotropic, and obeying the general stress-strain law, equation 
1, for steady-state deformation. The layered system is shown in Figure 1 with the top 
layer indexed 1 and the half-space N + 1. A set of N coordinates, z y ,  j = 1, 2, • • • , N ,  
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FIG. 1. An N-lsyer system under steady-state excitation 

is also defined as shown. The vertically incident plane S wave 

y ( t  + zN/c~+1) = a~+le i~(t+*N/~+l) (3) 

with aN+, being a known amplitude, generates a response, u y ( z y ,  t ) ,  in the j th layer 
described by the one-dimensional wave equation 

c7(~) °~u~(z~' t) o~u~(zj, t) 
Ozfl - Ot 2 j = 1, 2, . . . , N  (4) 

for zy = --Hy to zy = 0 .  The solution of equation (4) can be written as the sum of 
upward traveling wave and a downward traveling one 

uy(zy  , t )  = aye i(~t+~yÈy) + bye~(~t-kJ~y ) (5) 
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in which kj = oo/c~(oo) is the wave number. The amplitudes aj and bj are determined 
by applying the proper boundary conditions at each of the interfaces. At the free 
surface z, = - H , ,  the stress-free condition yields 

bl = ale -21"1 (6) 

where it is defined that  

sj = k jH,  j = 1, 2, . . . ,  N. (7) 

The conditions at the interfaces defined by z~._~ = 0 and zi = - H i  are that  the dis- 
placements are continuous, which gives 

a~_~ + bi_~ = a je  - ~  + b2e ~s. (8) 

and that  the shearing stresses are continuous, which gives 

a i - l ( a j - 1  - -  b j - 1 )  = aje -iSs -- bie i~i (9) 

In equation (9) aj_~ is the impedance ratio between the (j - 1 )th and jth layer and is 
equal to pj_tcj_~/pjcj .  

From equations (8) and (9), aj and bj can be expressed in terms of aj_l and bj_~ by 

where 

al} 1 r + °l]-l)eii~ ~ 
b = -~ L ( 1  - ~,_i)e-  J 

[S]i[T]J-1 r ; 
- -  toa:_; 

isj  
(1 -- aa_l)e fl/aj_Q 

( 1 -~J "4- OZj--1 ) e J ~bj_l )  

j = 2, . . . , N  (10) 

[ I [ 1 [S]j = e'~' 1 1 + a ~  1 - ~ j  (11) 
e_~.~ [T]j = ~ 1 - aj 1 -k aj " 

At the lowest interface, where ZN = 0, we have 

bar+lfl = \ b ; f "  
(12) 

Upon repeated use of equation (10), aj and b5 can be expressed in terms of al and bl, 
and, by using equation (6), equation (10) becomes 

f a i l  ~- al e-isl ([S]][Tlj_I) ' ' '  ([Sl2[T]I)[S]I • I, bd 

For convenience the last equation can be written 

{b~} -i~1 (Rej -4- i Imj~ 
=- ale [S]JtRe i - i I m i j  " (13) 
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It can be shown by induction that Rej and [mj are given by the following recursion 
formulas 

Re~  = Rea ' - i  cos  8 j _ i  - I m j _ l  sin sj-_l (14) 

starting with 

Imi = a~-_~ (Rei-~ sin sj-1 ~- Imj_~ cos sj_l) 

R e j  = 1, Iml = 0. (15) 

Both sj and aj are real, and hence Rej and Im~ are real, only if the layers are non- 
viscous. For viscoelastic systems, Rej and Imp- will be complex and their explicit 
expansions were derived by Tsai (1969). 

Substituting equation 13 for j = N into equation (12) gives 

eisl 
a 1 = (IN+I,  ( 1 6 )  

Rez¢+l + i ImN+l 

Hence, aj and bj are given by equations (13) as 

{a~¢} : a~+l [S]i {Rej -q- i  Imj l 
b Ree¢+i + i ImN+l Rej - i Imjj 

(17) 

and the response at the surface of the layered system will be 

2aN+l  ei(~0t_q,N+l) ( 18 ) 
ul(-H1,  t) = V'ReL1 + ImN+~ 

with 

ImN+l 
• z¢+l(co) = tan -i ReN+i" 

w e  define the following ratio 

AMP(CO) - [ul( - H 1 ,  t)] _ r u l ( - H 1 ,  t) l 
[ 2y(t) [ 2alv+l 

= ~¢/Re~r+l + Im~v+l 
19) 

where y(t) is the wave form of the incident wave. The plot of AMP(c0) as a function 
of the frequency is the amplification sp'ectrum for the surface response with respect 
to 2y(t). Observe that the double amplitude, 2aN+l, has been used in the definition of 
AMP(CO) because 2aN+l would, according to equation (18), be the amplitude of the 
surface motion of the half-space foundation if there were no superposed layers. By 
defining 

