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Abstract
One of the most exciting prospects for the LISA gravitational wave observatory
is the detection of gravitational radiation from the inspiral of a compact
object into a supermassive black hole. The large inspiral parameter space and
low amplitude of the signal make detection of these sources computationally
challenging. We outline here a first-cut data analysis scheme that assumes
realistic computational resources. In the context of this scheme, we estimate
the signal-to-noise ratio that a source requires to pass our thresholds and be
detected. Combining this with an estimate of the population of sources in the
universe, we estimate the number of inspiral events that LISA could detect.
The preliminary results are very encouraging—with the baseline design, LISA
can see inspirals out to a redshift z = 1 and should detect over a thousand
events during the mission lifetime.

PACS numbers: 04.25.Nx, 04.30.Db, 04.80.Cc, 04.80.Nn, 95.55.Ym, 95.85.Sz

1. Introduction

The inspiral of a compact object (CO) into a supermassive black hole (SMBH) is an exciting
potential source for LISA [1]. The extreme mass ratio of these systems ensures that the CO
acts as a probe of the gravitational potential of the SMBH. For the last several years before
plunge, the orbit remains close to the SMBH and the emitted gravitational radiation effectively
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maps out this strong field region of the spacetime [2]. If the central object is really a Kerr black
hole, extreme relativistic perihelion and Lense–Thirring precessions are evident in the zoom
and whirl waveforms [3]. These complex features allow measurement of the mass and spin
of the SMBH to unprecedented precision [4]. If the central object is something other than a
black hole, for instance a massive boson star, the difference may be evident in the gravitational
waves. Extreme mass ratio inspiral (EMRI) waveforms thus provide a strong field test of GR
and black-hole physics. Methods are presently being developed to detect and characterize
deviations from the Kerr predictions (e.g., [5]), but here we will focus on detection of EMRIs
into Kerr black holes.

The desire for LISA to detect a significant number of EMRIs during the mission has been
driving the final LISA mission specification. A typical expected EMRI source will be buried
in the detector noise. These signals can be extracted using matched filtering, but the total
number of detections will depend on the frequency range and level of the LISA noise floor.
We describe here a first-cut effort to estimate the LISA detection rate, assuming a plausible
data analysis technique that employs realistic computational resources. These preliminary
results indicate that with its baseline design LISA should see about a thousand EMRI events
during its lifetime. There appears to be no pressing need to modify the satellite design in
order to enhance the EMRI event rate. More details of this work can be found in a white paper
prepared for the LIST (LISA International Science Team) [6].

In section 2 we describe some astrophysical aspects of EMRIs, including the source
parameters of a typical event and an estimate of the capture event rate. In section 3 we outline
a plausible detection scheme and then in section 4 we estimate the number of events that LISA
would see using this scheme, given the astrophysical rate estimate. We finish in section 5 with
a brief discussion of these results and outline some of the remaining uncertainties.

2. Astrophysics of EMRIs

2.1. Source parameters

EMRIs occur as a consequence of large angle scattering encounters between objects in the
cusp of stars surrounding a supermassive black hole (SMBH) at the centre of a galaxy. Such
encounters may put a star onto an orbit that passes sufficiently close to the central black hole
that gravitational radiation dominates the subsequent evolution and it becomes bound to the
SMBH. The stellar orbit decays over time, due to the loss of energy and angular momentum
in bursts of gravitational radiation emitted near periapse. Initially these bursts are widely
separated in time and the radiation will not be detectable, but in the last few years of inspiral
the source will be radiating continuously at frequencies to which LISA is sensitive. The
typical frequency of the gravitational radiation is determined by the mass of the primary, M.
The floor of the LISA noise curve (∼0.003–0.03 Hz) therefore sets the mass range to which
we are most sensitive at M ∼ 105M�–5 × 106M�. LISA could detect nearby sources with
other primary masses, but we concentrate on this mass range since it should dominate the
event rate. The secondary has to be a compact body to avoid tidal disruption before plunge,
so we consider white dwarfs (m ∼ 0.6M�), neutron stars (m ∼ 1.4M�) and both stellar
mass (m ∼ 10M�) and intermediate mass black holes (m ∼ 100M�). The spin of the
primary can take any value in the range S/M2 = 0–1, with spins around 0.9 probably being
typical, since this is approximately the point of spin equilibrium in black-hole accretion models
[7, 8]. EMRI orbits are generally moderately eccentric at plunge, e ∼ 0–0.4 depending on
the periapse at capture, and can have any initial inclination to the black-hole spin axis. The
orbital periapse can take any value between the plunge periapse at a few M and the capture
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Table 1. Parameters for black-hole space densities in equation (2).

