blocks of length Δt the total number of such blocks corresponded to the number of flattened passbands desired. These masks could also be moved relative to the reference mask in order to properly position the Δr regions for eliminating the desired FP resonances.

In summary, we have fabricated transmission filters with single or multiple flattened passbands based on CMGs by using amplitude masks in conjunction with a dual-exposure technique. The experimental results are in excellent agreement with simulations thus showing the feasibility of this technique for fabricating various transmission filters which can be tailored to suit the needs of WDM systems.

Acknowledgment: We thank J. Kalbfleisch for micromachining the amplitude masks and M.M. Ohn (Electrophotronics Corporation) for group delay measurements. This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Photonics Research Ontario. L.R. Chen thanks NSERC and the Walter C. Sumner Foundation for financial assistance.

E-mail: chenl@ece.utoronto.ca

H.S. Loka: Currently with the Engineering Physics Department, Cairo University, Cairo, Egypt

R. Tam and X. Gu (Photonics Research Ontario, 60 St. George Street, Suite 351, Toronto, Ontario M5S 1A7, Canada)

References

Gratings photowritten in ion-exchanged glass channel waveguides

Gratings are photowritten in ion-exchanged glass channel waveguides. The transmission of these waveguides shows a rejection dip of almost 20dB. The polarisation dependence of these waveguide gratings is measured and discussed.

Both integrated optics and grating-based waveguide devices have demonstrated vast capabilities in the areas of sensors and telecommunications. These two technologies have been successfully combined as Bragg gratings which have been fabricated in both germanium-doped silica [1] and sol-gel [2] glass channel waveguides.

Ion-exchanged glass waveguides have proven their viability and are currently used in commercially available passive devices. Photowritten gratings have been demonstrated in ion-exchanged glass slab waveguides [3]; however, in that work gamma-ray irradiation was required to create an absorption defect for the photosensitivity and the glass used was from an experimental melt. Additionally, gratings have been relief etched into ion-exchanged glass channel waveguides [4]. However, etched gratings are limited to surface waveguides; they intrinsically introduce additional loss, and they suffer from a severe polarisation dependence of their reflectivity [5].

ELECTRONICS LETTERS 1st April 1999 Vol. 35 No. 7 585
In this Letter, we demonstrate gratings photowritten in commercial ion-exchanged glass channel waveguides. Surface waveguides are used here, but the technique is also applicable for buried waveguides. The transmission of the waveguides is analysed, the polarisation dependence characterised, and avenues for future improvements are discussed.

BGG31 glass is used for the channel waveguides [6]. The composition of BGG31 is optimised for silver ion-exchange waveguide fabrication, not for photosensitivity. BGG31 is currently used for the fabrication of commercially available ion-exchanged passive waveguide devices. This demonstration of its photosensitivity opens a new realm of possibilities for this glass that has already proven itself an excellent glass waveguide material.

Surface waveguides were formed in the BGG31 glass by silver ion-exchange. The waveguides were formed by patterning a 200nm thick Ti mask with straight waveguides of varying widths. The mask was oxidised for 1h in an NaNO₃ salt melt at 380°C. The sample was then placed into an AgNO₃ salt melt at 300°C for 15min. Finally, the mask was removed and the end facets were polished.

The grating was photowritten using a 248nm excimer laser. An area of 2cm × 2mm was exposed through a phase mask with a periodicity of 1049.28nm. With the laser operating at a pulse rate of 50Hz with 168mJ/pulse, the 10min exposure gave a total exposure energy of 3040J.

The finite resolution bandwidth reduces the measured peak rejection by better alignment of the grating with the waveguide. This technique should allow for low-loss, polarisation insensitive gratings to be written in either surface or buried ion-exchanged glass channel waveguides. Such devices would have numerous applications in many areas, including sensors and telecommunications.

Acknowledgments: We wish to thank Integrierte Optik GmbH, Waggäusl-Kirrlach, Germany, for providing the glass substrates. We also thank S.B. Mendes for help in the waveguide fabrication process.