Gj(co) = ~/Re7 + Imj 2 
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and 

the response of the jth layer is 

¢~(co) = tau_~ Imj (20) 
Rei 

u / z ] ,  t) = 2aN+t AMP(co) G/co) cos [k~-(Hj + z~-) + ¢~]e i(~-¢v+t). (21) 

In the case of viscoelastic layered systems, A~/IP, %¢+~, Gi, and cDj are complex be- 
cause Rei and Imj  are complex, and the explicit expansions for AMP and u~. are 
given by Tsai (1969). 

Because the infinite half-space participates in the motion, the system does not have 
mode shapes and natural frequencies in the classical sense. However, a characteristic 
frequency of a nonviseous layered system can be defined as follows. Let co~ satisfy 
the relation 

We then have 

ReN+I (Wn) = 0 n = 1, 2, " "  . (22) 

1 
AMP(CO~) - l lmN+~(con) I 

aN I ReN sin sN + Im~ cos sN 1 . . . .  " 

AMP(con) is seen to approach infinity as aN approaches zero. In the limiting case that  
aN -- 0, the foundation is rigid and the system will have resonant response with 
infinite amplitude at cos. Hence, equation (22) defines the characteristic frequencies, 
co,,, of a nonviseous system which are simply the natural frequencies of the system 
with a rigid foundation. Also, equation (22) indicates tha t  the value of co~,, is inde- 
pendent of the property of the half-space foundation. In most realistic problems, the 
foundation would be more or less deformable so that  an will be different from zero 
and AMP(o~) will always be finite. This results from the fact that  a certain amount 
of energy is lost from the layers by being transmitted back into the deformable foun- 
dation. Such an interpretation, first emphasized by Kanai (1963, 1964) is called the 
"geometric dissipation" of wave energy. 

PnOPE~TmS OF AMP (~) 

A nonviscous layered system whose stiffnesses increase with depth, i.e., 0 < aj  =< 1 
for j = 1, .--  , N, is of most practical interest, and several important assertions con- 
cerning the nature of the amplification spectrum of such a system can be derived as 
follows: 

Property (A).  AMP (~o) is always finite and is greater than or equal to 1. 
We first prove that  R%- and Imj never vanish simultaneously. That  this is true is 

obvious by inspection for the cases old = 1 and 2; ford ->_ 3, equation (20) gives 

2 2 Re~ 2 + I m j / o ~ j _ l  = ( R e j _ l  cos  8 j - 1  - -  Imj_l s i n  sj_1) ~ 

+ (Re3-1 sin sj-1 + Imj_l cos sj_l) 2 2 2 = R%--1 + Ires-1. (23) 
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Rearranging the right-hand side, equation (23) becomes 

2 2 2 2 2 2 2 2 
R e / +  Imj /a j_ l  = (1 aj_2) + aj_2 - Rej_l (Rej_l + Imj_l/aj-2). 

Upon repeated application of the above reeursive relation, we finally arrive at 

j-2 3"-1 [i-2 ,~ 

j - -  3 , . . . , N +  1. (24) 

The right-hand side of equation (24) is obviously greater than zero, and hence Rea" 
and Imj cannot vanish simultaneously. 

On the other hand, adding Im~ (1-1/a~_~) to both sides of equation (23) gives 

Rej 2 + Im~ = ReT-1 + Ira j2-1 - Im]  (1 - aj2_l)/aj_12. 

Applying this recursive relation repeatedly gives 

3"--1 

Re7 + Imj 2 1 ~ Imk+1 (1 2 2 = - - ~ ) / ~ .  ( 2 5 )  

k = l  

2 Since ak < 1 for k = 1, 2, .- • , N, the sum in equatioa (25) will always be positive. 
Equations (24) and (25) lead to the following inequality 

0 < Re~ + Imj 2 _-< 1. 