M•,∗ φ∗
Galaxy type (107 h−1

65 M�) (10−3 h3
65 Mpc−3) γ

E 17 2.3 0.12
S0 5 33.7 0.046
Sa–Sb 2 5.0 0.32
Sc–Sd 0.5 29.4 0.03

periapse at 10 s of M, but we restrict this range by only searching for inspirals that are in the
last few years before plunge.

2.2. Capture event rate

There are two ingredients that go into an estimate of the frequency with which EMRIs occur
in the universe. The first is an estimate of the space density of supermassive black holes in the
appropriate mass range, and the second is an estimate of the rate at which each black hole is
consuming compact objects. The space density of SMBHs is constrained observationally, with
the tightest measurement of black-hole mass, M•, coming from the correlation with spheroid
velocity dispersion, σ ,

M• = M•,∗

(
σ

σ∗

)λ

(1)

where λ, M•,∗ and σ∗ are constants. We use σ∗ = 90 km s−1 and constrain λ and M•,∗ from
observations. Merritt and Ferrarese [9] find λ = 4.72 and M•,∗ = 3 × 106M�. Tremaine
et al [10] find λ = 4.02 and M•,∗ = 5×106M�, but use a nonstandard definition of dispersion.
The galaxy velocity dispersion function may be constrained indirectly using galaxy luminosity
functions and the L–σ correlation [11]. In conjunction with the M–σ relation (1), this leads
to a black-hole mass function of the form

M•
dN

dM•
= φ∗

ε

�
(

γ

ε

) (
M•
M•,∗

)γ

exp

(
−

(
M•
M•,∗

)ε)
(2)

where ε = 3.08/λ, �(z) is the Gamma function and φ∗ is a constant equal to the total number
density of galaxies. Aller and Richstone [11] use the value λ = 4.02 from Tremaine et al [10]
to set ε = 0.8 and constrain the parameters φ∗,M•,∗ and γ according to galaxy type. These
values are listed in table 1. For the mass range of interest in this analysis, M• ∼< 5 × 106M�,
the total Aller and Richstone space density of black holes is approximately

M•
dN

dM•
= 3 × 10−3h2

65 Mpc−3 (3)

where h65 = H0/65 km s−1 Mpc−1 is the Hubble parameter. Some Sc–Sd galaxies have
central black-hole masses much lower than would be derived from their luminosities [12]. If
we remove these from the sample, the black-hole space density is reduced by a factor of 2. We
adopt this lowered value as the reference density for estimating the capture rate. In an interval
� log10(M•/M�) = 0.5, the total space density of black holes is then 1.7 × 10−3 h2

65 Mpc−3.
To estimate the rate at which each SMBH is capturing compact objects, we make use

of Marc Freitag’s simulation of the Milky Way [13]. That simulation used σ = σ∗ and
M• = 4 × 106M� and predicts present day capture rates of 5 × 10−6 y−1, 10−6 y−1 and
10−6 y−1 for 0.6M� white dwarfs, 1.4M� neutron stars and 9M� black holes, respectively.
Freitag does not simulate intermediate mass black-hole remnants, but Madau and Rees [14]
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Table 2. Estimated number of extreme mass ratio mergers. The rate of mergers per cubic Gpc per
year is given for three ranges in the mass of the supermassive black hole, M•, and four types of
captured compact object.

