Angular Distribution of Charge Exchange and Inelastic Neutrons in π^--p Interactions at 313 and 371 MeV

DON L. LIND,† BARRY C. BARISH,‡ RICHARD J. KURZ,§
PHILIP M. OGDEN,|| AND VICTOR PEREZ-MENDEZ
Lawrence Radiation Laboratory, University of California, Berkeley, California
(Received 11 February 1965)

Neutron angular distributions from the charge-exchange (e^+n) and inelastic modes ($e^+\pi^+n$, $e^+\pi^-n$) of the π^--p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π^0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the $I=0$, π^- interaction (ABC effect) suggested to account for the anomaly in $p-d$ collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by a least-squares fit to a Legendre expansion of the form

$$\frac{d\sigma}{d\Omega}(\cos\theta_a) = \sum_{i=0}^{N} a_i P_i(\cos\theta_a)$$

with the following results (in mb/sr):

<table>
<thead>
<tr>
<th>T_{π^-}</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>1.21±0.03</td>
<td>1.88±0.06</td>
<td>1.61±0.06</td>
<td>0.45±0.06</td>
</tr>
<tr>
<td>371</td>
<td>0.89±0.02</td>
<td>1.57±0.04</td>
<td>1.13±0.04</td>
<td>0.38±0.03</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

The angular distribution of final-state neutrons occurring in π^--p collisions in the 300-400-MeV energy range provides insight into two different aspects of the pion-nucleon interaction. First, the distribution of elastic neutrons (from the reaction π^--p → π^0n) measures directly the differential cross section for this charge-exchange reaction. Secondly, the angular distribution of the inelastic neutrons (from π^--p → $\pi^\pm\pi^\mp n$ and π^--p → $\pi^\mp n$) provides information about the isotopic state $I=0$ of the two pions occurring in these inelastic reactions.

At 310 MeV considerable effort has been made to determine an unambiguous phase-shift solution for pion-nucleon scattering. Foote et al.,1 and Rogers et al.2 have made a very accurate determination of π^--p differential cross sections and recoil-proton polarization at this energy. Rugge and Vik3 have provided similarly accurate cross-section and polarization data for π^- elastic scattering and have proposed various phase-shift solutions which fit all these data.4

The inclusion of corresponding data in this phase-shift analysis from the charge-exchange reaction has proven difficult. The only available charge-exchange differential-cross-section data were those measured by Caris et al.5 at 317 MeV. However, when the Caris data were compared with charge-exchange distributions predicted by phase-shift solutions determined with the elastic-scattering differential-cross-section and polarization data, it was apparent that there was considerable deviation at the backward pion angles.

The charge-exchange distribution had not been measured directly. Because of the extremely short lifetime of the π^0 meson (2.2×10^-16 sec), only the gamma rays into which it decays could be detected. From this observed gamma-ray spectrum, the π^0 angular distribution had to be deduced. When the original data analysis was made, the total cross sections for the other final states that contribute to the observed gamma rays ($e^+\pi^+n$ and $\pi^-\pi^0p$) were insufficiently known to provide an accurate correction factor at backward pion angles. It was at these same backward angles that the phase-shift predictions of Vik and Rugge departed most from the charge-exchange data of Caris. In addition, charge-exchange data taken by Kurz4 at 374 MeV appeared to differ sufficiently from corresponding observations made by Caris to be in significant disagreement. Therefore it was decided to conduct the present experiment to measure the charge-exchange

TABLE I. Summary of \(\pi^- \) beam characteristics.

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>(\Delta \pi^-) (MeV)</th>
<th>Intensity (s/min)</th>
<th>Muon contamination (%)</th>
<th>Electron contamination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>14</td>
<td>25(\times 10^9)</td>
<td>5.8</td>
<td>0.3</td>
</tr>
<tr>
<td>371</td>
<td>13</td>
<td>12(\times 10^9)</td>
<td>4.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

differential cross section by observing the only directly accessible final-state particle—the neutron.

