
Bulletin of the Selsmologmal Socmty of America, Vol 72, No 2, pp 491-506, April 1982 

INVERSION OF COMPLEX BODY WAVES 

BY MASAYUKI KIKUCHI* AND HIROO KANAMORI 

ABSTRACT 

A numerical method to deconvolve complex body waves into a multiple shock 
sequence is developed. With the assumption that all the constituent events of a 
multiple shock have identical fault geometry and depth, the far-field source time 
function is obtained as a superposiUon of ramp functions. The height and the 
onset time of the ramp functions are determined by matching the synthetic 
waveforms with the observed ones in the least-square sense. 

The individual events are then identified by pairs of ramp functions or discrete 
trapezoidal pulses in the source time sequence. The method can be used for the 
analysis of both single and multi-station data. Teleseismic long-period P waves 
from the 1976 Guatemala earthquake are analyzed as a test of our method. The 
present method provides a useful tool for a systematic analysis of multiple event 
sequences. 

INTRODUCTION 

The spectra and waveforms of seismic body waves provide important information 
on the details of the source rupture process. In frequency domain analysis, the low- 
frequency asymptote and the corner frequency of the displacement spectrum are 
used to estimate the seismic moment and the source dimension (Brune, 1970). In 
time-domain analysis of body waves, the observed waveforms are modeled by a 
source time function, and the time constants associated with it are interpreted in 
terms of the source dimension and the particle velocity of the fault motion (Aki, 
1968; Haskell, 1969; Kanamori, 1972; Abe, 1974). 

When the observed body waveforms are relatively simple, the modeling can be 
done by using either forward or inverse methods. Langston (1976) and Burdick and 
Mellman {1976) used a time-domain inversion method to determine some of the 
complexities of the source time function. For a very large earthquake, however, the 
body waveform is extremely complex, and no standard method is available for the 
inversion. Several attempts have been made to explain the complexity of body 
waves from large earthquakes by using a multiple event model. Earlier attempts 
consisted of identifying distinct phases in the body-wave signal as the beginning of 
distinct events and locating them with respect to the first one (Imamura, 1937, p. 
267; Miyamura et al., 1964; Wyss and Brune, 1967). In more recent studies, synthetic 
seismograms were used to make a more quantitative interpretation (Fukao, 1972; 
Chung and Kanamori, 1976). Kanamori and Stewart (1978) modeled the waveforms 
of P waves from the 1976 Guatemala earthquake by matching them, in the least- 
square sense, with a series of trapezoidal source time functions. Rial (1978) modeled 
the Caracas earthquake by using three distinct events. Boatwright (1980) employed 
a direct inversion of the body waves from the 1979 St. Elias, Alaska, earthquake to 
resolve a few subevents. 

The complexity of the source time function reflects the heterogeneity in the 
mechanical properties in the fault zone, which is often characterized by asperities or 
barriers. Many recent studies have suggested the importance of asperities in various 
seismological problems, such as the nature of strong ground motion (Das and Aki, 
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1977; Ebel and Helmberger, 1981), foreshocks (Jones and Molnar, 1979), seismicity 
patterns (Wesson and Ellsworth, 1973; Kanamori, 1981), and the regional variation 
of rupture mode (Lay and Kanamori, 1981). 

In view of this importance, it is desirable to develop a systematic method for 
inversion of complex body waves consisting of contributions from several sources. 
This is obviously a difficult problem. For example, the 1976 Guatemala earthquake 
was modeled by about 10 pulses, each representing a distinct seismic source. Even 
in the simplest source model, about six parameters [the seismic moment, three fault 
parameters, two time constants (e.g., rise time and pulse width)] are necessary to 
describe each source. Thus, if we are to model a multiple shock with 10 distinct 
events, about 100 parameters, including the origin time and the coordinates of the 
individual events, would have to be determined. In view of the amount, the quality 
and the limited bandwidth of the data usually available for this type of modeling, it 
would be very difficult to determine all of the parameters. Furthermore, in view of 
the complexity of the structure near the source, along the path, and near the 
receiver, it would not be easy to prove that  all the complexities in the body wave 
form are due to the source. 