Merger rate R (Gpc−3 y−1)

M• (M�) 0.6M� WD 1.4M� MWD/NS 10M� BH 100M� PopIII BH

106.5±0.25 8.5 1.7 1.7 1.7 × 10−3

106.0±0.25 6 1.1 1.1 10−3

105.5±0.25 3.5 0.7 0.7 7 × 10−4

estimate a dynamical friction rate of 2 × 10−9 y−1 in the Milky Way for these objects. We
assume optimistically that half of these are captured by gravitational radiation (the others
being direct plunges) and use a capture rate of 1 × 10−9 y−1. To extrapolate from these results
to other central black-hole masses we note that since these bodies are captured by large angle
scattering [15], the rate of gravitational capture is comparable to the rate of direct plunges and
each is approximately half of the dynamical friction rate. For stars with mass m much greater
than the mean, the dynamical friction timescale is

tdf ≈ 0.3
σ 3

G2mρ∗ ln 	
, (4)

where ρ∗ is the local stellar density, σ is the spheroid velocity dispersion and ln 	 ∼ 5
measures the range of impact parameters for stellar encounters in the cluster [16]. Galaxies
with SMBHs in the mass range to which LISA is sensitive tend to have isothermal density
profiles in the core, ρ∗ = σ 2/(2πGr2). Substituting this profile and the relation (1) with
λ = 4 into equation (4), we deduce, for each stellar component m, the radius, rdf(m), within
which tdf < t , as a function of time t. Assuming the cluster has an age t ∼ 1010 y and all the
stars within rdf(m) have sunk to the centre, we find that the total mass in such stars scales as
Mdf(m)/M•,∗ ≈ F(m/M�)1/2(M•/M•,∗)3/8, where F is the fraction of the total stellar mass
in that component and M•,∗ ∼ 3 × 106M�. Taking the mass in gravitational captures to be
half this, we estimate the extreme mass ratio capture rate in a galaxy today to be

1

2

Mdf(m)
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≈ FM•,∗

2mt
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) 3
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≈ 10−4F
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) 3
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(

m

M�

)− 1
2

y−1, (5)

where we again used t ∼ 1010 y. Using a Kroupa IMF and standard initial–final mass relations,
the mass fraction F = 0.2 for 0.7M� white dwarfs, F = 0.03 for 10M� black holes and
F = 4 × 10−5 for ∼100M� Pop III black holes. Taking M• = M•,∗, the rates predicted by
equation (5) agree with Freitag’s simulation for 10M� black holes and within a factor of 2
of the Madau and Rees estimate for 100M� black holes. Equation (5) overpredicts Freitag’s
white dwarf rate by a factor of 4, but the previous assumptions are not valid for white dwarfs
since the capture time is longer than the Hubble time and mass segregation discriminates
against these low mass stars. However, the M3/8

• scaling with black-hole mass should be fairly
good for all stellar components and we use this to scale Freitag’s rates for the Milky Way to
other galaxy masses. Combining this with the black-hole space density, we estimate the rate
of mergers today for three ranges of SMBH mass, and four types of compact object capture.
These rates are summarized in table 2.

There are uncertainties in both the space density of black holes and the capture rate. The
distribution of galaxy velocity dispersions can be constrained by direct observation, rather
than using the indirect correlation with luminosity employed here. Sheth et al [17] use SDSS
data to measure velocity dispersions, and find the total SMBH space density in our range of
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interest to be an order of magnitude lower. However, the SDSS spectra do not have sufficient
resolution to measure the dispersion in this black-hole mass range, so this extrapolation should
not be trusted. Hils and Bender [18] estimate the white dwarf capture rate to be a factor of
150 smaller than our extrapolation from Freitag, but they assume an adiabatic central density
profile and only half the number of white dwarfs that modern IMFs predict. Sigurdsson and
Rees [15] predict a rate that is a factor of 50 lower than Freitag’s, but their central cusps
were not fully self-consistent and they ignored mass segregation. In more recent simulations,
Freitag [19] uses a new model and also finds capture rates for all species that are an order of
magnitude lower. The new model uses a different IMF and cluster model and contains a fixed
mass central SMBH while the old model grew the SMBH adiabatically from a tiny seed. We
use the old results because they are consistent with the expression (5) used to extrapolate to
other central SMBH masses, but must allow for these uncertainties. A conservative rate for the
white dwarfs would be 10−2 of those in table 2. The black-hole rates are more robust to stellar
dynamics, but depend on the mass fraction of stellar mass black holes. While the increasing
number of observed galactic black-hole binaries gives some confidence that this mass fraction
is not too different from our assumptions, we should allow an order of magnitude or more
uncertainty in the black-hole rates.