The inelastic neutrons, which we had to identify and separate from the elastic-neutron differential-cross-section data, occur in association with two-pion final states which contain the isotopic eigenstate \(I = 0 \). An enhancement of two-pion production in this \(I = 0 \) state has been proposed as an explanation for the anomalous bump in the \(\He^2 \) momentum spectrum arising from high-energy proton-deuterium collisions as observed by Abashian et al.\(^7\) (the so-called ABC effect).

If such an enhancement occurred it would alter the distribution of inelastic neutrons. However, two groups at Berkeley\(^8\) have looked at two-pion final states \((\pi^-\pi^-n \) and \(\pi^-\pi^+n \) in pion-nucleon collisions and have not observed any clear evidence for such a two-pion interaction. Therefore in the present experiment an analysis of the inelastic neutron distribution was included to provide further information on this question.

Sections II and III discuss briefly the experimental method and data analysis involved in this experiment. This is discussed more completely in Ref. 10. Section IV presents the results of both the elastic- and inelastic-neutron measurements. In this last section we also discuss the angular distribution which we derive for the charge-exchange reaction by combining the elastic-neutron data from this experiment with the other available data for this reaction.

II. EXPERIMENTAL METHOD

The collision of a negative pion at 313- or 371-MeV laboratory kinetic energy and a proton at rest provides sufficient energy to open some of the inelastic channels of the \(\pi^N \) system with the production of an additional final-state pion. Although the higher of these energies is above the threshold for the production of two pions, these contributions are assumed to be negligibly small. Thus we must detect and separate the products of the following reactions:

\[
\begin{align*}
\pi^- + p &\rightarrow \pi^- + p \quad \text{elastic scattering,} \\
\pi^- + p &\rightarrow \pi^0 + n \quad \text{charge exchange,} \\
\pi^- + p &\rightarrow \gamma + n \quad \text{radiative absorption,} \\
\pi^- + p &\rightarrow \pi^- + \pi^0 + n \quad \text{pion production,} \\
\pi^- + p &\rightarrow \pi^- + \pi^0 + p \quad \text{nuclear bremsstrahlung,} \\
\pi^- + p &\rightarrow \pi^- + \gamma + p
\end{align*}
\]

A detector accepting only neutral particles will signal the presence of a neutron (since gamma rays can be distinguished from neutrons, as we show) and when there are less than reactions (1), (6), and (7). The cross section for radiative absorption (3) is small compared to other neutron sources, so these neutrons can be treated as a mathematical correction to the data. By detecting any charged pions in coincidence with a neutron, reaction (5) can be identified and counted separately. The inelastic neutrons of reaction (4) emerge from the target with a spectrum of energies. At a fixed laboratory angle, the highest of these energies is less than the magnitude of the energy of the elastically scattered charge-exchange neutrons (2). This gives a separation between their velocities. Thus, the neutrons from reactions (2) and (4) can be separated by their time-of-flight over a measured path length.

The negative pion beam was produced when the internal 732-MeV proton beam of the Berkeley 184-in. synchrocyclotron struck an internal beryllium target 2 in. thick in the beam direction. The pions were deflected outwardly by the magnetic field of the cyclotron. Their trajectory was calculated by the computer program CYCLOTRON ORBITS,\(^11\) which uses measured values of the cyclotron magnetic field to integrate the equations of motion of the particle. A beam transport system consisting of two doublet quadrupole magnets and a momentum-analyzing bending magnet focused the pion beam on the liquid-hydrogen target. The current settings of these magnets were determined by the beam-optics computer program, OPTIM\(^9\) and by suspended-wire measurements. The angle of deflection in the bending magnet was chosen to produce a recombination at the final image of the momentum dispersion introduced by the cyclotron field. The average energy and energy spread of the beam were experimentally checked by integral range measurements in Cu. The \(\mu^- \) contamination of the beam due to \(\pi^- \) decays before the bending magnet was determined from these range curves. \(\mu^- \) production beyond this magnet was calculated and combined with the range-curve information.