© IEE 1999

Electronics Letters Online No: 19990391
DOI: 10.1049/el:19990391

Fig. 1 Setup for transmission characterisation

Fig. 1 shows the setup used for testing the grating. The fibre output of a tunable laser was butt-coupled to the input of the channel waveguide. The waveguide output was collimated with a ×20 objective and then passed through a polariser, to enable detection of the TE and TM components separately. The power was then monitored with a detector as the input wavelength was tuned.

The TE transmission of an 8µm wide waveguide with the grating is shown in Fig. 2. The peak rejection ratio is 19.19dB. Although this is quite good, it should be possible to further improve the rejection by better alignment of the grating with the waveguide, a longer exposure, or a longer grating. The sidelobe of the grating is most likely due to some asymmetry in the writing process. There are some additional dips (not shown in the Figure) in the transmission at ~2nm away. We believe that this is due to coupling to a higher order mode of the waveguide resulting from imperfect alignment of the grating to the waveguide. A more precise alignment of the grating perpendicular to the waveguide should eliminate these additional dips in the transmission.

Fig. 2 TE transmission of 8µm wide waveguide with grating

Peak rejection is 19.19dB down

These surface waveguides are birefringent, resulting in different effective indices for the TE and TM modes at the same wavelength. Consequently, the transmission dip for the different modes will occur at different wavelengths. The measured polarisation dependence of the transmission of the waveguides with the grating is shown in Fig. 3. Here the characterisation is performed as shown in Fig. 1 except that an optical spectrum analyser with 0.1nm resolution bandwidth is used in place of the detector. This results in the measurement equivalent of a broadband source and a detection resolution larger than the feature size of the grating. The finite resolution bandwidth reduces the measured peak rejection and also changes the shape measured.

Fig. 3 Comparison of TE and TM transmission

The TE-TM shift in wavelength of the peak rejection is measured to be 0.56nm. This agrees reasonably well with the 0.69nm shift which was predicted by simple modelling of the ion-exchanged waveguides. This polarisation dependence should be easily removable by fabricating non-birefringent double ion-exchanged waveguides [7]. It should also be noted that there is no strong polarisation dependence to the magnitude of the transmission dip, as seen previously with etched gratings [5].

In conclusion, gratings with strong transmission dips of almost 20dB have been photowritten in ion-exchanged glass channel waveguides. This technique should allow for low-loss, polarisation insensitive gratings to be written in either surface or buried ion-exchanged glass channel waveguides. Such devices would have numerous applications in many areas, including sensors and telecommunications.

References

Indicator of amplified spontaneous emission in erbium doped fibre amplifiers

Fu-Sjun Lai, Jau-Ji Jou and Cheng-Kuang Liu

The influence of amplified spontaneous emission (ASE) on the performance of erbium doped fibre amplifiers (EDFAs) has been studied through the use of an ASE indicator, the nearly-no-ASE factor (NNAF). A simple and useful formula is also presented for the analysis of errors resulting from neglecting the ASE.

Introduction: In the applications of fibres to communications and sensor systems, the EDFA plays an essential role in boosting power or preamplifying signals [1-5]. The prediction of EDFA performance is important in system design or analysis, but it becomes complicated if ASE [6] is taken into account. A simple method for determining, in a quantitative way, the degree of the influence of ASE can be helpful. We have studied the effect of ASE on EDFA gains and found that the ASE can be neglected when the NNAF is large enough. It is proposed as an ASE indicator. Moreover, a formula for computing the errors in output power due to neglecting ASE in the calculations is also presented.

Theory: Assume that the excited-state absorption can be neglected and the temporal variations of the atomic populations are slow in comparison with the transit time of the pump and signal through the unidirectional-pump two-level EDFA system. The rate equation for the population \(N_k \) in the metastable level and the evolution of pump power \(P_p \), signal power \(P_s \), forward and backward propagating ASE powers \(P^+ \) at optical frequency \(\nu \), and in frequency interval \(\Delta \nu \), can be written as

\[
\frac{dN_k}{dt} = -\sum_{j=k,p} \sigma_{jk}^\gamma \gamma_j P_j + \frac{1}{\tau} N_k + \sum_{j=k,p} \sigma_{jk}^\gamma \gamma_j P_j N_l
\]

