Fig. 2 Isotopic composition of trapped Xe in Chassigny, relative 130Xe and terrestrial atmosphere. Note low abundance of 129Xe and fissionogenic isotopes relative to EETA 79001 glass (Martian atmosphere?).

s-PROCESS Xe AND Kr AND Ne-E IN A 13C RICH MURCHISON SAMPLE; NOBLE GAS ANALYSIS BY STEPPED COMBUSTION

U. Ott, Max-Planck-Institut für Chemie, Saarstraße 23, D-6500 Mainz, F.R.G.
J. Yang and S. Epstein, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA

Some of the more interesting isotopic anomalies in meteorites are located in minor phases that are extremely resistant to chemical treatments. Among these are Ne-E (Black and Pepin, 1969; Eberhardt, 1978; Alaerts et al., 1980) and s-process Kr and Xe (Srinivasan and Anders, 1978; Alaerts et al., 1980), which have been detected in samples that at the same time contain a carbon component enriched in 13C by about a factor of two (Swart et al., 1983). Swart et al. (1983) have concluded that s-Xe and Ne-E (L) — that subcomponent of Ne-E that is released at low temperature in pyrolysis (Eberhardt, 1978) — are related to isotopically heavy carbon. Their argument involved a comparison of stability in pyrolysis (for noble gas retention) and combustion (carbon). Since it is preferable to compare stability under identical conditions, we have analyzed for its noble gases by stepped combustion Murchison sample CFP. This sample had been prepared using HF/HCl and HClO$_4$ and analyzed for carbon by Yang and Epstein (1984), who found a δ^{13}C of $+977%$ in the highest temperature step. We followed their schedule except for an intermediate combustion step at 1000°C.