\(^{9}\) Thomas J. Devlin, University of California Radiation Laboratory Report UCRL-9727, 1961 (unpublished).

to give the total \(\mu^- \) contamination. The electron contamination was estimated from gas Čerenkov-counter measurements on similar beams. The properties of the pion beam are listed in Table I.

Figure 1 shows the arrangement of the experimental area beyond the bending magnet \(M \). Located along the pion beam are four scintillation counters \((S_1, S_2, S_3, \text{ and } S_4) \), which form the beam-monitoring system. Surrounding the hydrogen target is a cylindrical counter \((S_5) \) used to detect charged pions. The four neutron counters \((N_1-N_4) \) are located at representative positions for detecting neutral particles originating in the target.

Counters \(S_1, S_2, \) and \(S_3 \) were located in the beam to monitor the incident-pion flux arriving at the target position. The smallest counter \(S_4 \) defined the area of the beam accepted by the monitor system. \(S_4 \) served as the source of the zero-time signal for the time-of-flight analysis. Counter \(S_5 \), located beyond the hydrogen target and used in anticoincidence, rejected incident pions that were not scattered by an angle greater than 10 deg in the hydrogen. Counter \(S_4 \) detected the presence of one or both of the charged pions in coincidence with a neutron from reaction (5). Thus these “charged mode” neutron events could be recorded separately from the “neutral mode” events [reactions (2) or (4)].

Neutrons were detected in a block of plastic scintillator by observing the light produced by recoiling charged products arising in interactions between the incident neutrons and the hydrogen and carbon nuclei of the scintillator. Gamma rays were similarly registered by the counter, but these could be clearly distinguished by their earlier arrival time. The scintillator block was 4 in. thick in the direction of neutron penetration, and had an octagonal frontal area formed by removing the corners of a 4×10-in. rectangle. An Amperex 58 AVP phototube with a photocathode 5\(\frac{1}{2} \) in. in diameter was used in order to obtain efficient light collection from the large block of scintillator.

Each detector was surrounded by an anticoincidence counter which was shaped as an octagonal box completely surrounding the scintillator block and extending back an additional 4 in. beyond the sensitive area. The front face and sides of this counter were formed of 4-in. plastic scintillator, and were viewed by two RCA 6810A phototubes whose signals were added. The efficiency of the counter to reject charged particles was estimated as \(\geq 99.5\% \). The four neutron detectors recorded data simultaneously, from positions on both sides of the \(\pi^- \) beam, and at laboratory angles from 10 to 60 deg. The neutron flight path was set at 3, 4, or 5 m, depending on the angle.

For the time-of-flight analysis the signal from scintillator \(S_5 \) was used as the “start” signal for a time-to-height converter. The “stop” signal was generated when a neutral particle registered in one of the neutron detectors. This neutron-timing information was obtained from the phototube signal by pulse differentiation with an overdamped LC-tuned circuit to produce a zero-crossing signal whose zero-crossing point was detected by a tunnel-diode discriminator. This tech-
1. Neutron-Detection Efficiency

The neutron-detection efficiency of plastic scintillator is a function of neutron energy, the threshold for the detection of scintillation light, and the detector geometry. A computer program called TOTEFF was used to compute the neutron-detection efficiency as a function of neutron energy for each of the two detection thresholds at which data were taken.

The efficiency varies between 0.07 and 0.17 with an uncertainty of ±10%. This is regarded as an upper limit and it determines the over-all uncertainty of the data. The efficiency values obtained from this program are compatible with corresponding measurements made by Wiegand et al.14

2. Gamma Conversion

Neutral pion mesons occur as final-state particles in both reactions (2) and (4). If the γ rays into which these mesons decay produce e+e− pairs in the target walls, or if the neutral pion decays in the π0 → γe+e− mode, and one of the charged particles passes through scintillation counter S3, the event would be lost. This turns out to be a negligible effect. However, if one of the charged particles is detected by S3, the accompanying neutron would be misconstrued as having arisen from reaction (5). The probability of such a gamma conversion and its subsequent detection was calculated as a function of the laboratory angle of the associated neutron.10 “Neutral” mode data were increased and “charged” mode data were decreased by this correction.