Because of these difficulties, we will be mainly concerned with the gross complex- 
ities of multiple events rather than with the minute details of the source function, 
and a number of simplifications will be made. Inevitably, a certain amount of 
nonuniqueness and subjectivity exists. The validity of the model should eventually 
be judged in the light of other data such as local strong-motion data, distribution 
and geometry of surface breaks, and macroseismic data. As we will show in the later 
sections, the method we present here can invert complex observed seismograms into 
a source time function in a systematic and reasonably objective way, thereby 
providing a means for interpreting complex observed records in terms of asperities 
and barriers in the fault zone. 

M E T H O D  

In an infinite homogeneous space, the far-field body waveform due to a shear 
dislocation source is given by [e.g., (10) in Haskell, 1964] 

Re# f f D($, t -  r/c) dA Uc(f, t) - 4~rpc3ro (1) 

where A = dislocation surface, ~ = a variable point on A, 2 = an observation point, 
t = time, r = ]2 - ~1, r0 = the average of r,/9(~, t) = relative slip velocity, Re = 
radiation pattern, p = density,/~ = rigidity, and c = body-wave velocity. 

When the source region is small, the travel time r/c in (1) can be approximated 
by its average, ro/c. The waveform is then given by 

Re 
Ue(2, t) - 4wpc3r------- ° S(t - ro/c) (2) 

where S(t) is the far-field source time function defined by 

s ( t ) = ~  f fAD(g , t )dA.  (3) 

Here we assume that the time history of dislocation at a point is given by a 
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function of the time measured from the arrival of a rupture front. Let t'(~) be the 
arrival time at a point ~, then the dislocation function is expressed as 

D(~ ,  t)  = D ( t  - t ' (~ ) ) .  (4) 

Noting that  d A  = ( d A / d t ' )  d t '  is the area swept by the rupture front during the 
time interval d t ' ,  we can write equation (3) as 

S ( t )  = it D ( t  - t ' ) A ( t ' )  d t '  (5) 

where dot denotes the time derivative. Thus the far-field source time function is 
expressed by a convolution of the dislocation velocity and the fault area expansion 
rate. 

We assume that  the disolcation time history is given by a ramp function with rise 
time r as 

D ( t )  = D o s ( t )  

where Do is the final dislocation and s (t) is the unit ramp function 

s ( t ) =  • 0<t_-<r .  
t > ¢  

characterized by abrupt changes of the fault area If rupture propagation is 
expansion rate, then 

A ( t )  = ~ A A , H ( t  - t~) (6) 
l 

where ha t  is the increment of the fault area expansion rate at time t,, a n d  H ( t )  is 
the Heaviside step function. The source time function S ( t )  is then given by 
superposition of ramp functions 

where 

S ( t )  = ~ m , s ( t  - t ,) (7) 

rn~ = It D o A  A , . 

For example, in case of unilateral rupture propagation, 

A =  W v t ( O  <~ t <~ T )  

(W = fault width, v -- rupture velocity) 

and the far-field source time function can be described by a pair of pulses as follows 

m l  = It W v D o ,  tl --- O, m2 = --it W v D o ,  t2 = T. 
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When these pulses are convolved with s( t ) ,  a trapezoidal far-field source time 
function is produced. In case of asymmetric bilateral rupture, 

A = 2 w v t  for O <~ t < T~ 

w v t  for T~ < t <<- T2 

and 

m l  ~-  2# W v D o ,  tl = 0; m2 = - #  W v D o ,  t2 = T1; 

m~ = - ~  W v D o ,  t~ = T2. 

In this representation, a positive and negative m, indicate the beginning and the 
end of a discrete rupture, respectively. When an earthquake source consists of 
multiple events with identical fault orientation and depth, the far-field source time 
function is given by a superposition of trapezoidal pulses. Then the area under each 
trapezoid gives the seismic moment of the individual event. The source time function 
in this case is also described in the form of equation (7), and is used for the analysis 
of teleseismic body waves from a complex multiple shock. We assume that an 
earthquake source is expressed as a superposition of point dislocations with identical 
fault orientation and depth. The fault geometry is assumed to be known from the 
radiation pattern of body and/or  surface waves. The only unknown is the source 
time function which is sought in the form of a ramp function series. 

In the following, we shall restrict ourselves only to P-wave analysis. First we shall 
treat  a record from a single station and then extend the analysis to simultaneous 
deconvolution of multi-station data. 