3. Detection of EMRIs

The amplitude of a typical EMRI event is below the level of noise fluctuations in the detector.
Matched filtering allows detection of signals by building up signal power over many cycles
of the waveform. However, the complexity of EMRI waveforms makes this procedure
challenging. The inspiral waveform depends on 14 different parameters—two angles and
a distance defining the source location, two angles defining the orientation of the primary’s
spin, the mass and spin of the primary, the mass of the secondary, three adiabatic constants
defining the geodesic that the secondary is on at a specified time t0 (for instance the orbital
periapse, eccentricity and inclination) and three dynamical constants that represent the phases
of the secondary’s motion at t0 [20]. In the final year of the inspiral, an EMRI waveform has
∼1 y × 3 mHz ∼ 105 cycles. Even assuming that only about 8 of these 14 parameters affect
the phase evolution (see the next paragraph), one would still estimate that ∼(105)8 = 1040

templates will be required to perform a fully coherent matched filter search for year long
inspiral waveforms. The most generous extrapolation to 2013 still makes this far more than is
computationally reasonable. An optimistic extrapolation of Moore’s law (doubling compute
power every 1.5 to 2 years [21]) would yield typical commercial CPUs with around 50–100
Gflops when LISA flies, and around 50–100 Tflops for a cluster of a thousand such units.
Computing the overlap with a template sampled at ∼0.03 Hz uses ∼0.03 flops, so this cluster
could search ∼1015 templates. Even taking advantage of various tricks to reduce the template
count (see below), the 1040 templates needed for a fully coherent search are well out of reach.
Instead, we will have to use a hierarchical search, the first stage of which will be a coherent
search of shorter segments of the data. The preceding parameter list did not include the spin
of the secondary (three additional parameters). This is a reasonable omission since it does not
significantly affect the phase of the waveform over the duration of the short coherent segments.

The initial coherent search can be simplified by noting that the two sky position angles,
the two source orientation angles and the azimuthal phase of the inspiraling body at t0 are
‘extrinsic’—these parameters do not change the intrinsic radiation of the source, but only how
it projects onto the detector. This distinction makes it cheap to search over these variables
[22]. A pure quadrupole gravitational wave can be decomposed into a linear combination of
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five orthonormal waveforms hi(λI ; t) that depend on the intrinsic parameters, with amplitudes
that depend on the extrinsic parameters. The optimal matched filter statistic

ρ2 =
II∑

α=I

5∑
i=1

〈hi(λI ), sα〉2 where 〈a, b〉 = 4�
[∫ ∞

0

ã∗(f )b̃(f )

Sb(f )
df

]
(6)

maximizes over possible values of the extrinsic parameters automatically. In (6), ã denotes
a Fourier transform, z∗ denotes complex conjugation and Sb(f ) is the power spectral density
of the detector noise in the channel b(t). The LISA output can be represented approximately
by two synthetic Michelsons (denoted by I and II) [23], and the sα are the signals constructed
from these two channels. The expression (6) is an unconstrained maximum and so the
best fit amplitudes need not correspond to physical values of the extrinsic parameters. The
unconstrained maximum has the advantage of computational simplicity at the expense of
a slight increase in the false alarm probability for the search. The sky position angles
are not strictly extrinsic, since the motion of LISA in its orbit introduces a sky position
dependent Doppler modulation into the signal. However, on short (∼few week) timescales,
this principally causes a linear frequency drift. This can be mimicked by redshifting the mass of
the primary, which allows us to use (6) for the coherent search if the segments are not too long.
True EMRI waveforms additionally have significant contributions from multipole moments
other than the quadrupole. In this analysis we adopt the quadrupole search statistic (6) again
for computational ease at the expense of some lost detection rate. Further computational
savings may be gained by replacing one of the adiabatic parameters (say the periapse) with
the time offset from when that parameter had a particular value, rp = r0. Time offsets can be
searched cheaply using inverse fast Fourier transforms.