3. Neutron Rescattering and Absorption

After the initial-scattering process in which they are produced, the neutrons can interact with nuclei in the material immediately surrounding the target. This can be either by elastic rescattering, in which case no neutrons would be lost, but the differential distribution of the neutrons might be altered; or the neutrons could interact inelastically with the target nuclei and be absorbed, decreasing the apparent flux at the neutron detectors. The qualitative behavior of rescattering is to shift the elastic-neutron distribution toward the smaller angles where the cross section is lowest. However, even the most adverse assumptions indicated that such a shift would be less than the uncertainty of the neutron-detection-efficiency calculation. In absorption reactions such as C12(n,γ)Be8 and Al27(n,γ)Mg27, no neutrons exist in the final state. A calculation was made of the decrease in the neutron flux due to these inelastic processes.10 This attenuation varies as a function of neutron laboratory angle due to the changes in neutron energy, as well as the varying amount of material

encountered when the neutron leaves the target in various directions.

4. Radiative Absorption

Neutrons that originate in the radiative absorption reaction (\(3\)) cannot be resolved by time of flight, and must be subtracted from the events recorded in the neutral-mode data. This correction was obtained from a detailed-balance calculation involving the "complementary" reaction, pion photoproduction. The negative pion-photoproduction cross section was obtained from the negative-to-positive pion-photoproduction ratio from deuterium as measured by Neugebauer et al.\(^{16}\) and the positive-pion-photoproduction cross sections of Walker et al.\(^{17}\) and Tollestrup et al.\(^{18}\)

IV. RESULTS

A. Elastic Neutrons

The charge-exchange differential cross sections were computed from the corrected elastic neutron yields and are shown in Fig. 3. For comparison with other work these results are plotted as a function of \(\theta^*\), c.m. system pion angle=180°−\(\theta^*\). (*) denotes c.m. system variable.) These results are presented numerically in column (a) of Table II. This data covers the range 21\(\leq\theta^*\leq123\) deg. Also shown in Table II are three other classes of data which we have incorporated in an analysis of the angular distribution of reaction (2): column (b) neutron differential cross section at an

![Graph](image-url)

Fig. 3. Charge-exchange differential cross section at \(T_{e^-} = 313\) and 371 MeV. (○) Measured in this experiment (313 MeV); (○) measured in this experiment (371 MeV); (•) measured by Kurz (374 MeV); (△) forward-dispersion-relation calculation. Curves are least-squares fits to the data.
incident pion kinetic energy $T_\pi = 374$ MeV in the range $84 \leq \theta_\pi \leq 133$ deg.4 (c) previously published angular distributions at $T_\pi = 317$ and 371 MeV;b and (d) the differential cross section at $\theta_\pi = 0$ deg calculated from forward-direction, fixed-momentum-transfer dispersion relations for pion nucleon scattering.19 A least-squares analysis was performed to fit these data to the c.m. system differential cross section in the form:

$$ \frac{d\sigma}{d\Omega}(\cos\theta_{\pi*}) = \sum_{i=0}^{N} a_i P_i(\cos\theta_{\pi*}). $$(8)

The γ data were incorporated into the least-squares analysis according to the procedure used by Caris et al.5 If $d\sigma/d\Omega$ is represented as in Eq. (8), the expected experimental γ angular distribution in the c.m. system, taking into the account the γ detection efficiency of the experimental system, is given by

$$ \frac{d\sigma}{d\Omega}(\cos\theta_{\pi*}) = \sum_{i=0}^{N} a_i P_i(\cos\theta_{\pi*}) \int d\Omega P_i(\cos\theta_{\pi*}) \epsilon(k), $$(9)

where x is the cosine of the angle between the photon and the π^0 in the c.m. system, γ and γ denote the motion of the π^0 rest system with respect to the c.m. system, and $\epsilon(k)$ is the γ-detector efficiency as a function of the photon lab-system energy, ϵ, which in turn is a function of x and $\cos\theta_{\pi*}$.