Setting j = N + 1, it immediately follows from the definition of AMP (~) that 

> AMP (~) > 1. (26) 

Property (B). The value of AMP ( ~ )  has an upper bound equal to 1/(al-a2 . - .  aN) 
and a lower bound 1~aN. 

Making use of equation (23) for j = N + 1 gives 

2 2 Re~+l + IroN+l/aN = ReN 2 + Iron 2. 

Since ReN+I ( ~ )  vanishes (equation (23)), it follows that 

Im2+i (,o~) = aN 2 [ReN ~ (¢%) + Iron 2 (Z~)]. 

Making use of equation (25) for j = N, 

N--1 
2 2 2 Im,~+l (z~) = aN2[1 -- ~ "~ Im~+l (~n)(1 -- ak )/ak ] (27) 

k = l  

2 
--<__ a N  

o r  

[ IMN+I (~n) [ =< aN. (28) 
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On the other ha.nd, setting j = 

hr--1 

I m ~ + l ( C ° n ) / ° ~ N 2  = H 

hr--1 

=>II 
k= l  

or simply 

S E I S M O L O G I C A L  S O C I E T Y  O F  A M E R I C A  

N + 1 in equation (24) gives 

ak + Rek (co~)(1 2 - -  O~k_ 1 ) (Zi 2 
k=2 \ i=k 

2 

i Ims+l (C~n) I > C~1a2 " '" C~N. 

(29) 

which in turn implies that  

sin s~'(~On) = 0 j = 1 , " "  N - 1. 

In addition, substituting equation (34) for j = N into equation (33) gives 

c o s  S ~ ( ~ n )  = 0 

(35) 

Equation (28) and the last equation together define the bounds for AMP (co~) as 

1 1 
- -  = < A ~ 4 P ( ~ )  = < . ( 3 0 )  
OLN OZl O~2 • . . (9/N 

Property (C). AMP (co~,) assumes the minimum value given by property (B)  if 
the characteristic frequency satisfies 

sin S/COn) = COS S~(C%) = 0 j = 1, " ' " ,  N -- 1 (31) 

and the maximum value if 

cos sl(~o,~) = sin sj(c0~) = 0 j = 2, . - .  , N. (32) 

For a single-layered system (N = 1), AMP (c~) equals a constant, l / a1 ,  which is 
both the maximum and minimum itself. For N > 2, equation (22) gives 

Res+l (con) = Rex (c%) cos sx(co~) - Ims (con) sin~ (co~) = 0. (33) 

The characteristic frequency, ~o~, in general does not make AMP (C0n) a maximum or 
minimum unless some particular conditions are met by the layer parameters. 

(1) From equation (27), there will be a minimum A~,iP (c%) equal to 1/a~ only 
if co~ satisfies 

I ImN+l (~o~)l = ~ .  

The last condition implies that,  in equation (27), the following condition should 
be fulfilled 

Imi  (wn) = O j = 2 , . . .  N (34) 
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because, by property (A), Re~¢ (co~) cannot vanish. The last condition, together with 
equation (35), yields equation (31)--the condition under which the minimum value 
of AMP (en) Occurs. 

(2) From equation (29), the maximum of AMP (co,~) will occur if co~ satisfies 

o r  

I IMN+I (co.) [ = O~IOL 2 ' ' '  OL N 

~ e i ( ~ )  = 0 j = 2 , . . . , N  (36) 

which in turn implies that,  from the recursion formula for Re j ,  

cos sl(co~) = 0 and sinsi(co~) = 0 j = 2 , . . . ,  N -  1. (37) 

Substituting equation (36) for j = N into equation (33) gives the additional condition 

sin sN(e~) = 0. 

The last condition together with equation (37) constitute the condition, equation 
(32), under which the maximum of AMP (o~) occurs. 

Property (D). A layer is said to be transparent with respect to a particular fre- 
quency a if the thickness of said layer is equal to an integer multiple of the half-wave 
length. This property is true for any nonviscous layered system. 