The signal-to-noise ratio (SNR) accumulated in a single short coherent segment is not
sufficient for detection. The SNR is built up in the second stage of the search, by incoherently
adding the power in the coherent segments to find inspirals that persist through the full data
set. The phase angles of the motion in the radial and vertical directions (the Boyer–Lindquist
r and θ coordinates) vary on a dynamical timescale, and so a very high resolution in the
other search parameters would be needed if we were to require consistency in these angles
over the whole inspiral. For this reason, we maximize over these angles (using a template
bank) before combining the coherent results. This is why we refer to this stage of the search
as ‘incoherent’. The resulting statistic, Pk , on a given coherent segment is the maximum
of ρ2 over all possible values of these two dynamical phases. The azimuthal phase angle
(Boyer–Lindquist φ coordinate) also varies on a dynamical timescale, but this is an extrinsic
parameter and we maximize over it automatically by constructing the ρ2 statistic. A given
set of full inspiral parameters defines a trajectory through certain coherent segments at certain
times. Summing Pk along this trajectory gives the final search statistic. This scheme is a
first-cut approach to a hierarchical search and more optimal approaches are currently being
investigated.

4. Estimating the LISA event rate

4.1. Template waveforms

Waveform templates are needed to scope out this approach to data analysis. The extreme mass
ratio means that true waveforms can be well determined from perturbation theory. However,
no gravitational waveforms have yet been generated using fully perturbative calculations,
although this should be possible by the time LISA flies [24]. Waveforms from special classes
of geodesic orbits have been computed [3, 25] but these are neither generic enough nor
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sufficiently fast computationally to be useful. Instead, we have made use of two types of
kludged waveforms. The ‘numerical kludge’ waveforms are constructed by assuming the
inspiralling body is always instantaneously on a geodesic of the spacetime. The geodesic
parameters are evolved continuously using post-Newtonian radiation reaction expressions and
an approximate quadrupole gravitational wave is then constructed from the resulting trajectory
[20]. The ‘analytic kludge’ waveforms are constructed by adding post-Newtonian precessions
and evolution to Peters and Mathews (Keplerian) waveforms [4]. Neither set of waveforms
has sufficient phase accuracy to be used for detection purposes, but the waveforms capture
the main features of the inspiral and should therefore give reasonable estimates of template
counts. The analytic and numerical kludge waveforms drift out of phase with each other over a
timescale of a few hours, although this can be corrected somewhat by modifying the waveform
parameters. However, the template counts obtained from the two approaches agree within a
few tens of per cent. Performing the analysis using these two independent methods in parallel
has thus increased our confidence in the results. Comparisons to perturbative waveforms from
geodesics at certain points in parameter space also indicate that the kludges perform extremely
well.

4.2. Length of coherent integration

The maximum length of the coherent segments is set by computational limitations. Assuming
that the data analysis will be performed on a 50 Teraflops computer cluster over k years (∼the
mission lifetime), there are ∼1.5k×1021 operations at our disposal. The number of operations
required to search the mission data with a single coherent template is 10×3fmaxτ log2(fmaxτ),
where τ = k y ∼ 3 y is the total length of the mission and fmax ∼ 0.03 Hz is the maximum
frequency we try to resolve at the first stage. The factor 10 is the cost to compute the ρ2

statistic (6) and the rest is the cost of using FFTs to search over all possible time offsets.
Equating the computational cost with the assumed computing power, we can cope with up
to ∼1012 templates. This assumes that the coherent stage dominates the computational cost.
Estimates of the cost of the incoherent stage indicate that this is a fair assumption.