The present analysis started with the uncorrected data of Caris et al. (see Table IV, Ref. 5). The correction of the observed distributions to take into account photons originating from the reactions $\pi^-p \rightarrow \pi^{0*}n$ and $\pi^-\pi^-p$ was reperformed. The availability of more precise information on these reactions made a more accurate estimation of the correction feasible.20 For each reaction we assume that the π^0s had an invariant phase-space energy distribution and an isotropic angular distribution in the c.m. system. We calculated the corresponding lab-system distribution of photons in energy and angle, $d\sigma/d\Omega(k,\theta)$, with a normalization determined by the total cross sections for the π^0n and $\pi^-\pi^-p$ reactions. To obtain the values of $d\sigma/d\Omega$ used in this analysis, we subtracted the quantity

$$ \frac{d\sigma_{\text{iso}}}{d\Omega}(\theta_\gamma) = \int dk d\Omega P_i(k,\theta) \epsilon(k) $$(10)

from the uncorrected data points of Caris et al. We used their original values for the remaining corrections that they discuss. The values used in the least-squares analysis are given in Table II column (c).

The neutron data provided information on the portion of the angular distribution in which the uncertainties in the γ data are greatest. The relative magnitude of the calculated corrections to the γ-angular distribution is greater for $\theta_\pi > 90$ deg. In addition, the statistical weight of the γ data is lowest in this region.

We performed the least-squares analysis with (a) the uncorrected γ data alone, (b) the neutron data and the dispersion-relation points, and (c) all data simultaneously. The results are given in Table III. At $T_\pi = 315$ (the average T_π for the various data) and 371 MeV the probability of fit was not significantly increased for $N > 2$ for case (a) and for $N > 3$ for cases (b) and (c). At $T_\pi = 315$ MeV for case (c) the γ-data point at $\cos\theta_{\pi*}$ $=-0.955$ was deleted since the inclusion of this point decreased the probability of fit to 0.001.

The differential cross section for $\pi^-p \rightarrow \pi^0n$ at $T_\pi = 315$ and 371 MeV as determined by the least-squares analysis of the corrected γ data and by the analysis of the combined data are plotted in Fig. 4. The nonzero value of a_3 obtained in the combined data analysis is consistent with the requirement of at least D waves in other analyses of pion-nucleon interactions at $T_\pi = 310$ MeV.4 However, the behavior of the angular distribution in the region of $\theta_\pi = 180$ deg is not