First of all, by transparent layer we mean that  at a particular frequency a the 
amplification spectrum is completely independent of the parameters of the layer. 
In other words, AMP (ft) can be computed as if this layer is absent. Let us consider 
the j*~ layer and suppose its thickness to be an integer multiple of the half-wave 
length at a, namely, 

mxi(f~) m = 1,2, . . .  H a  = (38) 

where X j is the wave length equal to 2u/kj (~t). Since equation (38) implies that  

we have 

s j(e)  = ki(f~)hrj = m~r 

sin si(tl) = 0, cos si(t~) = ( - -1)  TM. 

Substituting the last equation into the recursion formula for R%.+~ gives 

Rej+l(a)  = ( -1 )mRej ( t l )  

= (-1)~[Rej_lcos 83"--1 - -  Imj_1 sin sj-1]~=a. 

Similarly we can obtain 

Imj+l(~) = ( - 1 )  m pj-lcj-1 [Rei_l sin sj_l + Imj_l cos sj_l]~=~. 
P j+l Cj+l 
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Both Rei+l(ft) and Imj+l(a) are obviously independent of the parameters of the 
. th j layer, which implies that ReN+l(a) and ImN+l(a) can be computed as if the 

jt~ layer is absent. Hence, property (D) is established. 
As already mentioned, Kanai had drawn the conclusion that a single-layer system 

has prominent resonant amplification while, on the other hand, resonant amplifica- 
tion of a multi-layer system is less prominent. He attributed this behavior of multi- 
layer systems to the complicated interference of the waves during reflection and 
transmission across the layer interfaces. Intuitively, since both systems are physieMly 
similar and differ from each other only in the layer parameters both would be ex- 

cl= I 0 0 0  fps ~500 ft 
PI = I00  pcf 

p2=125 pcf (I} Cz== :a;l= 0 
(z) cz= 4000fps:  oc t =0.2 

(-~)Cz= IO00fps ; oct =0.8 

(o) THE SINGLE-LAYER SYSTEM (N=I) 
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(z)c4=3750fps : oc~=0.595 

(3) c 4 = 2500fps : oc~=0.893 

{b) THE TRIPLE-LAYER SYSTEM (N=3) 

FIG. 2. Layered systems for demonstrating the effect of a~. 

peered to have resonant responses of comparable prominence, so that Kanai's con~ 
clusion seems inconsistent. The following explanation is given for this apparent 
inconsistency. 

Theoretically, property (B) indicates that a nonviscous single-layer system has 
regular resonant amplification, A~<[P (c~), equal to 1/al. The value of al depends 
on the parameters of the system given and, therefore, need not necessarily be small. 
Hence, the resonant amplifications of a single-layer system need not be prominent. 
On the other hand, let us consider a nonviscous multi-layer system that has layer 
stiffnesses increasing with depth. The values of AMP (con) are no longer regular, and 
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the range of possible variations of AMP ( ~ )  is defined by the bounds given in prop- 
erty (B). In general, some resonant amplifications may be prominent while the 
others are suppressed. Yet, in spite of these possible variations, all the resonant 
amplifications will be prominent if a~ is sufficiently small. In short, it can be seen that 
Kanai's conclusion does not hold in general but is valid only for those special systems 
he analyzed. For illustration, a single-layer system and a triple-layer system, arbi- 
trarily chosen, are shown in Figures 2(a) and 2(b) respectively. For each system, 
amplification spectra have been computed for three different values of a~ obtained 
by varying the wave velocity of the foundation. The results are shown in Figure 3, 
which indicate that a~ has the effect of determining the prominence of the peaks 
of AMP ( ~ ) .  The values of AMP ( ~ )  for both systems arc all prominent if a~ is 
small, but are greatly suppressed if a~ is large. Hence, a~ serves as a measure of the 
wave energy lost into the foundation due to its deformability. 

EFFECT OF LAYER PARAMETERS ON AMP (~) 

Four idealized layered systems were chosen to study the influence of layer 
parameters, such as the number of layers, layer stiffnesses, viscosities, etc., on the 
amplification spectrum. The first two systems are double-layered (N = 2). The third 
system is triple-layered (N = 3), and the fourth quadruple-layered (N = 4). The 
data for these systems are given in Table 1; they were chosen in such a way that the 
properties of the top layer and the foundation are the same for all of these systems. 
Also, the total thickness of the intermediate layers between the top layer and the 
foundation is 550 feet for all systems. The effect on AMP (¢0) were studied by varying 
the number and the properties of the intermediate layers. In addition, to investigate 
the effect of material damping, in each layered system the amplification spectra for 
three different cases were calculated. These three cases were obtained by considering 
the layer media as 

( 1 ) nonviscous elastic solids, 
(2) standard linear solids described by the parameters, rj and r3, given in columns 

(5) and (6) respectively of Table 1, 
(3) Voigt solids described by the same parameters, Tj(rj = ~ in this case). 