S ing l e - s ta t i on  d a t a  analys is .  Let x (t) denote an observed P waveform (vertical 
component) at a station and w ( t )  denote a synthetic wavelet corresponding to a 
unit source ramp function: s (t). In the synthesis of the wavelet, a double-couple 
point source is placed at a depth in a homogeneous half-space. Then the far-field P- 
wave seismogram is given as follows (Langston and Helmberger, 1975; Kanamori 
and Stewart, 1976) 

w ( t )  - 4~rpa~ [s(t)  + Rpps ( t  - Atp~) 

+ 7,  R s , s ( t  - h t sp ) ]*Q( t )* I ( t )  

(8) 

where the time is measured from the initial arrival of P wave, (1/ro) denotes the 
effective geometrical spreading, and the notation for other parameters is the same 
as in Langston and Helmberger (1975). As a first approximation, the rise time T is 
estimated by comparing the synthetic wavelet to the initial portion of the observed 
waveform. 

First we take a single wavelet and determine ml and tl by minimizing the error 
defined by 

~0 c~ 5t = [x(t) - m l w ( t  - tl)] 2 dt. (9) 
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Equat ion  (9) can be wri t ten in terms of correlation functions as follows 

hi = rx(0) -- 2r~x( t i )ml  + r~(O)m2~ 

where 
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(10) 

A1 = rx(O) -- r~(O)m 2. (13) 

From equat ion (13) we f'md tha t  h~ is minimized if the onset t ime tl is chosen so tha t  

[rwx(tl)] 2 = maximum. (14) 

Next  we apply the above procedure  to the residual waveform 

x ' ( t )  = x ( t )  - m l w ( t  - tl).  (15) 

T h e n  the values of t2 and m2 for the second wavelet  are determined by minimizing 
[rwx(t2)] 2 and by 

m2 = r~x(t2)/rw(O). 

The  above procedure  is i terated until  no more  significant decrease in the error  
occurs. After  N iterations, the N largest m,'s and the corresponding t,'s are obtained, 
and the source t ime function S( t )  can be calculated by equat ion (7). Also the 
synthet ic  waveform y ( t )  and the approximation error  are obtained by 

N 

y ( t )  = ~ m ~ w ( t -  t~) (16) 

AN = [x(t) -- y( t ) ]  2 d t  

For  this value of m~, 

fO ~ 
rx( t ' )  = x ( t ) x ( t  + t ')  d t  

fo rwx(t') = w ( t ) x ( t  + t ')  d t  

rw(t ' )  = w ( t ) w ( t  + t ' )  dt. (11) 

The  r ight-hand side of equat ion (10) has a quadratic form with respect  to rex. 
Since r~ (0) is positive, hi is minimized ff 

OAi/Oml = 0 or ml = r~x(6) /r~(O) .  (12) 
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I t  should be noted  here  that ,  if the  n u m b e r  of i terat ions N is fixed, the approximat ion  
e r r o r  AN can be regarded as a function of the rise t ime • used in the synthesis  of the 
wavelet.  Hence,  af ter  some trial and error, we adjust  the  value of r so tha t  it 
minimizes AN. 

M u l t i - s t a t i o n  d a t a  analys i s .  A similar me thod  can be used for the analysis of 
mul t i -s ta t ion data.  However ,  if the  source location differs f rom event  to event  in a 
mult iple  shock sequence, the relative arrival  t imes of these events  with respect  to 
the  first event  are different f rom stat ion to station. I t  is therefore  necessary to 
introduce the source location as an addit ional  parameter .  This  requires  a slight 
modif icat ion of the single-stat ion m e t hod  described above. 

Here  we shall  consider a mult iple  shock where  rup tu re  occurs along a relat ively 
nar row fault  plane. Let  W be the  fault  width and l be the distance along the  fault  
str ike measured  f rom a reference point. Considering the  dependence  of the t ravel  
t ime on the  locat ion of a shear  dislocation source, we write equat ion (1) as follows 

R ~  
u.(2,  t) - 4~rpa3ro S . ( t  - to~a; (P) (18) 

where  

L 
~ 

S,  (t; O) = / t  W /~ (1, t + I cos O / a )  d l  (19) 

/~ being the  slip veloci ty averaged over  the  fault  width, the angle be tween the  ray  
p a t h  and the  rup tu re  direction. T h e  funct ion S,  (t; (I)) becomes  equivalent  to the far- 
field source t ime  funct ion S( t )  defined by  (3) if (I) = 90 ° or the entire fault  length is 
small  enough for I cos (I)/a to be neglected. 