To estimate the number of templates required for a coherent search of segments of duration
T, we compute the standard metric on template space, �ab = 1

2 〈∂ah|∂bh〉 [26, 27]. Since the
search over extrinsic parameters and the time offset has already been accounted for, we project
these directions out of the metric to give the number of intrinsic templates

Nint ≈ (12(1 − A))−
N̂
2 N̂

N̂
2

∫ √
γ dλ1 · · · dλN̂ , (7)

where N̂ (=7) is the number of remaining parameters, γ is the determinant of the N̂×N̂ metric
projected onto the intrinsic subspace and A < 1 is the average match. The latter characterizes
the coarseness of the template grid—it is the average overlap that a randomly placed waveform
has with the nearest template in the bank. There are seven not eight remaining parameters since
the distance to the source is only an amplitude scaling and therefore does not require additional
templates. The template count (7) is averaged over values of the extrinsic parameters and the
time offset. Assuming we are searching only for the last k years of the inspiral, templates must
be placed at approximately N = k/(T /y) different values of the time offset to cover the whole
inspiral, giving a total Ntemp = NintN . We have used Monte Carlo simulations to calculate the
integral (7). This involved choosing points randomly distributed over the waveform parameter
space and computing the corresponding determinant of the template metric, γ , at each point.
We also looked at trends in the template density as the template parameters were slowly varied
and found power-law dependences which were verified over large regions of parameter space
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Figure 1. Illustration of the incoherent summation. A full inspiral corresponds to a sequence of
the ‘best-overlapping’ coherent templates at different times. Our final search statistic is obtained
by summing the power along such trajectories. We maximize over the two phase angles before
summation in order to reduce the computational cost of the incoherent stage.

by the Monte Carlo simulation. The power-law fitting function was easily integrated to give
the final template count (7). The template count was estimated using both types of kludged
waveforms and the two results agreed to within a few tens of per cent. Overall, our results
suggested that, for an average match of 0.9, the computational limit to the length of the coherent
segments is ∼3 weeks. This first-cut analysis assumed that the coherent templates were of
equal length in time. In practice, it will be better to use a different division into coherent
segments, for instance templates with equal numbers of wave cycles. Such refinements are
being investigated.

4.3. Threshold signal to noise

The final detection statistic in this scheme is P = ∑N
k=1 Pk—the sum of the coherent detection

statistics, Pk , along a trajectory through certain coherent segments at certain times, which
corresponds to a particular inspiral. This is illustrated pictorially in figure 1. The coherent
statistic Pk is the maximum of the ρ2 statistic along a slice in parameter space (corresponding
to varying the two phase angles). In the presence of Gaussian noise, the ρ2 statistic is
distributed as a χ2 with 10 degrees of freedom, but the distribution of the maximum, Pk ,
is analytically intractable. However, by performing Monte Carlo simulations over a range
of signal parameters, we find that Pk typically has mean µk ∼ 18 and standard deviation
σk ∼ 4.5. From the central limit theorem, we argue that the sum P may be approximated by a
normal distribution with mean µ = Nµk and standard deviation σ = √

Nσk .
The detection threshold is characterized by the number of standard deviations by which P

must exceed its pure noise mean in order to be a robust detection. This is the threshold Z-score,
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Z = (P − µ)/σ . We set the threshold to ensure the entire search has a false alarm probability
pf . Since the search involves a summation along many different possible trajectories, we
need the false alarm rate for each trajectory to be less than pf /Ntraj, where Ntraj is the number
of independent trajectories, i.e. the number of independent ways to combine the coherent
segments into a full inspiral. For a fixed trajectory start time, we expect this number to exceed
the Nint = Ntemp/N ∼ 1010 templates used for each time offset in the coherent search. During
a three year observation there are additionally ∼3 y × 1 mHz ∼ 105 independent start times,
which means that for a 1% total false alarm rate, the false alarm rate per trajectory per time
offset should be less than 10−17, giving a threshold Z-score of 8.8. The number of independent
trajectories can be more accurately estimated by computing the metric on the incoherent space
in a similar way to the metric on the coherent space. Preliminary calculations suggest that
the estimate of ∼1010 × 105 independent trajectories is reasonable. In fact, changing this by
an order of magnitude does not significantly affect the threshold Z-score since we are well
within the tail of the distribution. We assume a typical Z-score of 8 in subsequent threshold
calculations.