\begin{table}
\begin{center}
\begin{tabular}{cccccc}
\hline
T_{π^-} & N & a_0 & a_1 & a_2 & a_3 & Probability of fit \\
(MeV) & & (mb/sr) & (mb/sr) & (mb/sr) & (mb/sr) & \\
\hline
315 & a & 2 & 1.31 ± 0.04 & 1.17 ± 0.08 & 1.57 ± 0.11 & \cdots & 0.57 \\
 & b & 2 & 0.92 ± 0.04 & 1.17 ± 0.08 & 0.96 ± 0.07 & \cdots & 10^{-3} \\
 & c & 3 & 1.13 ± 0.06 & 1.73 ± 0.14 & 1.50 ± 0.13 & 0.44 ± 0.09 & 0.88 \\
 & d & 3 & 1.16 ± 0.03 & 1.62 ± 0.05 & 1.31 ± 0.05 & \cdots & $<10^{-4}$ \\
371 & a & 2 & 1.21 ± 0.03 & 1.88 ± 0.06 & 1.61 ± 0.06 & 0.45 ± 0.06 & 0.40 \\
 & b & 2 & 0.60 ± 0.02 & 0.89 ± 0.05 & 0.44 ± 0.03 & \cdots & 0.15 \\
 & c & 3 & 0.80 ± 0.03 & 1.37 ± 0.08 & 0.96 ± 0.07 & 0.31 ± 0.04 & 0.75 \\
 & d & 3 & 0.77 ± 0.02 & 1.26 ± 0.03 & 0.67 ± 0.02 & \cdots & $<10^{-4}$ \\
\hline
\end{tabular}
\end{center}
\end{table}
consistent with any of the SPD solutions of Vik and Rugge. The same comment applies to the results of measurements of the neutron polarization in $\pi^- p \rightarrow \pi^0 n$ at $T_\pi = 310$ MeV.21 The differential cross section obtained here corresponds most closely to predictions obtained from SPD solutions II and IV of Vik and Rugge.22 We note that the SPD solution II of Vik and Rugge is preferred by the recent theoretical analysis of pion-nucleon scattering of Donnachie et al.23 The angular distribution at $T_\pi = 315$ and 371 MeV presented here deviates from that determined from the γ data alone in a manner which is in agreement with the predictions of an energy-dependent phase-shift analysis of pion-nucleon scattering by Roper.24 The predictions by Roper at $T_\pi = 310$ and 370 MeV are also plotted in Fig. 4. He used the data of Caris et al. in his analysis as well as all other available data on pion-nucleon scattering (including the neutron polarization data referred to above). At both energies, $d\sigma/d\Omega$ for θ_{π^*}< 90 deg is lower than the predictions by Roper. At $\theta_{\pi^*} = 180$ deg, isotopic spin considerations place a lower limit on $d\sigma/d\Omega$ for $\pi^- p \rightarrow \pi^0 n$ in terms of the differential cross sections for $\pi^- p \rightarrow \pi^- p$ at $\theta_{\pi} = 180$ deg:

$$\frac{d\sigma}{d\Omega} \geq \frac{1}{2} \left[\left(\frac{d\sigma_0}{d\Omega} \right)^{1/2} - \left(\frac{d\sigma_{\pi\pi}}{d\Omega} \right)^{1/2} \right]^2.$$ \hspace{1cm} (11)

If we use the available data on elastic scattering2,3,25 this limit is 0.77 ± 0.20 mb/sr at $T_\pi = 310$ MeV and 0.13 ± 0.06 mb/sr at $T_\pi = 370$ MeV. The values corresponding to the $N = 3$, combined data of Table III are 0.50 ± 0.11 mb/sr and 0.07 ± 0.07 mb/sr, respectively. Thus the present charge-exchange angular distributions $\theta_{\pi^*_\pi} = 180$ deg are barely compatible with this limit.

By integration of the $d\sigma_\pi^*$ curve over $\cos \theta_{\pi^*_\pi}$, a value for the total cross section σ_T for the reaction (2) was obtained. These results are presented in Table IV and are calculated from the “combined” data Table III with $N = 3$.

<table>
<thead>
<tr>
<th>T_π (MeV)</th>
<th>σ_T (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>15.1 ± 0.4</td>
</tr>
<tr>
<td>371</td>
<td>11.1 ± 0.2</td>
</tr>
</tbody>
</table>

22 L. David Roper, Lawrence Radiation Laboratory, Livermore, 1964 (private communication).
25 Philip M. Ogden, Donald E. Hagge, Jerome A. Helland, Marcel Banner, Jean Francois Detouche, and Jacques Teiger, Phys. Rev. 137, B1115 (1965).