The amplification spectra computed for each system are presented in Figures 4 (a) 
to 4 (d) respectively. Several observations can be made. 

(a) The value of the fundamental characteristic frequency, ~1, is 5 tad/see for 
the first system and is 7.2 rad/sec for the second system; whereas both the third 
and the fourth systems have a value of ~1 around 6.3 rad/sec. 

(b) The spectra for case (2) always lie between the spectra for case (1) and those 
for case (3). 

(c) The spectra for the viscoelastic systems are less sensitive than those for the 
nonviscous systems to the variation of the parameters of the intermediate layers, 
and they appear very similar to each other for the cases N = 3 and 4. In addition, 
the spectra for the viscoelastic systems tend to decay with frequency, which is in 
agreement with theories showing that linear viscoelastic materials always attenuate 
wave amplitude according to a certain power of wave frequency. 

Numerical calculations not shown here indicate that even if the number of inter- 
mediate layers is greater than 3 the general characteristics of AMP (co) will not dif- 
fer appreciably. Hence, it appears reasonable to conclude that, for a viscous multi- 
layer system with N ~ 3 and having layer stiffnesses increasing gradually with depth, 
if the properties of the top layer and the foundation are fixed, the general charac- 
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teristics of AMP (co) do not depend significantly o n  the properties of the intermediate 
layers so long as the total thickness of the intermediate layers remains unchanged. 
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FIG. 3. Amplification spectra  for different values of aN. 
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9 I 0  

For practical problems involving viscous layered systems this implies that inaccuracy 
in measuring the properties of the intermediate layers will not introduce appreciable 
error in the computed surface motion. The above conclusion may not be valid for non- 
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TABLE 1 

DATA FOR THE IDEALIZED LAYER SYSTEMS 

807 

(1) (2) (3) (4) (5) (6) (7) 
System Layer No, j Layer Thick- Density pj S Wave Velocity Retardation Time 

hess TI i (ft) (pfc) c i (ft/sec) rj  (sec) rj a j  

1 200 110 1000 0.005 1 0.382 
1 2 550 120 2400 0.002 5 0.240 

Base 150 8000 0. 100 
1 200 110 1000 0.005 1 0.181 

2 2 550 135 4500 0.001 20 0.506 
Base 150 8000 0. 100 

1 200 110 1000 0.005 1 0.382 
3 2 200 120 2400 0.002 5 0.474 

3 350 135 4500 0.001 20 0.506 
Base 150 8000 0. 100 

1 200 110 1000 0.005 1 0.385 
2 150 120 2400 0.002 5 0.658 

4 3 175 125 3500 0.0015 10 0.720 
4 225 135 4500 0.001 20 0.506 

Base 150 8000 0. 100 

N:2  
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FIG. 4(a). Amplification spectra. 
Fzo. 4(b). Amplification spectra  . 
}~IO. 4(c). Amplification spectra.  
FIG. 4(d). Amplification spectra.  

viscous layered systems because they are more sensitive to the variation of layer 
parameters. 

CONCLUSIONS 

The steady-state response of an idealized layered system subjected to vertically 
incident sinusoidal waves was derived in the form of a recursion formula. The modi- 
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lying effect of a layered system was expressed in terms of the amplification spectrum, 
AMP (co). Four important properties were established regarding the nature of A1V[P (co) 
of a nonviscous system having layer stiffnesses increasing with depth. From these 
properties, it was concluded that the impedance ratio ~N is a measure of the wave 
energy lost from the layers into the foundation due to its deformability, and deter- 
mines the prominence of the resonant response of the system. 

Numerical examples were given for studying the effect of layer parameters on the 
amplification spectrum. It  was concluded that for a viscous multi-layer system with 
N > 3 having stiffnesses gradually increasing with depth, the amplification spectrum 
depends primarily on the properties of the top layer and the impedance ratio between 
the bottom layer and the underlying half-space, and that the intermediate layers 
have small effect so long as their total thickness is fixed. 
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