In the presence of a signal, the Z-score is increased. If a source has an intrinsic
SNR = √〈s, s〉 over the entire observation, the SNR in each of the N coherent segments
is approximately a factor of 1/

√
N less. The expected SNR in each segment is further reduced

by the fact that we use a discrete bank of templates to detect the signal. We characterize
the coarseness of the template bank by a match factor M, which has contributions from
discreteness in the coherent template bank (the average match A), in the time sampling and in
the incoherent template bank. We assume an overall match factor of M = 0.8 is reasonable.
A signal increases the expectation value of the ρ2 statistic for the nearest template from 10 to
10 + (M/N)〈s, s〉. Assuming the maximization over the phase angles gives the correct values
for the embedded signal, the corresponding Pk will have a similar value, and the sum P will
be N times that value. Setting this equal to the threshold Z-score, Zthresh, we find the threshold
signal to noise for a detection

SNRthresh =
√

N

M

(
µk − 10 + Zthresh

σk√
N

)
(8)

This is the signal-to-noise ratio from the two synthetic Michelsons combined that a source
must have in order to be detected under this scheme. The match factor M does not include
a ‘fitting factor’ (reduction in signal due to physical inaccuracies in the template model [27])
since the actual search, when LISA flies, will use true perturbative waveforms as templates,
for which the fitting factor should be close to 1.

4.4. White dwarf background

The population of close white dwarf binaries in the Milky Way radiates in the LISA band,
generating a background that affects our ability to detect inspirals. At higher frequencies the
binaries are sufficiently separated in frequency to be removed from the data. At lower
frequencies we are theoretically limited by Shannon’s theorem, which gives the binary
confusion noise used in [4]. In practice, the best white dwarf subtraction algorithm that
currently exists is the gCLEAN algorithm [28]. The residual noise remaining after applying
the gCLEAN algorithm is somewhat higher than predicted by the Shannon limit, and it is
possible to estimate the effective gCLEAN confusion noise limit from these residuals. We
have computed signal-to-noise ratios using both confusion noise levels. We regard the Shannon
limit as optimistic and the current gCLEAN limit as pessimistic in terms of how well we will
be able to subtract binaries from actual LISA data.
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Table 3. Estimated number of LISA EMRI detections, under the ‘optimistic’ and ‘pessimistic’ set
of assumptions described in the text. Estimates are given for both the standard LISA design, and
for ‘Short LISA’. Entries marked with an ∗ are z < 1 lower limits since LISA can detect these
sources to z 
 1 and evolution is unknown.

LISA Short LISA

M• (M�) m (M�) Optimistic Pessimistic Optimistic Pessimistic

300 000 0.6 8 0.7 14 1
300 000 10 700* 89 902 115
300 000 100 1* 1* 1* 1*

1 000 000 0.6 94 9 80 7
1 000 000 10 1100* 660* 1100* 500
1 000 000 100 1* 1* 1* 1*
3 000 000 0.6 67 2 11 0.3
3 000 000 10 1700* 134 816 25
3 000 000 100 2* 1* 2* 1

4.5. Estimated rates

For a given source, the SNR scales with proper distance to the source as D−1. The SNR
threshold (8) therefore translates into a maximum distance to which the source can be detected.
If a given type of inspiral event is occurring at a rate R and has SNR at a fiducial distance D,
then during an observation time T we will detect Ndet events

Ndet = 4π

3
D3RT

[
SNR

SNRthresh

]3

. (9)

Using the capture rates in table 2, we can estimate how many events of each type LISA will
detect during its lifetime. We computed the appropriate SNR at the fiducial distance of 1 Gpc
using the Synthetic LISA simulator [29] and numerical kludge waveforms. We fixed the
masses of the primary and secondary at a typical value for each mass range, but averaged
the SNR over possible orientations of the source and over two values of the eccentricity at
plunge—e = 0.25 (corresponding to large initial periapse) and e = 0.4 (small initial periapse).
The averaging assumed the orientation angles are uniformly distributed and the eccentricities
equally likely, but was appropriately weighted to account for the fact that certain parameter
values allow the source to be detected to larger distances. The event rate estimates are given
in table 3 for an ‘optimistic’ case and a ‘pessimistic’ case:

• Optimistic: Assumes a 5 year LISA lifetime, SNRs constructed from the optimal AET
combination [30], optimistic white dwarf background subtraction and 3 week coherent
integrations (giving SNRthresh ∼ 36).