Using a r a m p  funct ion for the  dislocation t ime history, we find 

= l tWDo ( ~  s ( t  - t '  + l cos O/a)  5 d t '  S . ( t ;  O) 
Jo T -: v cos ~ / a  

(20) 

where  l is the  coordinate  of the  rup ture  front  at  t ime t ' ,  and v =- I is the rup ture  
velocity. Under  a condit ion similar to relat ion (6), we find an expression for S.  (t; 
O) as follows 

S . ( t ;  O)  = ~ m~s( t  - t~ + l~ cos  O / a )  (21) 

where 

m~ = ttDo Whv~ / (1  - v~ cos O/a) .  (22) 

For  a shallow ea r thquake  with which we are concerned here, 

cos • = sin io cos AO 

where  i0 is the take-off  angle and h 0 is the angle be tween the s ta t ion az imuth  and 
the fault  strike. Since we use only s tat ions with the  distance h I> 40 ° and the rup ture  
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velocity v is expected to be less than  the shear  wave velocity, the azimuth-dependent  
factor  of ms, (1 - v cos O / a )  can be replaced by 1 as a first-order approximation. 
Thus  the ith source pulse is specified by a set of three parameters:  (m~, t~, l~). 

Let  x r ( t )  denote  the P waveform observed at j t h  station and wr( t ,  l) denote a 
synthet ic  wavelet  which is generated by a unit  source at  a distance 1 from the 
reference point  and recorded at f l h  station. Taking the az imuth-dependent  t ime 
shift (1 cos ¢Pffa)  into account, we write 

wr(t;  l) = w r ( t  + l cos Offa )  (23) 

where w r (t) = wj (t; 0) is the function given by (8). Th en  the first source pulse (m~, 
tl, 11) can be determined by minimizing the error 

A1 = ~ [xl( t )  - m l w j ( t  - tl; 11)] 2 d t  
r = l  

(24) 

rw~(t'; l) = 
J= l  

M 
---Z 

J= l  

and 

[rwx (tl, 11 ) ]2  = maximum 

m l  =- rex(t1; l~ ) / rw(O)  

where rwx and rw are the sums of correlation functions defined by 

f f f  [wr (t; + d t  l ) x j ( t  t ' )]  

r % ~  (t '  - 1 cos O f f  a) 

rw (0) = [wj (t;/)]2 d t  = ~ r% (0). 
r = l  j = l  

The  residual waveforms are then  defined by 

x ' r ( t )  = xr ( t )  -- r n l w j ( t  -- tl; l l)  (29) 

and the same procedure is repeated for x / ( t )  to obtain the second source pulse (m2, 
t2, 12 ). 

The  above procedure  is i terated until  no significant decrease in the error  occurs. 
After N iterations, the source t ime function S (t; 90 °) can be calculated by equation 
(7); the synthet ic  P waveform Yr (t) and the approximation error  AN are obtained by 

N 
y j ( t )  = F, m ~ w j ( t  -- t, + l, cos (I)#a) (30) 

I=1 

(25) 

(26) 

(27) 

(28) 

where M is the number  of stations. By  using the same procedure as the one used for 
single-station data, we can determine tl and 11 from 
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AN ~--" [Xj (t) -- y j  ( t ) ]  2 dt 
J=l  

N 

= r~ (0)  - r~  (0)  ~ m, 2 
t=l 

(31) 

where 

M 

rx(O) = ~ %(0) 
j= l  

M 

r~ (0) = 2 r~  (0). 
J=l  

In the iterations, we need to calculate only the cross-correlation rwx(t; 1). For the 
sake of computat ion,  the coordinate 1 along the fault  strike is discretized. Th e  cross- 
correlat ion rwx is then  computed  at  discrete points on the two-dimensional (t - l) 
plane. In this case, we can use a recursive formula for rwx to facilitate the computat ion 
(see Appendix). 