\[
\frac{\partial P_p}{\partial z} = \gamma_k (\sigma_{ka} N_k - \sigma_{ak} N_a) P_k
\]

\[
\frac{\partial P^\pm}{\partial z} = \pm \gamma_k [\sigma_{kt} N_k - \sigma_{kt} N_t] P_k + 2h \nu \Delta \nu \sigma_{kt} N_k
\]

where the power is in units of photons/s, \(k = s \) and \(p \) for signal and pump powers, \(\sigma_{jk} = \sigma_k + \sigma_{jk} \) for \(j = k \) and \(l \), and \(P_i = P^i + P_t \); \(N_s \) is the erbium density in the fibre core of effective area \(A \), \(\nu \) is the fluorescence lifetime of the metastable level, \(\sigma_a \) and \(\sigma_t \) are the absorption cross-sections at wavelengths \(\lambda_a \) and \(\lambda_t \), respectively, the corresponding emission cross-sections are \(\sigma_e \) and \(\sigma_p \), and \(\gamma_k \) and \(\gamma_l \) are the overlap factors of signal, pump, and ASE powers, respectively. For an EDFA with erbium-doped fibre of length \(L \), eqns. 1-3 lead to the following expression for steady-state input and output powers \(P^\text{in/ou}_{\text{ase}} \):

\[
\ln \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{1}{P_{\text{sat}}} \sum_{j=k} (P_{0j} - P_{j}^\text{sat}) + \sum_{l} (P_{l}^+ (l) + P_l^- (0)) - 4 \alpha_k L
\]

with \(\alpha_k = \gamma_k \sigma_a N_a \) and \(P_{\text{sat}} = \frac{A(\gamma_l \sigma_p \eta)}{\alpha_k L} \). Considering the ratio of power available for the signal gain to ASE power we define the NNAF as

\[
\text{NNAF} = \left[1 + \frac{P_{\text{sat}}^\text{in} G}{P_{\text{sat}} \alpha_k L - \sum_{j=k} (P_{0j} - P_{j}^\text{sat})} \right]^{-1}
\]

where \(G = P_{\text{out}}^\text{in} / P_{\text{in}} \). It is in closed form and can be calculated simply. Also, its dependence on input signal power is almost linear, as will be shown below. It is thus proposed as an ASE indicator.

A large NNAF indicates little ASE effect on the signal gain. The percentage error of output power due to neglecting ASE in the calculation can be computed as \(R_i = (P_{\text{out}}^\text{in} - P_{\text{out}}^\text{in}^\text{ase}) / P_{\text{out}}^\text{in} \)

\[
N_{\text{NAF}} = \left[\frac{1 - (1 - \alpha_k) \ln G}{(1 - \alpha_k) \ln (1 - \alpha_k) + \alpha_k P} \right] + \frac{\alpha_k P}{1 + \alpha_k \ln G}
\]

where \(P = \alpha L - \sum_{j=k} (P_{0j} - P_{j}^\text{sat}) \), we have

\[
R_i \approx 1 - P - \ln G - \sqrt{[P + \ln G - 1]^2 - \frac{2 \ln G}{N_{\text{NAF}}} - 1}
\]

When \(R_i \) is small, simple formulas \([3, 6]\) derived under the ASE-free assumption can be applied and the analysis of EDFA performance becomes simple and accurate enough.

Results and discussion: To verify our method, measurements for a 980 nm-pump EDFA were made using the experimental setup of Fig. 1, as schematically shown as an inset to Fig. 1. Calculated and measured gains are shown in Fig. 1 against pump power. The erbium-doped fibre length is 12m. The input signal is 500mW, A = 2.5 \times 10^{-4}\text{m}^2, \gamma = 2.4 \times 10^{-4}\text{m}^2, \sigma_a = 3.8 \times 10^{-4}\text{m}^2, \sigma_p = 2.0 \times 10^{-4}\text{m}^2, and \(N_0 = 0.18 \). It shows that the agreement between the calculation and measured gains is good when the ASE is included in our calculation. One way to determine the degree of ASE influence on signal gain is to apply the finite difference method to solve eqns. 1-3. For instance, an error \(R_i(\text{FD}) = 30.1\% \) in the output signal power...