B. Inelastic Neutrons

The inelastic-neutron distributions can be compared to phase-space distributions and distributions enhanced by an $I = 0$ two-pion interaction, in either of two ways. The first is at a constant neutron angle. This would correspond to a vertical cut through the kinematically allowed inelastic area shown in Fig. 5. In effect, this is what is shown in the inelastic distribution in Fig. 2 except that the abscissa has been plotted as time-of-flight instead of neutron energy. The second possibility is at a constant neutron energy. This corresponds to a horizontal cut through the inelastic neutrons areas in Fig. 5. In this case an energy band can be selected sufficiently wide to avoid the statistical fluctuations seen in Fig. 2. In addition, since the neutron energy is constant, any inaccuracy in the neutron-detection efficiency is eliminated from the shape of the distribution. A calculation of the second type gives $d\sigma_r/d\Omega$ for constant T_γ for both $\pi^+ \pi^- n$ and $\pi^- \pi^+ n$ final states; this is presented numerically in Table V and graphically in Figs. 6 and 7. Also shown in the figures are the phase-space distribution and the distribution calculated by using an $I = 0$ two-pion interaction enhancement factor with $a_\sigma = 2\mu^{-1}$ and $R = 0$. This value of a_σ is the scattering length tentatively proposed by Abashian et al.26 for the $I = 0$ two-pion interaction, and $R = 0$ is the radius of interaction. These curves are normalized to the integral of the distribution for $\pi^+ \pi^- n$ over $\cos \theta$. The distribution of inelastic neutrons from the $\pi^+ \pi^- n$ final state departs noticeably from both the phase-space distribution and the ABC enhancement distribution.
TABLE V. Inelastic-neutron $d\sigma/dT \, d\Omega$ distribution at constant neutron energy.

<table>
<thead>
<tr>
<th>T_π^- (MeV)</th>
<th>$\cos \theta_\pi$</th>
<th>$d\sigma/dT , d\Omega (\pi^- \pi^- n)$ (µb/MeV-ster)</th>
<th>$d\sigma/dT , d\Omega (\pi^- \pi^0 n)$ (µb/MeV-ster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>0.985</td>
<td>57.3 ± 16.8</td>
<td>10.9 ± 16.5</td>
</tr>
<tr>
<td></td>
<td>0.966</td>
<td>33.5 ± 6.2</td>
<td>12.7 ± 13.9</td>
</tr>
<tr>
<td></td>
<td>0.940</td>
<td>16.0 ± 8.8</td>
<td>8.3 ± 14.0</td>
</tr>
<tr>
<td></td>
<td>0.926</td>
<td>11.7 ± 2.7</td>
<td>7.9 ± 3.9</td>
</tr>
<tr>
<td></td>
<td>0.819</td>
<td>7.1 ± 2.7</td>
<td>3.6 ± 4.0</td>
</tr>
<tr>
<td></td>
<td>0.766</td>
<td>6.7 ± 2.8</td>
<td>5.9 ± 4.3</td>
</tr>
<tr>
<td>371</td>
<td>0.985</td>
<td>60.1 ± 11.0</td>
<td>18.7 ± 10.7</td>
</tr>
<tr>
<td></td>
<td>0.940</td>
<td>36.4 ± 5.5</td>
<td>20.0 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>0.866</td>
<td>15.2 ± 3.9</td>
<td>8.9 ± 4.4</td>
</tr>
<tr>
<td></td>
<td>0.766</td>
<td>6.0 ± 2.8</td>
<td>0.4 ± 4.2</td>
</tr>
</tbody>
</table>

We observe that there is a strong peaking at low c.m. energy for the neutron. This same effect was observed by Kirz et al., Barish et al., and Blokhintseva et al. These low-neutron energies correspond to a dipion effective mass in the range near $m_{\pi\pi} = 400$ MeV where several authors report $I=0$ two-pion resonances.