ANALYSIS 

As a tes t  of our  method,  we analyzed teleseismic long-period P waves from the 
Guatemala  ear thquake,  4 February  1976. Th e  W W S S N  records for this event  have 
been already studied in detail by Kanamor i  and Stewar t  (1978). 

The  extent  of the surface breaks and the aftershock area indicates tha t  the source 
of this ear thquake  is character ized by  a long shallow strike-slip fault  (Plafker, 1976; 
Langer  et al., 1976). Kanamor i  and Stewart  (1978) analyzed the teleseismic long- 
period P waves and showed tha t  the ear thquake  consisted of about  10 distinct 
events with a total  durat ion of about  2 min. T h e y  assumed tha t  the mechanisms of 
the  individual events are the same as the mechanism of the main shock determined 
by body-wave first motions and long-period surface waves. Th e  same source param- 
eters as those used by Kanamor i  and Stewar t  (1978) are used here  to synthesize the 
basic wavelet  (i.e., fault  strike = N75°E, dip angle = 90 °, slip angle = 5 °, depth  = 5 
km). 

We first use the record at N U R  and examine the convergence of the synthet ic  
waveform to the observed P wave. A double-couple point  source is placed at  a depth  
of 5 km in a homogeneous  half-space, and the deconvolution was made by using the 
single-station method.  

Figure 1 shows the e r r o r  A N normalized to 50 = r~(0) as a function of N, where the 
rise t ime • is fixed at  4 sec. I t  can be seen tha t  the error  does not  decrease 
significantly af ter  about  20 iterations. T h e n  we vary  the rise t ime • with N fixed at  
20, and seek the value of T which minimizes the error  h20. As shown by Figure 2, h20 
is minimized at  T = 3 sec. This  value is therefore  considered to be the most  
appropria te  for the rise t ime of the overall source t ime function. 

The  sequence of deconvolut ion i terations is shown in Figure 3. Th e  source t ime 
function S(t) thus obtained and the resulting synthetic  waveform are shown in 
Figure 4, a and b. The  source t ime function consists of about  five distinct trapezoids. 

In the analysis of o ther  records, the same values of N and T are used. Figure 5 
shows the far-field source t ime functions thus derived from the individual stations, 
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J.O -- 

where a modification is made to remove a linear trend from each source time 
function. 

The linear trend is probably caused by the inadequate response of the recording 
instrument (WWSSN LP) at long period, and is not meaningful. In fact, we can 
remove the linear trend from the source time function without changing the 
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0 0  , I l I ) I 
IO 20 30 

N 
FIG 1 Normalized approx~nation error, AN/A 0 v e r s u s  iteration N (NUR, the Guatemala earthquake).  

The rise time • of ramp functions used for constructing the source t]me funct]on is fixed at r = 4 sec 

A20/A o, 
% 

I 
6 I I I ] I I 

0 2 4 6 
T, sec  

FIG. 2. Normalized approx~raatlou error, h20/h0 versus the rise time z (NUR, the Guatemala earth- 
quake). The number  of iterations is fixed at N = 20. 

synthetic waveform significantly. In Figure 6, the synthetic waveforms correspond- 
ing to the modified source time functions are shown. The agreement between the 
synthetic and the observed waveforms is satisfactory. The sequence of the source 
pulses is very similar from station to station. We can identify five major events as 
marked in Figure 5. Each of these major events may be divided into subevents. It 
can be seen that the onset time of the later events (4 and 5) vary in a systematic 
way as the azimuth of the station changes. This suggests that the later events 
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FIc. 3 Sequence of deconvolutlon procedure m smgle-statmn data analysis (NUR, the Guatemala 
earthquake) (a) source pulses (height of ramp functmns); (b) correspondmg synthetic waveform. Note 
that larger pulses are obtained at the earher steps m the iterations 
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Fro. 4 (a) Far-field source time function obtamed after 20 iterations, (b) the resulting synthetic 
waveform and the observatmn (NUR, the Guatemala earthquake). 
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FIG 5. Far-field source time functmns obtained from five s tatmns Five major  events are identffmd as 
marked I to 5 by the distinct onset m the time sequences. 
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F m  6. The synthetic waveforms corresponding to the source time functions of Figure 5 are shown m 
comparison with the observed waveforms 
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TABLE 1 