• Pessimistic: Assumes a 3 year LISA lifetime, SNRs constructed from a single synthetic
Michelson (X signal), pessimistic (gCLEAN) white dwarf background subtraction and 2
week coherent integrations (giving SNRthresh ∼ 34).

We do not fold uncertainties in the astrophysical event rate into this distinction, but use the
rates in table 2 in both cases. Results are quoted for both the standard LISA design, with
5 × 106 km arm length, and a ‘Short LISA’ design, for which the arm lengths were reduced
to 1.6 × 106 km. Equation (9) assumes a flat Minkowski space volume/distance relation. For
sources at redshift z > 1, this should not be trusted. Moreover, effects that have been ignored
such as frequency redshifting and source evolution will become important. For cases with
SNR(1 Gpc) � 120 (so that Dmax > 3.6 Gpc = Dp (z = 1)), we quote a rough lower limit to
the number of events with z < 1, all of which LISA can detect—Ndet = Vc (z < 1) RT , using
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comoving volume Vc = 199 Gpc3 (appropriate for a flat, �m = 0.27,H0 = 65 km s−1Mpc−1

cosmology).

5. Discussion

The estimates in table 3 indicate that even under the pessimistic assumptions, LISA should
detect over a thousand EMRI events during its lifetime and there seems to be no particular
advantage to using a shorter arm length. The biggest remaining uncertainty is in the
astrophysical rates (table 2). Using more conservative estimates, the detection of white
dwarf inspirals becomes marginal, but the stellar mass black-hole signals are still robust. The
uncertainty arising from the use of kludged waveforms may be quantified by comparing to
perturbative waveforms [3, 25]. The template counts appear quite robust and the SNRs are not
bad. We have compared SNRs computed from kludged waveforms to SNRs computed using
the quadrupole piece of an adiabatic sequence of perturbative waveforms in the simplest case
of a circular equatorial inspiral. For such inspirals, the last year SNRs agree within ∼20%
for all spins, but the kludge SNRs are larger. This could lead to a factor ∼2 overestimate
of the detection rates. However, including all multipoles, the total SNRs of the perturbative
waveforms are larger than those of the pure quadrupole kludge waveforms, since the higher
multipoles are generally at frequencies more accessible to LISA. A modified search therefore
might recover these events. This effect is expected to be even stronger for eccentric orbits
although the uncertainty in the rates should still only be a factor of a few, but perturbative
eccentric inspiral waveforms were not available for comparison.

An issue that has not yet been properly addressed is self-confusion—there is a background
of gravitational radiation from all the unresolved EMRIs in the universe from which the louder
signals must be extracted. This is an additional noise source which is now being estimated.
We have also assumed that it is possible to remove the resolved white dwarf binaries from
the LISA data stream before performing the EMRI search. Methods like gCLEAN in principle
will remove the EMRI signals as well as the white dwarf binaries. It may therefore be
necessary to do the searches for EMRIs and binaries simultaneously, which would change the
computational requirements.

The approach to EMRI data analysis outlined here is a first cut. Under this scheme a
source requires a SNR ∼ 30 to be detected. If we had infinite computational power and could
perform a fully coherent search, the detection SNR would still be ∼15, for the same false alarm
probability. We therefore lose about a factor of 2 in reach by using a hierarchical search. With
a more careful division into coherent segments or a different incoherent summation, we may
recover some of these lost events. The fact that even this first-cut scheme predicts a thousand
inspiral detections suggests that LISA will detect many EMRI events despite the remaining
uncertainties.
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