![Fig. 5. Laboratory-system neutron kinematics for the processes $\pi^- p \rightarrow \pi^- n$ (region inside curve A) and $\pi^- p \rightarrow \pi^0 n$ (curve B) at 313 MeV. Curves at 371 MeV are similar. Shaded area is energy band used in inelastic-neutron analysis.](image)

![Fig. 6. Inelastic-neutron differential distribution for $T_\pi^- = 313$ MeV (neutron energy interval from 42 to 57 MeV). (•) $d\sigma/dT \, d\Omega$ for $\pi^- p \rightarrow \pi^- n$; (solid) $d\sigma/dT \, d\Omega$ for $\pi^- p \rightarrow \pi^0 n$; (A) phase-space distribution; (B) distribution for $I=0$ two-pion interaction with $a_\pi = 2\mu^{-1}$ and $R = 0$.](image)

![Fig. 7. Inelastic-neutron differential distribution for $T_\pi^- = 371$ MeV (neutron energy interval from 50 to 69 MeV). (•) $d\sigma/dT \, d\Omega$ for $\pi^- p \rightarrow \pi^- n$; (solid) $d\sigma/dT \, d\Omega$ for $\pi^- p \rightarrow \pi^0 n$; (A) phase-space distribution; (B) distribution for $I=0$ two-pion interaction with $a_\pi = 2\mu^{-1}$ and $R = 0$.](image)

This low-energy peaking seems to be present at $T_\pi^- = 371$ MeV in the $\pi^- p \rightarrow \pi^- n$ distribution, which is in agreement with Barish et al. but is not clearly evident at 313 MeV. However, at this energy the large statis-
Parametric Expression for $p-p$ Off-Energy-Shell Matrix Elements and $p-p$ Bremsstrahlung

M. I. Sobel
Northeastern University, Boston, Massachusetts
(Received 3 February 1965)

An equation is derived which expresses the off-energy-shell matrix elements of the $p-p$ interaction in a form analogous to the phase-shift expansion for elastic scattering. "Quasiphase parameters" which play the role of phase shifts in this expression are calculated from phenomenological potentials. $p-p$ bremsstrahlung, with gamma rays observed perpendicular to the scattering plane of the incident proton, is discussed as a process which may permit experimental study of these parameters.

I. INTRODUCTION

In recent years a number of phenomenological potentials have been proposed to represent the proton-proton interaction at energies up to 300 MeV. However, since these potentials were all fitted to elastic-scattering data, only the on-energy-shell matrix elements of the interaction are directly determined. A complete understanding of the $p-p$ interaction requires knowledge of the off-energy-shell elements as well. Recently proton-proton bremsstrahlung, at energies less than 300 MeV, was considered as an inelastic process which can be interpreted simply in terms of off-energy-shell elements. The cross sections for this process, calculated using different phenomenological potentials, were found to differ by more than a factor of 2.

Since that time experimental effort at a number of laboratories has gone into the problem of nucleon-nucleon bremsstrahlung, and in two cases preliminary results are available. It is therefore of interest to consider in a general way how the analysis of such experiments might proceed.

In Sec. II it is shown that the off-energy-shell matrix elements can be put in a form closely analogous to that for on-energy-shell elements. They have the same dependence on scattering angle, and involve energy-dependent quantities similar to phase shifts. These "quasiphase parameters" are then calculated for a number of phenomenological potentials. In Sec. III we discuss a particular choice of kinematics for $p-p$ bremsstrahlung which is particularly useful for a detailed analysis of the matrix elements. For this process one can define not only a cross section, but also symmetry measurements for polarized incident beams. In Sec. IV some calculated values of these cross sections and polarizations are presented. Unfortunately, for the case considered, the polarizations turn out to be too small to be useful.

ACKNOWLEDGMENTS

We would like to acknowledge the help, support, and encouragement received from Professor Burton J. Moyer throughout the course of this experiment. We are indebted to Dr. Julius Solomon for his assistance in the beam-optics calculations and to Dr. L. David Roper for his helpful discussions and cooperation in transmitting the results of his phase-shift analysis. We are grateful to Dr. T. D. Spearman for pointing out the limit on charge-exchange differential cross sections at 180 deg. Finally we would like to thank James T. Vale and the members of the cyclotron crew for their help and cooperation during this experiment.