SEISMIC MOMENT OF INDIVIDUAL EVENTS (UNIT X10 26 

DYNE. CM) 

Station/ 1 2 3 4 5 Total 
Event 

KEV 
NUR 
KTG 
COP 
STU 

Mean 
Variance 

5.0 88 6.3 9.6 8.0 37.7 
2.3 4.7 7.3 4.4 7.5 26.2 
59 36 84 8.4 7.5 338 
6.3 7.2 8.8 11.5 5.9 397 
2.8 8.0 4.9 5.0 70 27.7 

4.5 6.5 7.1 7 8 7.2 33 0 
__.1.8 _+2.2 _+1.6 _+3.0 _+.8 +6.0 

~. Mo = (3.3 -+ 0.6) x 1027 dyne-cm 

@ @ 

74 ,o25 Q 
dyne cm/sec 

U ~ 
I ) i I I I I I i I I i i I 

0 30 60 90 i20 
Time, sec 

FIG. 7. Far-fmld source time funchon, S(t, 90 °) obtained by multi-station data analysis (the Guatemala 
earthquake) Fwe major events are clearly identified. 

l v ~ ~  V I--Sy n 

vvk/ vvv 

££ a££ 

a h  a4 

KX £ . . / ~ A  / ~ .  t , ra in  ' 

KTG . A v i  

Fro. 8 Synthetic P waveforms corresponding to the source time function of Figure "1 The amplitude 
scale is the same as that of the observed waveforms at the individual stations 
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occurred at some distance from the first event. This point will be made clear in the 
multi-station data  analysis as described later. 

The  seismic momen t  of the individual events are est imated from the area under 
the source time function. The  results are shown in Table 1. The  standard deviation 
of the seismic moments  est imated from different stations is about  30 per cent. The  
result shown in Table 1 is in good agreement  with tha t  obtained by Kanamori  and 
Stewart  (1978). 

TABLE 2 
G U A T E M A L A  E A R T H Q U A K E  

Event Process Time Moment 
(sec) (xl0 2(' dyne cm) 

1 14 4 2 
2 11 4.5 
3 14 6.4 
4 10 6.2 
5 10 7.5 

Total 59 2.9 X 1027 

-150 0 
I I I I I ] I 

SW 

_- 
cr 

- / o  - , J ¢  

I I I 
+150 km 

I 
NE 

- - 0  

- 3 0  

- 9 0  

O 
{D 
tD 

60 E 
I-- 

120 
FIG. 9. Location and onset time of 11 largest source pulses obtained by multi-station data analysis 

(the Guatemala earthquake} Open and closed circles show positive and negative pulses, respectively. 
Number marked in the figure corresponds to that in Figure 7. 

Next, we apply the multi-station method  to the same records as used above. We 
take 11 points, each 30 km apart, along the fault strike as the discrete source 
locations. The  far-field source time function S(t; 90 °) thus obtained and the resulting 
synthetic waveforms are shown in Figures 7 and 8, respectively. The  approximation 
error h20/h0 is about  20 per cent. This value is quite satisfactory since it includes the 
amplitude variation from station to station as well as noise in the records. 

Five major  events are now clearly identified in the time sequence. The  individual 
process times and seismic moments  are shown in Table 2. In Figure 9, the locations 
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of the larger sources are plotted on the space-time plane, where positive and negative 
pulses are indicated by solid and open circles, respectively. In event 1, the rupture 
initiated near the eastern end of the fault and first propagated eastward. Then the 
rupture propagated primarily westward with a few pauses. Through the sequence 
from events 1 to 4, almost 180 km of the fault length is ruptured. The total process 
time is about 50 sec and the mean rupture velocity is about 3.5 km/sec. However 
almost 30 sec of the total rupture time is spent during the transition from event to 
event; accordingly, the apparent rupture velocity was about 2 km/sec. 

Finally, the largest event occurred near the western end of the fault (event 5). 
The location obtained suggests that  this event occurred along the same fault 
segment as that  of the previous events 3 and 4. Kanamori and Stewart (1978) 
suggested that  the large events in the later stage, which correspond to events 4 and 
5 in this paper, are related to the large surface breaks observed near the western 
end of the fault. This feature is more clearly seen in the present results. 

D I S C U S S I O N  

In the present study, we assumed that  a multiple shock is represented by a series 
of point dislocations with an identical fault geometry. Once the fault geometry is 
known, we can calculate the impulse response, namely a wavelet caused by an 
impulsive point dislocation. The far-field source time function is then obtained by 
deconvolution of the observed record with the impulse response. 

An alternative approach to this problem is to design a linear inverse filter of the 
impulse response as devised by Levinson (1947). The source time function can be 
obtained by convolution of this filter with the observed record. The inversion is 
straightforward since no assumption is needed for the source time function. How- 
ever, a certain criterion is necessary to identify the individual events. This approach 
has been used by Strelitz (1980) and Boatwright {1980). 

Another method is to parameterize the unknown source time function using a 
certain number of parameters which characterize the individual events. These 
parameters are determined by matching the resulting synthetic records with the 
observed ones (Burdick and Mellman, 1976). In this approach, the identification of 
the individual events is straightforward, but some assumption about the shape of 
the source time function {e.g., a triangular source pulse or a trapezoidal pulse) is 
needed to start the analysis. 

It should be noted that, in any method, the far-field source time function S(t) can 
in principle be determined uniquely for a given source geometry while the identifi- 
cation of the event is somewhat arbitrary. In other words, the same S(t) can be 
decomposed into a different series of discrete events. 

Our approach is a hybrid of the two approaches described above. The far-field 
source time function is expressed as a superposition of ramp functions with an 
identical rise time. In this sense, the source time function is parameterized. On the 
other hand we do not specify the shape of the individual events during the analysis. 
In this sense, our method is similar to the direct inversion method. 

In the single-station data analysis, the far-field source time functions are derived 
from the individual stations. Multiple events are then identified as discrete pulses 
which should be identical for all the stations if the events have the same fault 
mechanism as used for the analysis. The validity of the model can therefore be 
tested by the similarity of all the source time sequences. In the multi-station data 
analysis, on the other hand, a single source time function is derived from the multi- 
station records. In this case, the quality of the model can be measured by how well 
the synthetic seismograms match the data. 
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In the present paper, the fault mechanism is assumed to be the same for all the 
events of a multiple shock. This is probably a reasonable assumption for most 
events, but there may be cases where substantial changes in the mechanism occur 
during the sequence. If the change is very drastic, it is possible to detect it by 
examining the result obtained by the single-station method. If the mechanism of an 
event is different from the one assumed, the polarity and the amplitude of the 
source-time function corresponding to it vary substantially from station to station. 
If the azimuthal coverage of the station is relatively complete, a more appropriate 
mechanism for that  event may be obtained from the polarity arid the amplitude 
variations. 

As demonstrated in the earlier section, even a complex event such as the 1976 
Guatemala earthquake can be analyzed in a systematic way. Since the Guatemala 
earthquake is probably one of the most complex strike-slip events, the method 
presented here provides a useful tool for the analysis of other complex events. 
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APPENDIX:  RECURSIVE FORMULA FOR Rwx 

Since a single-station record can be regarded as a limit of multi-station records, 
we here consider only the multi-station data. After the first source pulse (ml, tl, l~ ) 
is determined, the residual waveforms are given by 

x / ( t )  = xAt)  - r m w A t -  t~; /1) .  (A1) 

Taking the cross-correlation of wj (t; l) with x/(t), we have 

rw/x~( t '  ; l )  - [wj(t; l ) x /  ( t  + t ')] d t  

= [wj ( t ;  l ) x j ( t  + t ' ) ]  d t  

- m~ [wj ( t ;  l ) w ~ ( t  + t '  - h ;  l~)] d t  

= r~x~ ( t ' ;  l )  - m ~ r ~ ( t '  - 6 - ( l  - / D c o s  q~/~) (A2) 

where rwj ( t )  is the autocorrelation of wj ( t ) .  Taking the sum with respect to j, we 
have 

r'wx~lt", l )  = rwx(t ';  l )  - m l r w ( t '  - t l  - (1 - 11) cos Offa) (A3) 

where 

r ~  (t'; l) = ~ r ~  (t'; l) 
J 

r~( t ;  l )  = ~ rw f l t  - I cos O f f a l  (A4) 
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